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Abstract

Identifying key proteins from protein-protein interaction (PPI) networks is one of the most

fundamental and important tasks for computational biologists. However, the protein interac-

tions obtained by high-throughput technology are characterized by a high false positive rate,

which severely hinders the prediction accuracy of the current computational methods. In this

paper, we propose a novel strategy to identify key proteins by constructing reliable PPI net-

works. Five Gene Ontology (GO)-based semantic similarity measurements (Jiang, Lin, Rel,

Resnik, and Wang) are used to calculate the confidence scores for protein pairs under three

annotation terms (Molecular function (MF), Biological process (BP), and Cellular component

(CC)). The protein pairs with low similarity values are assumed to be low-confidence links,

and the refined PPI networks are constructed by filtering the low-confidence links. Six topol-

ogy-based centrality methods (the BC, DC, EC, NC, SC, and aveNC) are applied to test the

performance of the measurements under the original network and refined network. We sys-

tematically compare the performance of the five semantic similarity metrics with the three

GO annotation terms on four benchmark datasets, and the simulation results show that the

performance of these centrality methods under refined PPI networks is relatively better than

that under the original networks. Resnik with a BP annotation term performs best among all

five metrics with the three annotation terms. These findings suggest the importance of

semantic similarity metrics in measuring the reliability of the links between proteins and high-

light the Resnik metric with the BP annotation term as a favourable choice.

Introduction

Proteins are crucial components of cell and tissue structures and are cornerstones used by an

organism to maintain normal life activities. Due to the different roles each protein plays in the

life activities of organisms, proteins are divided into essential proteins and nonessential pro-

teins. The deletion or elimination of essential proteins may result in normal cellular function

disorders or diseases and may even affect the development and survival of organisms [1, 2].

Previous studies have shown that when a virus attacks the human body, it attacks essential
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proteins first [3]. For instance, when studying the novel coronavirus, the most important

aspect is to determine several possible target proteins and then use super-large computer-

aided drug screening to find effective antiviral drugs. Therefore, identifying key proteins has

vital application prospects in disease diagnosis [4], drug discovery [5], and drug design [6].

Traditional biological experiments can only be carried out in a limited number of species

and are expensive and time consuming [7]. Fortunately, with the rapid development of high-

throughput technology, many PPI data have been accumulated, and these provide a conve-

nient condition for identifying essential proteins with computational methods.

PPI networks provide a comprehensive view of the global interaction structure of an organ-

ism’s proteome. Initially, the key proteins were predicted by measuring topologic properties.

In 2001, Jeong [8] pointed out that proteins involved in more interactions in PPI networks

have higher possibilities of being key proteins; this is known as the centrality-lethality rule.

Subsequently, a series of topological structure-based approaches were developed, such as the

betweenness centrality (BC) [9], eigenvector centrality (EC) [10], neighborhood centrality

(NC) [11], subgraph centrality (SC) [12], strength centrality (StrC) [13], average neighbor cen-

trality (aveNC) [14], closeness centrality (CC) [15], information centrality (IC) [16], local aver-

age connectivity (LAC) [17], local interaction density (LID) [18], maximum neighborhood

component (MNC), density of maximum neighborhood component (DMNC) [19], TP and

TP-NC [20]. The performance of these centrality methods depends on the quality of the uti-

lized PPI networks.

PPI networks retrieved from high-throughput techniques are incomplete and inherently

noisy [21]. The reliability of yeast two-hybrid assays is approximately 50%, even for the well-

studied Saccharomyces cerevisiae species; this impairs the prediction performance of the avail-

able topology-based methods.

To overcome the influence of false positive data in PPI networks, two categories of methods

have been developed to improve the performance of identifying essential proteins. The first

category identifies essential proteins by combining the topological properties of PPI networks

with various biological data, such as Gene Ontology (GO) annotation data [22–27], gene

expression profiles [23, 25, 27–31], subcellular localizations [24, 25, 31], the domain features of

proteins [32], orthologous information [30, 33], and protein complex information [34, 35].

Previous studies have demonstrated that the efficient and effective integration of multiple

sources of data could yield better results for identifying essential proteins. For example, Kim

[22] proposed that adding gene-level annotation information, such as GO terms, to detect

essential proteins would result in higher accuracy than that of existing methods. Li et al. [29]

introduced a novel essential protein prediction algorithm named CPPK. CPPK predicts key

proteins with a combination of network topology properties and gene expression data. Zhang

et al. [23] developed a new method named TEO that combines PPI networks, and gene expres-

sion profiles with GO annotation terms, and it achieved higher accuracy in predicting key pro-

teins than previously developed. Peng et al. [32] developed a method called UDoNC that

utilize protein domain information and the topology of given PPI network. Lei et al. [24] intro-

duced a novel strategy named RSG using RNA-Seq, GO information, and subcellular localiza-

tion. Zhang et al. [25] developed TEGS, a new strategy to predict key proteins, which

improved prediction accuracy by integrating network topology with subcellular localization

information, gene expression profiles, and GO annotation datasets. Peng et al. [33] developed

a novel measure to predict key proteins by adding orthologous data. Zhang et al. [30] designed

OGN by using gene expressions, orthologies, and network topologies to identify key proteins.

Li et al. [34] introduced a novel idea that combines protein complexes information with the

topological properties of PPI networks.
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The methods in the second category predict key proteins based on refined networks by fil-

tering the false positive interactions in the original network. For instance, Kim et al. [26]

designed a motif-based method named MCGO, which utilizes Gene Ontology annotation data

to prune several uninformative edges from the given network. Li et al. [31] proposed a novel

approach to reconstruct PPI networks by using gene expression information and subcellular

localization information. Liu et al. [36] developed a new algorithm, EPPSO, to identify key

proteins according to improved particle swarm optimization and reconstructed PPI networks

by combining the topology information of the PPI networks with other biological information.

Lei et al. [27] presented RWEP, which utilizes GO terms and gene expression data to construct

a new weighted PPI network, and a random walk with the restart algorithm is applied to quan-

tify the essentiality value of the protein. Simulation results show that RWEP dominates topol-

ogy-based approaches in predicting key proteins. However, the performance of these

approaches is still unsatisfactory, and many methods are complicated and involve many steps,

which might hinder their wide application in biological research.

GO annotation is a system of uniform and normative descriptions of the genes and gene

products of all species. A GO annotation collects information on the molecular function (MF),

biological process (BP), and cellular component (CC) of different organisms. The GO-based

semantic similarity metric (SSM) is a numerical measure that is used to estimate the semantic

intimacy between two terms and is widely used for measuring the functional similarities

between proteins [37–39]. Five widely used SSMs, Jiang [40], Lin [41], Rel [42], Resnik [43],

and Wang [44], are applied to calculate the GO semantic similarity values at present. However,

each of the SSMs focuses on characterizing particular aspects of GO annotation terms and has

strengths as well as weaknesses. The advantages and disadvantages of these SSMs in evaluating

GO semantic similarities are important for predicting key proteins.

In this paper, we comprehensively discuss the aforementioned five semantic similarity mea-

surements in combination with three subontology (BP, CC, and MF) terms on the identifica-

tion of essential proteins. Six centrality methods (the BC, DC, EC, NC, SC, and aveNC) are

applied on refined GO-PPI networks and the results are compared with those of the same

methods on the original PPI networks. Extensive comparisons have been conducted under dif-

ferent conditions, and the simulation results offer a reference to biologists when investigating

the essential proteins of PPI networks.

Methods

In this part, six conventional centrality methods (the BC, DC, EC, NC, SC, and aveNC) are

reviewed briefly. Then, refined PPI network construction methods are described in detail.

Additionally, the utilized datasets and evaluation metrics are presented.

Centrality methods

PPI networks are abstracted into graph structures, which are denoted as PPI = (P, E), where P
is composed of proteins and E represents the set of interactions between proteins. PPI net-

works are stored as adjacent matrices. The six centrality calculation methods are calculated as

follows.

1. BC

BCðpÞ ¼
X

i

X

j

Spði; jÞ
Sði; jÞ ð1Þ

where Sp(i, j) represents the number of shortest paths between protein i and j that go
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through protein p and S(i, j) represents the number of shortest paths between protein i and

protein j. Considering the global characteristics of PPI networks, this method can identify

some nodes whose degrees are not high but play a vital role in the connection of the given

network.

2. DC

DCðpÞ ¼ degðpÞ ¼
X

u

ap;u ð2Þ

where deg(p) represents the number of proteins connected to p directly, which is called the

degree of p. And ap,u 2 A represents the interactions between proteins p and u.

3. EC

ECðpÞ ¼ amaxðpÞ ð3Þ

where α is a eigenvector of the adjacency matrix A and αmax(p) is the pth component of the

eigenvector belonging to the maximum eigenvalue λmax.

4. NC

NCðpÞ ¼
X

u2Np

ECCpu ¼
X

u2Np

jNp

T
Nuj

minðjNpj � 1; jNuj � 1Þ
ð4Þ

where Np and Nu represent the neighboring sets of proteins p and u, respectively. ECC is

the edge clustering coefficient. This method characterizes the connection relationships

between a node and its neighbors; that is, the similarity of the relationship between two pro-

teins is described by calculating the number of common neighbor nodes.

5. SC

SCðpÞ ¼
X1

l¼0

mlðpÞ
l! ð5Þ

where μl(p) represents the number of loops whose starting and ending proteins are p and

the lengths of these loops are l. In complex networks, essential proteins tend to form dense

subgraphs. The shorter the loop is, the more likely the protein is to be in a dense subgraph

and to be a key protein.

6. aveNC

aveNCðpÞ ¼

X

u2Np

degðuÞ

degðpÞ
ð6Þ

where Np represents the set of protein p’s neighbors. The significance of a protein is mea-

sured by its neighbors.

Constructing refined PPI network by applying GO-based SSMs

There are two kinds of measures used to record confidence scores for a PPI network. One

relies on interaction data [45], and the other takes gene expression values [46], functional simi-

larities [39, 47], and other information into consideration [37]. According to the basic idea
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that proteins interacting in the same cell have a higher possibility of being involved in a similar

biological process than that do not interact, we assume that the protein pairs with smaller

semantic similarity values are more likely to be false positive links.

Five widely used methods, Jiang, Lin, Rel, Resnik, and Wang, are applied to compute

semantic similarities based on the GO terms between proteins, and these are denoted as confi-

dence scores. Wang determines the confidence scores between two proteins according to the

locations of their corresponding GO terms in the GO graph and their ancestor terms’ relation-

ships. The other four methods are based on information content (IC), which depends on the

probabilities of the two GO terms involved and their closest common ancestor terms in the

corpus of the GO annotation information.

The details of the five SSMs (semantic similarity metric) are shown as follows:

1. Resnik

Resnik believes that information content (IC) is the most informative common ancestor

(MICA) [48]. The similarity between protein pairs m and v in this method is denoted as

SSMResnikðm; vÞ ¼ max
t2C

ICðtÞ ¼ ICðMICAðm; vÞÞ ð7Þ

where C represents the set of common ancestors of m and v. The IC mentioned above is

denoted as IC(t) = −lnp(t), where p(t) represents the probability of occurrence in the GO

corpus and IC is used to express the specificity of a protein.

2. Lin and Jiang

It seems that the performance of Resnik is valid for calculating the similarity of two terms,

but it cannot distinguish between terms that have the same MICA. To tackle this problem,

Lin and Jiang developed new methods with comprehensive consideration of the ICs

between protein pairs and their MICAs. The similarity of two proteins based on the Lin

and Jiang methods is defined as

SSMLinðm; vÞ ¼
2� ICðMICAðm; vÞÞ

ICðmÞ þ ICðvÞ
ð8Þ

SSMJiangðm; vÞ ¼ 1 � ½ICðmÞ þ ICðvÞ � 2� ICðMICAðm; vÞÞ� ð9Þ

3. Rel

Shortcomings still exist in the approaches developed by Lin and Jiang. The similarity

between two terms is overestimated when a protein is an ancestor of another. In addition,

these approaches ignore the specificities of the two terms. By combining Resnik and Lin,

Rel presented a novel measure to capture the similarity between two terms. The similarity

between two proteins is defined as

SSMRelðm; vÞ ¼
2� ICðMICAðm; vÞÞð1 � pðMICAðm; vÞÞÞ

ICðmÞ þ ICðvÞ
ð10Þ

4. Wang

Wang is a hybrid method that combines the number of common ancestors with the loca-

tions of these ancestors in the GO graph when calculating the similarity between two terms.

GO terms are presented as directed acyclic graphs (DAGs). Suppose that Gv = (Pv, Ev) is a

GAG for a GO term v, where Pv contains the ancestor terms of v including itself, and Ev is
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composed of edges that connect the GO terms in Gv. Other terms closer to v in Gv contrib-

ute more to its semantics. The contribution of a protein u to the semantics of protein v in

Gv is defined as the S-value of u and is calculated as

SGv
ðvÞ ¼ 1

SGv
ðuÞ ¼ maxfwe � SGv

ðu0Þju0 2 child of ug if u 6¼ v

8
<

:
ð11Þ

where ωe(0 < ωe< 1) is the semantic contribution factor for edge e 2 Ev that links term u
with its child term u0. And SV(v) is used to compare the semantics of two GO terms, and

SV(v)is defined as

SVðvÞ ¼
X

u2Pv

SGv
ðuÞ ð12Þ

The semantic similarity between protein pairs m and v is denoted as

SSMWangðm; vÞ ¼

X

u2Pm
T

Pv

ðSGm
ðuÞ þ SGv

ðuÞÞ

SVðmÞ þ SVðvÞ
ð13Þ

In this article, we apply five GO-based semantic similarity measurements to measure the

reliability of protein pairs. For each SSM, we first compute the confidence scores for all of the

protein pairs, and then construct refined PPI networks by filtering the interactions with low

confidence scores. The refined PPI networks we obtain by measuring the GO semantic similar-

ity are named GO-PPI for short, and the network refined by using the Resnik metric under the

BP annotation term is named Resnik-BP GO-PPI for short. The main idea of constructing a

refined GO-PPI network is shown in Fig 1.

Experimental data

To compare the performance of these centrality methods under different combinations of

strategies, we choose the well-studied Saccharomyces cerevisiae PPI data for experiments, as

they are widely applied for testing the performance of new methods. The datasets include the

YDIP dataset composed of 5093 proteins and 24743 interactions, the new DIP dataset, which

includes 4928 proteins and 17201 interactions, the Krogan dataset containing 7123 interac-

tions among 2708 proteins, and the Krogan Extended dataset, which consists of 3672 proteins

with 14317 interactions. A summary of these datasets is presented in Table 1.

The GO annotation information of each protein is downloaded from the Saccharomyces

Genome Database, which was released on September 10th, 2020.

The benchmark of a known essential protein dataset including 1285 proteins is collected

from four different databases (MIPS [49], SGD [50], DEG [51], and SGDP (http://www.

sequence.stanford.edu/group/).

Evaluation metrics

To measure the efficiency of the proposed strategy, we calculate the numbers of key proteins

predicted correctly among the top 600 ranked proteins, and the corresponding prediction pre-

cisions of the six topology-based methods are also calculated under the original PPI network
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and refined GO-PPI network. The prediction precision is denoted as

Precision ¼
TP

TPþ FP
ð14Þ

where TP describes the number of true positives, and FP describes the number of false

positives.

Results and discussion

To evaluate whether the performance of the reconstructed GO-PPI network is better than that

of the corresponding original PPI network in identifying key proteins, six topology structure-

based methods (the BC, DC, EC, NC, SC, and aveNC) are applied in the experiments. We

compare the numbers of key proteins identified properly and the prediction precisions under

different types of strategies. The threshold for GO semantic similarity is set to 0.33 for filtering

the unreliable links in the PPI networks.

Fig 1. The process of constructing a GO-PPI network.

https://doi.org/10.1371/journal.pone.0284274.g001

Table 1. The detailed information of four PPI datasets.

Dataset Proteins Interactions Essential proteins Density

YDIP 5093 24743 1167 0.0019

DIP PPI 4928 17201 1150 0.0014

Krogan 2708 7123 786 0.0019

Krogan Extended 3672 14317 929 0.0021

https://doi.org/10.1371/journal.pone.0284274.t001

PLOS ONE Comparation of gene ontology-based semantic similarity measurements for identifying essential proteins

PLOS ONE | https://doi.org/10.1371/journal.pone.0284274 April 21, 2023 7 / 18

https://doi.org/10.1371/journal.pone.0284274.g001
https://doi.org/10.1371/journal.pone.0284274.t001
https://doi.org/10.1371/journal.pone.0284274


Analysis of the original network and refined GO-PPI network

The number of interactions in a network influences the speed of calculation for identifying

essential proteins. The lower the number of interactions, the less time is required for the calcu-

lation. Therefore, we compute the number of interactions and the portions of key proteins

under the original PPI network and refined the GO-PPI network for the YDIP dataset. As

shown in Table 2, the number of interactions declines dramatically after filtering the links with

low-confidence scores, and more than half of the interactions are filtered, so the computational

efficiency is greatly improved. Furthermore, the numbers of proteins and key proteins are

reduced, but the portion of essential proteins is increased, which is more beneficial for identi-

fying key proteins. For example, in networks with the application of the Resnik metric, the

proportions of essential proteins under the three subontologies (the BP, CC, and MF) reach

39.83%, 41.55%, and 37.82%, respectively, while they are 22.91% in the original PPI network.

In the meantime, we study the interactions that rank among the top 600. As the numbers of

interactions are different for the original network and the reconstructed GO-PPI network, we

compute the proportions of the interactions between essential protein pairs (Ess-ess), essential

and nonessential protein pairs (Ess-noness), and nonessential pairs (Noness-noness), and the

results for the YDIP dataset under the BP subontology are shown in Table 3. It can be seen

that the portion of Ess-ess interactions is significantly improved under the five refined

GO-PPI networks, and the portions of Ess-noness and Noness-noness interactions under the

GO-PPI network are much lower than those under the original PPI network. We can also see

that Wang achieves the best performance compared with those of the other four SSMs. For

instance, the portion of essential pairs reaches 57.99% when using the NC method under

Wang, which is the highest for the six different networks. And the interactions between the

essential and nonessential pairs are only 12.87% of total interactions under Wang versus

37.27% under the original PPI network for the SC method.

Table 2. The number of interactions and the portions of essential proteins under the original PPI network and GO-PPI network for the YDIP dataset.

Ontology SSMs Network No. interactions No. proteins Portion of essential proteins

Reserved Filtered Nonessential Essential

original PPI 24743 0 5093 1167 22.91%

BP Jiang GO-PPI 5456 19287 2313 785 33.94%

Lin GO-PPI 6323 18420 2522 833 33.03%

Rel GO-PPI 5746 18997 2428 825 33.98%

Resnik GO-PPI 3336 21407 1725 687 39.83%

Wang GO-PPI 5418 19325 2644 864 32.68%

CC Jiang GO-PPI 11762 12981 3535 951 26.90%

Lin GO-PPI 8408 16335 3107 900 28.97%

Rel GO-PPI 6140 18603 2760 849 30.76%

Resnik GO-PPI 2018 22725 1160 482 41.55%

Wang GO-PPI 18082 6661 4182 1069 25.56%

MF Jiang GO-PPI 3640 21103 1821 615 33.77%

Lin GO-PPI 3177 21566 1733 594 34.28%

Rel GO-PPI 2821 21922 1667 585 35.09%

Resnik GO-PPI 1331 23412 1092 413 37.82%

Wang GO-PPI 4902 19841 2733 792 28.98%

https://doi.org/10.1371/journal.pone.0284274.t002
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Comparison of the numbers of true predictions under different strategies

In this part, we do a systematic evaluation of the performance of the newly constructed net-

works on the four test datasets. For each dataset, we adopt five SSMs to calculate confidence

scores for the protein pairs in the PPI network under the three GO annotation terms (the BP,

MF, and CC) and obtain fifteen kinds of refined GO-PPI networks. Six centrality methods are

applied to predict the key proteins of the newly constructed GO-PPI network and the original

PPI network.

Table 4 presents the numbers of essential proteins correctly identified from the top 600 can-

didate proteins of the original network and refined GO-PPI network with different SSMs

under the three sub-ontologies (the BP, CC, and MF). As seen from Table 4, for the YDIP data-

set, the numbers of essential proteins correctly identified under the six centrality methods on

each of the newly constructed GO-PPI networks are consistently larger than those under the

corresponding original PPI networks. For example, compared to the original network, the EC

method yields an improvement of 57.01% on the Wang-BP (the Wang method under BP sub-

ontology) network, and the aveNC method provides an improvement of 300% on the Resnik-

BP network. In terms of three subontologies, the performance of these methods under the

refined GO-PPI network obtained with BP annotation term is significantly better than it

under CC and MF annotation terms, especially for the Resnik and Wang methods.

To verify the superiority of the newly proposed strategy, we calculate the number of key

proteins identified correctly by each method under three GO subontology terms for the

reduced DIP PPI dataset, the Krogan dataset, and the Krogan Extended dataset. The calcula-

tion results are listed in Tables 5–7.

For the new DIP PPI dataset, the comparison results are shown in Table 5. We can observe

that the six centrality methods perform best under the refined GO-PPI network constructed

by using the Resnik metric with the BP subontology, suggesting that this network is relatively

more accurate and complete than it is under the MF and CC subontologies.

Table 3. The portions of interactions under the original PPI network and GO-PPI network for the YDIP dataset (BP).

SSMs Network Interactions BC DC EC NC SC

original PPI Ess-ess 17.11% 20.03% 17.21% 32.11% 17.21%

Ess-noness 37.64% 35.91% 37.27% 28.12% 37.27%

Noness-noness 45.25% 44.06% 45.52% 39.77% 45.52%

Jiang GO-PPI Ess-ess 34.85% 46.72% 47.32% 55.98% 49.46%

Ess-noness 28.34% 20.12% 17.41% 16.87% 15.94%

Noness-noness 36.82% 33.16% 35.27% 27.14% 34.60%

Lin GO-PPI Ess-ess 31.87% 45.07% 47.65% 53.64% 48.64%

Ess-noness 28.85% 20.15% 18.05% 17.38% 17.42%

Noness-noness 39.28% 34.78% 34.30% 28.98% 33.94%

Rel GO-PPI Ess-ess 33.51% 47.71% 52.74% 56.22% 52.50%

Ess-noness 28.95% 20.18% 15.10% 17.12% 15.59%

Noness-noness 37.53% 32.12% 32.16% 26.66% 31.91%

Resnik GO-PPI Ess-ess 34.85% 46.72% 47.32% 55.98% 49.46%

Ess-noness 28.34% 20.12% 17.41% 16.87% 15.94%

Noness-noness 36.82% 33.16% 35.27% 27.14% 34.60%

Wang GO-PPI Ess-ess 35.57% 51.87% 55.39% 57.99% 55.99%

Ess-noness 29.18% 17.90% 13.79% 17.06% 12.87%

Noness-noness 35.24% 30.23% 30.81% 24.95% 31.14%

https://doi.org/10.1371/journal.pone.0284274.t003
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However, for the MF and CC subontologies, some of the centrality methods perform poorly

under the refined GO-PPI network, such as the BC method under the Jiang-CC (the Jiang

method under the CC subontology) PPI network and the DC method under the Resnik-MF

(the Resnik method under the MF subontology) PPI network. The maximum number of

essential proteins predicted by the NC method in all five newly constructed PPI networks

under the MF subontology is 306, which is compared to the 318 correctly predicted essential

proteins under the original PPI network. Considering the number of interactions under the

refined GO-PPI network in the MF subontology (Table 2), this is might due to the GO annota-

tion under MF is incomplete for the protein pairs in the new DIP dataset; therefore, the

Table 4. The numbers of essential proteins detected by the six centrality methods under different strategies for the YDIP dataset (top 600).

Ontology SSMs Network BC DC EC NC SC aveNC

original PPI 220 251 221 309 221 80

BP Jiang GO-PPI 266 327 310 351 324 221

Lin GO-PPI 257 329 332 349 334 201

Rel GO-PPI 266 336 344 353 341 222

Resnik GO-PPI 311 363 340 351 349 320

Wang GO-PPI 265 344 347 356 346 259

CC Jiang GO-PPI 222 253 217 325 214 100

Lin GO-PPI 246 291 237 321 247 124

Rel GO-PPI 237 299 263 318 274 173

Resnik GO-PPI 301 317 280 315 291 295

Wang GO-PPI 229 269 228 328 228 92

MF Jiang GO-PPI 239 272 246 276 249 184

Lin GO-PPI 238 269 240 291 249 216

Rel GO-PPI 237 267 248 289 254 227

Resnik GO-PPI 237 261 238 242 243 234

Wang GO-PPI 230 278 259 289 232 145

https://doi.org/10.1371/journal.pone.0284274.t004

Table 5. The number of essential proteins detected by the six centrality methods under different strategies for the new DIP dataset (top 600).

Ontology SSMs Network BC DC EC NC SC aveNC

original PPI 239 274 160 318 163 72

BP Jiang GO-PPI 285 347 337 351 333 258

Lin GO-PPI 275 350 332 346 329 228

Rel GO-PPI 282 358 345 349 345 261

Resnik GO-PPI 355 370 348 351 345 340

Wang GO-PPI 285 349 336 352 349 285

CC Jiang GO-PPI 226 289 148 315 201 123

Lin GO-PPI 253 309 203 311 293 171

Rel GO-PPI 261 319 279 303 294 212

Resnik GO-PPI 298 309 280 308 321 301

Wang GO-PPI 252 294 216 340 272 94

MF Jiang GO-PPI 244 276 261 285 256 226

Lin GO-PPI 260 276 254 288 260 230

Rel GO-PPI 265 286 278 286 279 241

Resnik GO-PPI 231 250 239 242 248 240

Wang GO-PPI 242 282 256 306 225 171

https://doi.org/10.1371/journal.pone.0284274.t005
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confidence scores of many true interacting protein pairs are assigned to 0, and the refined net-

work constructed by using the five SSMs is relatively sparse, which hinders the performance of

the NC centrality approach in identifying key proteins.

As seen from the results obtained using the Krogan dataset in Table 6, the performance of

these six centrality methods under the refined GO-PPI networks constructed by using the five

SSMs with the BP and CC annotation terms dominates the number of true key proteins pre-

dicted under the original networks. In particular, under the GO-PPI network filtered by the

Wang method under the BP term, the numbers of correctly identified proteins achieved by the

two centrality methods (the DC and NC) reach 336, which is significantly larger than that on

the original PPI network. For the CC annotation term, the network filtered by using the Resnik

metric is relatively more precise than other methods in predicting key proteins. Compared to

the number of correct predictions obtained under the original PPI network, more than half of

the centrality methods performed better under the newly constructed network with the MF

sub-annotation term, except for the DC and NC methods.

Similar results are obtained on the Krogan Extended dataset and listed in Table 7. The

number of key proteins truly predicted under the newly refined GO-PPI networks constructed

with the BP subontology is consistently larger than that under the original PPI networks, and

the refined network dominates the the network constructed with the CC and MF subontolo-

gies in terms of performance.

To further investigate the performance of the six centrality methods under the newly

refined networks, we take the network constructed by using the Resnik metric with BP subon-

tology for the YDIP dataset as an example. We calculate the numbers of key proteins predicted

by these centrality approaches among the top 100, 200, 300, 400, 500, and 600 ranked candi-

dates. As shown in Fig 2, the performance of these six topology-based methods is highly

improved under the reconstructed GO-PPI network in terms of the number of key proteins

identified correctly. Particularly, for the SC method, 91 out of 100 candidate predicted proteins

are correctly identified, which is significantly more than those predicted by all of the other

state-of-the-art approaches. When compared to the results of the original PPI network, 85.22%

Table 6. The number of essential proteins detected by the six centrality methods under different strategies for the Krogan dataset (top 600).

Ontology SSMs Network BC DC EC NC SC aveNC

original PPI 227 288 228 305 242 141

BP Jiang GO-PPI 302 317 268 325 278 297

Lin GO-PPI 298 320 287 324 304 290

Rel GO-PPI 305 329 290 323 300 293

Resnik GO-PPI 311 328 299 312 305 325

Wang GO-PPI 308 336 309 336 307 301

CC Jiang GO-PPI 217 279 245 309 255 236

Lin GO-PPI 236 290 250 309 281 268

Rel GO-PPI 262 295 264 311 291 282

Resnik GO-PPI 300 309 289 305 305 304

Wang GO-PPI 235 292 243 300 263 170

MF Jiang GO-PPI 266 270 254 266 254 269

Lin GO-PPI 266 273 247 271 260 269

Rel GO-PPI 271 278 263 273 272 275

Resnik GO-PPI 252 254 256 254 260 257

Wang GO-PPI 264 276 229 264 240 251

https://doi.org/10.1371/journal.pone.0284274.t006
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Table 7. The number of essential proteins detected by the six centrality methods under different strategies for the Krogan Extended dataset (top 600).

Ontology SSMs Network BC DC EC NC SC aveNC

original PPI 240 271 227 305 227 103

BP Jiang GO-PPI 264 324 277 326 280 253

Lin GO-PPI 265 323 284 328 297 251

Rel GO-PPI 264 327 276 329 299 266

Resnik GO-PPI 317 327 306 326 307 305

Wang GO-PPI 275 332 317 327 316 288

CC Jiang GO-PPI 215 259 215 313 217 149

Lin GO-PPI 219 276 250 304 267 190

Rel GO-PPI 231 286 270 305 282 254

Resnik GO-PPI 296 301 288 303 283 308

Wang GO-PPI 253 275 242 309 241 147

MF Jiang GO-PPI 253 273 249 267 251 229

Lin GO-PPI 266 280 263 250 250 247

Rel GO-PPI 265 285 258 255 250 254

Resnik GO-PPI 258 259 250 251 254 257

Wang GO-PPI 227 281 235 276 241 183

https://doi.org/10.1371/journal.pone.0284274.t007

Fig 2. The numbers of key proteins predicted correctly under the original PPI network and reconstructed GO-PPI network for the YDIP dataset.

https://doi.org/10.1371/journal.pone.0284274.g002
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and 94.12% improvements are still achieved by the DC and EC methods under the GO-PPI

networks for the top 300 candidates. For the SC and aveNC approaches, the improvements

yielded are both greater than 100% with the application of the GO-PPI networks when predict-

ing the top 300 candidate proteins.

Comparison of prediction precision for the six centrality methods

To validate the advantage of the reconstructed GO-PPI network in predicting key proteins

intuitively, six centrality approaches (the BC, DC, EC, NC, SC, and aveNC) are taken to predict

key proteins under the original PPI network and reconstructed GO-PPI network.

Fig 3 shows the prediction precision comparison for the six centrality approaches under the

original PPI network and GO-PPI network reconstructed by using the Wang method with the

BP subontology information for the YDIP dataset. Fig 3 shows that the prediction precisions

of these six methods under the newly constructed GO-PPI network show significant improve-

ments over those obtained with the original PPI network.

Comparison of ROC curves

To further exhibit the performance of proposed strategy, we compared the ROC curves of dif-

ferent methods under original PPI networks and corresponding GO-PPI networks. The top

600 ranked proteins predicted by each method are assumed as essential, the rest proteins are

non-essential. For the gold-standard essential proteins in GO-PPI is obtained from the original

Fig 3. Prediction precision of six centrality methods under the original PPI network and reconstructed GO-PPI network for the YDIP dataset.

https://doi.org/10.1371/journal.pone.0284274.g003
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true essential protein sets and filtered the proteins that are not in GO-PPI network. The rank

value of each protein in original PPI network and GO-PPI network are normalized, and the

true positive rate as well as false positive rate is calculated by using the threshold value varies in

[0, 1]. We draw the ROC curve by using the obtained true positive rate and false positive fate.

AUC means the area under the ROC curve and calculated by using trapz function in Matlab.

The comparison of ROC curves as well as AUC value under original new DIP PPI and YDIP

PPI network are shown as following Figs 4 and 5. As shown in Figs 4 and 5, the ROC curves

under GO-PPI network is higher than the corresponding original PPI network, suggesting

that the GO-PPI network we constructed is reliable for predicting essential proteins.

Analysis of the effect of the threshold

Since the new GO-PPI network is constructed by filtering the unreliable links in the original

PPI network, we need to choose an appropriate threshold to distinguish false positive data and

real interactions. However, the threshold value is related to the SSMs and the quality of a given

PPI network, and different thresholds should be set for different SSMs to achieve the best

performance.

Fig 4. The comparison of ROC curves for original new DIP PPI network and Wang-BP (the Wang method under the BP subontology) PPI network under (left) EC

method, (middle) SC method and (right) aveNC method.

https://doi.org/10.1371/journal.pone.0284274.g004

Fig 5. The comparison of ROC curves for original YDIP PPI network and Resink-BP (the Resink method under the BP subontology) PPI network under (left) BC

method, (middle) DC method and (right) aveNC method.

https://doi.org/10.1371/journal.pone.0284274.g005
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To investigate the effect of the threshold on the performance of the methods in identifying

essential proteins, we plot the true numbers of key proteins identified among the top 100, 200,

300, 400, 500, and 600 candidates as functions of the threshold value for the YDIP Jiang-BP

network in Fig 6. As shown in Fig 6, the numbers of correct predictions increase with increas-

ing threshold value for all of the methods, especially the DC, SC, and aveNC methods. The

results show that GO semantic similarity is efficient in filtering unreliable links in PPI net-

works, and almost all of the considered methods achieve the maximum number of correctly

predicted essential proteins with a relatively large threshold value.

Conclusions

Predicting essential proteins by developing computational methods from PPI networks has

been a hot topic in recent years. However, the PPIs obtained by high-throughput technology at

present have high false positive rates. False interactions in PPI networks have great effects on

the performance of computational methods in terms of predicting key proteins. Semantic sim-

ilarity measures have been shown to be useful for assessing the confidence scores between

linked protein pairs. The best of the five current widely used semantic similarity measurements

for selecting appropriate metrics to measure the reliability of interactions remains unclear.

This paper presents a comparison between GO-PPI networks newly constructed by five

semantic similarity methods with three GO annotation terms and corresponding original PPI

networks. The six topological-based centrality methods (the BC, DC, EC, NC, SC, and aveNC)

are used to calculate the numbers of correct predictions and the precisions for the 600 top-

Fig 6. The numbers of correctly identified key proteins among the top 100, 200, 300, 400, 500, and 600 candidates for different method vs the threshold value.

https://doi.org/10.1371/journal.pone.0284274.g006
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ranked candidate proteins under the newly constructed GO-PPI networks and original net-

works. The comparison results suggest that the prediction accuracies under each of the newly

constructed GO-PPI networks are consistently higher than those under the original PPI net-

work. In particular, the networks constructed by using the semantic similarity metrics of

Resnik and Wang under the BP annotation term are most reliable for predicting essential pro-

teins among these topological-based centrality methods. These results suggest that construct-

ing a new PPI network by using the Resnik and Wang metrics under the BP annotation term

can filter out some false positive data effectively and improve the quality of the network, which

is also the direction of future research.
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