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A B S T R A C T

An automatic method for qualitative and quantitative evaluation of chest Computed Tomography (CT) images is
essential for diagnosing COVID-19 patients. We aim to develop an automated COVID-19 prediction framework
using deep learning.

We put forth a novel Deep Neural Network (DNN) composed of an attention-based dense U-Net with
deep supervision for COVID-19 lung lesion segmentation from chest CT images. We incorporate dense U-Net
where convolution kernel size 5×5 is used instead of 3×3. The dense and transition blocks are introduced
to implement a densely connected network on each encoder level. Also, the attention mechanism is applied
between the encoder, skip connection, and decoder. These are used to keep both the high and low-level features
efficiently. The deep supervision mechanism creates secondary segmentation maps from the features. Deep
supervision combines secondary supervision maps from various resolution levels and produces a better final
segmentation map. The trained artificial DNN model takes the test data at its input and generates a prediction
output for COVID-19 lesion segmentation. The proposed model has been applied to the MedSeg COVID-19 chest
CT segmentation dataset. Data pre-processing methods help the training process and improve performance.

We compare the performance of the proposed DNN model with state-of-the-art models by computing the
well-known metrics: dice coefficient, Jaccard coefficient, accuracy, specificity, sensitivity, and precision. As a
result, the proposed model outperforms the state-of-the-art models.

This new model may be considered an efficient automated screening system for COVID-19 diagnosis and
can potentially improve patient health care and management system.
1. Introduction

The worldwide pandemic caused by COVID-19 has badly affected
human life and healthcare services. The SARS-CoV-2 virus variants1

are genetically changing over time, circulating globally [1], and caus-
ing COVID-19 disease. The World Health Organization2 reports that
COVID-19 confirmed cases are more than 526 million and COVID-
19 death cases are more than 6.2 million all over the world as of
30th May 2022. The COVID-19 disease may cause cytokine storms
involving multiple organ failures, including lungs, leading to COVID-
19 pneumonia that ultimately leads to pulmonary fibrosis in all age
groups [2]. Therefore, early diagnosis of pulmonary is very crucial.
Chest CT [3–5] is an important tool in diagnosing clinically suspi-
cious COVID-19 pneumonia early. The hospitals and health centres

∗ Corresponding author at: Department of Computer Science and Engineering, National Institute of Technology, Durgapur, 713209, West Bengal, India.
E-mail address: ss.16it1303@phd.nitdgp.ac.in (S. Saha).

1 who.int/en/activities/tracking-SARS-CoV-2-variants/
2 covid19.who.int

of developing and underdeveloped countries are equipped with High-
Resolution CT (HRCT) and Magnetic Resonance Imaging (MRI) at a
higher cost. The MRI applies magnetic waves instead of ionizing radia-
tion like a CT or X-ray. However, a chest CT scan is more beneficial
in detecting and quantifying COVID-19 than MRI. We are inspired
to develop an automated screening system using deep learning that
can classify COVID-19 cases and identify the level of lung infections
from conventional chest CT images. Though X-ray images are more
inexpensive than CT images, they produce a high error rate, so CT
images are useful for more accurate diagnosis [6]. Several slices of
CT images are produced for each patient at the time of scans. These
create a high workload on clinicians to detect COVID-19 manually [7].
Deep neural network models have recently brought a groundbreaking
revolution in developing automated computer-assisted diagnosis (CAD)
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Fig. 1. The workflow diagram of our proposed model consists of four modules: input COVID-19 chest CT, data preprocessing, proposed encoder–decoder ADU-Net model, and
output COVID-19 lesion segmentation.
systems to improve diagnostic accuracy in the health care system.
Most technologists and researchers have concentrated their research
on developing deep learning models to design automated CAD-based
disease screening systems [8–12]. However, it is observed that not a
single deep neural network model can give the same performance for
all medical image modalities and diseases. A considerable amount of
data with pre-defined classes or labels is required to train the DNN
model. However, labelled data may only sometimes be available. All
these issues compel the model developers to think about different
models. During the last two years, the world has been severely stricken
by the COVID-19 virus, and the virus has caused a massive loss of
lives. The virus primarily attacks the lung of the infected person and
causes the severe respiratory problem. Moreover, it is highly infectious.
Hence, quick detection of COVID-19 can help to isolate the patients.
Conventional RT-PCR (Reverse Transcription Polymerase Chain Reac-
tion) [4,5] test takes more than 24 h to get reports which may delay
the patient isolation. On the other hand, the imaging-based diagnosis
of COVID-19 may be quicker and help early isolation of the patients.
Besides this, if the lungs are already attacked, it is required to observe
the areas of infection in the lungs. Because of this, the research on
imaging-based COVID-19 diagnosis has gained tremendous momentum
over the last two years. Many models have been proposed so far [13–
18]. Various U-Net-based models like 3D U-Net [19], VB-Net [20],
U-Net with VGG16 encoder [21], and nnU-Net [22] models have been
developed for segmenting lesions in COVID-19 applications. However,
they are unable to provide desirable accuracy in diagnosis. Hence, there
is a stringent requirement to develop a better model that can improve
the performance of COVID-19 detection.

In this paper, we have proposed a novel DNN model that im-
proves the accuracy in the segmentation of COVID-19 lesions from
chest CT. The novelty of this work lies in a two-fold contribution. (1)
Development of a dense U-Net architecture. (2) Introducing attention
module and deep supervision in the proposed dense U-Net. The dense
architecture removes the vanishing gradient problem, the attention
gate keeps the meaningful semantic features, and the deep supervision
integrates additional useful multi-resolution features which ultimately
improve the accuracy of state-of-the-art models.

The state-of-the-art literature on COVID-19 is summarized in Sec-
tion 2. Section 3 presents the proposed deeply supervised, densely
connected attention U-Net for COVID-19 lung lesion segmentation. A
summary of the data set used in the research work is given in Section 4.
Section 5 portrays the experiments, their outcomes, comparison with
the state-of-the-art, analysis and discussion on the outcomes. Finally,
the paper is concluded in Section 6.

2. Related works

A significant amount of research has been done to identify COVID-
19 patients quickly using X-ray, CT and HRCT images to isolate the
infected patients in the last two years. At the same time, imaging-based
diagnosis is expected to measure the severity of the infection in the
lungs. In addition, the segmentation of the infected area in the lungs
can show how much area of the lungs is infected. Therefore, many re-
searchers have put their efforts into implementing DNN models that can
effectively apply to COVID-19 management. In this section, we provide
2

a summary of recent works. Different models and their performances
are listed in Table 1. It has been observed that performance is not
desired for transfer learning using standard deep neural models. How-
ever, transfer learning can extract useful features from fewer datasets
in less time. However, transfer learning can transfer negative features.
It works if reference and target problems are identical. Therefore, many
researchers are interested in developing their proposed models.

A. Amyar et al. [17], A. K. Mishra et al. [23], A. Mobiny et al. [24],
Md. Rahimzadeh et al. [25], P. Kalane et al. [26], G. Jia et al. [27], and
V. Arora et al. [28] have developed new DNN models and improved
their performance to some extent. However, there are some scopes
to improve in the architectures, training procedures and hyperparam-
eters selections of those existing models. The performance could be
better using various generative adversarial networks implemented by
P. Zhang et al. [29] and J. Zhang et al. [30] for lesion segmentation.
The neural model developed by J. Ma et al. [22] could be getting
better performance due to inappropriate training procedures. Y. Wang
et al. [31] have used transfer learning in the model and failed to attain
top performance in the literature.

The research domain posted here is based on deep neural network
models and focuses on automatic COVID-19 lesion segmentation from
chest CT. The recent works on COVID-19 lesion segmentation reflect
that we have enough scope of work to design newer and more efficient
models to achieve better accuracy than the state-of-the-art models.

3. Methodologies

3.1. Proposed deep neural network (ADU-Net)

We propose a new and efficient DNN, a deeply supervised, densely
connected attention U-Net for the COVID-19 lung lesion segmentation.
These are used to keep both the high and low-level features efficiently.
Our model is trained on an adaptive optimizer. The hyper-parameters
are optimized in hybrid training procedures. The workflow diagram
is shown in Fig. 1. We take chest CT images as input. In the data
preprocessing, we resize, normalize and augment input images. We
share parameters between encoder and decoder tasks. The final output
is the COVID-19 lesion segmentation. The proposed ADU-Net model is
shown in Fig. 2.

3.1.1. Data preprocessing
All the COVID-19 chest CT images [32] are resized to 224 × 224.

Before training, we normalize image pixel values to [0, 1]. The data
augmentation approach creates new data that slightly differ from ex-
isting data. We have done the data augmentation using parameterized
transformations [44] like rotation, scaling, and vertical–horizontal flip-
ping on 20% of the original chest CT images. We have generated chest
CT images and corresponding lesion masks by rotating and scaling with
the same degrees and same scale factors. It helps to train the model
with more and different data examples and prevents the model from
over-fitting.



Biomedical Signal Processing and Control 85 (2023) 104974S. Saha et al.
Table 1
Summary of related work for COVID-19 lesion segmentation on chest CT images.

Authors Methods Materials source Performances

A. Amyar et al. [17] Multi-task learning: COVID-19 or Non-COVID
image reconstruction and classification in the
encoder and followed by COVID-19 lesion
segmentation in the decoder

SIRM and MedSeg
COVID-19 chest CT
segmentation dataset [32]

Dice coeff: 0.785

N. Paluru et al. [18] Anam-Net: Anamorphic depth based lightweight,
fully convolutional network

[32] Dice coeff:
0.972 (Normal)
0.755 (COVID-19)

D. Muller et al. [19] 3D U-Net [33] and Residual U-Net [34] Zenodo COVID-19 CT lung
and infection segmentation
dataset [35]

Dice coeff: 0.761

F. Shan et al. [20] VB-Net Chinese hospitals Dice coeff: 0.916 ± 0.10
O. Gozes et al. [21] U-Net with VGG-16 encoder Chinese hospitals AUC score: 0.948
J. Ma et al. [22] nnU-Net (no-new-U-Net) [36]: automatically set

the size of the patch, batch, kernel, stride, and
pooling from a given dataset

[35] Dice coeff: 0.673 ± 0.223

X. Chen et al. [34] Aggregated Residual Network (ResNeXt) and
Locality Sensitive Hashing (LSH) soft attention

[32] Dice coeff: 0.83 (no data
augmentation),
0.94 (with data
augmentation)

Q. Yan et al. [37] COVID-SegNet: U-Net with Feature Variation and
Spatial Pyramid Pooling

Chinese hospitals Dice coeff: 0.726

D. P. Fan et al. [38] Inf-Net and Semi-Inf-Net: Res2Net [39] with
parallel partial decoder and edge attention
followed by reverse attention

[32] Dice coeff (multi-class):
0.682 (Inf-Net)
0.739 (Semi-Inf)

Y. Qiu et al. [40] MiniSeg: Attentive Hierarchical Spatial Pyramid
(AHSP) in the encoder, Feature Fusion (FF) in the
decoder, and depthwise separable convolution
(DSConv) are used

[32] Dice coeff: 0.759

V. K. Singh et al. [41] LungINFseg: Receptive-Field-Aware (RFA) and
attention mechanism

[35] Dice coeff: 0.8034

P. Zhang et al. [29] CoSinGAN: conditional generative adversarial
networks model

[35] Dice coeff: 0.615 ± 0.202

Y. Wang et al. [31] The model is evaluated using 3D U-Net and four
hybrid transfer learning methods. Dynamic feature
selection is made using attention based fusion
method

[35] Dice coeff: 0.704

N. Saeedizadeh et al. [42] TV-Unet: Regularization term 2D-anisotropic
Total-Variation is used in the loss function

[32] Dice coeff: 0.86

J. Zhang et al. [30] Dense Generative Adversarial Network and
U-Net-based multi-layer attention mechanism

[32] Dice coeff: 0.68

MA. Basset [43] Few-Shot Segmentation (FSS) using pre-trained
model ResNet34

[32] Dice Coeff: 0.798
(semi-supervised)
0.679 (supervised)
3.1.2. Encoder model
Our proposed modified U-Net [45,46] based DNN (as shown in

Fig. 2) is built with down-sampling at the encoder stage (left side)
and up-sampling at the decoder stage (right side). The bottleneck
stage resides on the bottom side. The encoding stage consists of four
convolution blocks. In every step of the encoding stage, 5 × 5 kernel
convolution layers are frequently applied instead of 3 × 3 kernel, and
2 × 2 max-pooling downsampling layers are used with appropriate
strides. Small kernels extract valuable features from the smaller re-
ceptive field of very few pixels at once. It slowly decreases the image
dimensions to build the network deeper with more memory and share
the weights better than the large kernel. The model performance is
observed with convolution kernel size 3 × 3, 5 × 5, and 7 × 7, however,
the best performance is achieved by convolution kernel size 5 × 5
for the COVID-19 chest CT [32]. It extracts in-depth features using
convolution layers, as shown by the blue arrow from the specified
image. It reduces the resolution by 2 using max-pooling layers, shown
by the brown arrow. The convolution blocks will bring out the in-depth
activated feature maps of the given image in the neural network. The
feature map (no. of filter) is increased from 64 to 1024 feature maps
from the first convolution layer to the last convolution layer of the
encoder stage. The max-pooling layers will halve down the dimension
of the image from 224 × 224 to 14 × 14 from the first max-pooling layer
to the last max-pooling layer of this stage. The batch normalization
techniques have an impressive effect on optimization performance for
3

neural networks. It can be used to normalize the inputs to a layer.
We have applied batch normalization after each convolution (Conv
5 × 5) and before the activation function (ReLU). As a result, we
have achieved a training speedup from higher learning rates and faster
network convergence.

3.1.3. DenseNet
It is observed that the model performance decreases with the in-

crease in convolutional layers. It does not eradicate the gradient loss
or vanishing gradient problem, which means weights are insignifi-
cantly incremented to the initial convolution layers and degrade in
backpropagation in the training phase. To alleviate the problem, the
DenseNet [47,48] architecture is introduced, consisting of two stages,
dense block operations followed by transition down block operations.
The DenseNet architecture has two dense blocks and one transition-
down block. In the dense block, features from all preceding layers
are received, combined and provide better gradient propagation. As
shown in Fig. 3, the dense block operations are batch normalization,
ReLU activation, Conv 5 × 5, and channel-wise concatenation instead
of element-wise addition. As the features come from all previous layers
to the subsequent layers, information is easily kept between layers.
In the encoder limb, the input of a dense block is concatenated to
ensure that each block receives the entirely represented input, and so
it recognizes the finer features. As a consequence of the modification
direct connection between subsequent layers is established. In the
transition down the block, batch normalization, ReLU activation, Conv

1 × 1, and max pool 2 × 2 operations are executed, as shown in Fig. 4.
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Fig. 2. Proposed ADU-Net architecture. Our modified dense U-Net architecture is built with down-sampling at the encoder stage (left side) and up-sampling at the decoder stage
(right side) with the attention gate and deep supervision for COVID-19 lesion segmentation. The DenseNet is applied at each encoder level to overcome the vanishing gradient
problem. The attention mechanism is incorporated between the encoder, skip-connection, and decoder. It is used to keep the high and low-level feature maps. Also, the deep
supervision mechanism is included to combine secondary segmentation maps from various resolution feature maps from each decoder level in the proposed DNN.
Fig. 3. Dense block operations of DenseNet.

Fig. 4. Transition down block operations of DenseNet.

The convolution layer 1 × 1 operation reduces the channel count to
half. The max pool layer 2 × 2 responsible for downsampling the image
features. It is expected to have the proposed network would have better
intermediate features. The DenseNet block has a specific advantage
of a strong gradient flow and high efficiency with a lower number
of parameters since each layer receives the feature maps from all the
preceding layers. Besides increasing efficiency, the collective knowl-
edge and dense connectivity allow DenseNet to obtain more diversified
4

and rich feature patterns in the feature images, which makes DenseNet
blocks a perfect fit for image segmentation tasks. The resultant of the
dense block is defined in Eq. (1):

𝑥𝑙 = 𝐻𝑙(Concat[𝑥0, 𝑥1,… , 𝑥𝑙−1]) (1)

where [·] denotes channel-wise concatenation, while 𝑥𝑙 denotes con-
catenated feature map generated from each previous layer 0, 1, . . . ,
𝑙 − 1 at each transition label and 𝐻𝑙(·) represents the dense mapping
function which is the combination of convolution, batch-normalization
and activation. The convolutional procedure for 𝑙th layer is formulated
in Eq. (2):

𝑥𝑙 =
𝑛−1
∑

𝑖=0
𝑥𝑙−1 ∗ 𝑤𝑙 + 𝑏𝑙 (2)

Where 𝑥𝑙 is the output feature map, 𝑥𝑙−1 is the input data from (𝑙 − 1)𝑡ℎ

layer, 𝑤𝑙 and 𝑏𝑙 represents weight and bias respectively, n is the
number of input features and 𝑖 ranges between 0 and 𝑛 − 1. The batch
normalization operation for 𝑙th layer is defined in Eq. (3):

𝑥𝑙 = 𝛾 ⋅
𝑥𝑙−1 − 𝜇𝑥𝑙
√

𝜎2𝑥𝑙

+ 𝛽 (3)

where 𝛽, 𝛾 are parameters and 𝜇𝑥𝑙 , 𝜎𝑥𝑙 are mean and standard deviation.
To establish the non-linearity of data across the layers, batch nor-

malization and ReLU is applied on 𝑥𝑙 in a cascaded manner which is
formulated in Eq. (4):

𝑥𝑙 = BatchNorm(ReLU(𝑤𝑙 ∗ 𝑥𝑙−1)) (4)

3.1.4. Decoder model
The bottom side of the neural segmentation network shows the

bottleneck stage (as shown in the bottom side Fig. 2). This stage
works between the encoding stage and the decoding stage. It was
built with two convolution layers without any max-pooling layer. The
bottleneck stage is needed because it gives a much more in-depth
network. Bottleneck architecture will lead to a high-resolution image as
input, requiring more complex feature maps. Therefore, the image size
is upsized from 512 × 512 to 1024 × 1024, which will propagate to the
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Fig. 5. Attention Mechanism. The input of the attention block is the element-wise addition of higher-level (L) feature-map 𝑥 from the encoder and lower-level (L-1) feature-map
g from the decoder. 𝑥 and g are linearly mapped to the same dimensional space. Then there is the non-linear activation function ReLU, convolution and non-linear activation
function Sigmoid. The output of the attention block is the multiplication of the Attention coefficient  and input x.
Fig. 6. Input and output dimensions of Attention block. The input of the attention block
is higher-level input feature-map 𝑥 from the encoder and lower-level gated feature-map
g from the decoder.

decoding stage. In contrast, the decoding stage (as shown in the right
side of Fig. 2) consists of four deconvolution layers with transposed
convolution operations. It up-samples the image feature maps by two.
Also, it halves the number of feature channels. The exact number of
filters is used at every level in the convolution and deconvolution layers
to maintain symmetry. At the decoder, the feature maps vary from 1024
to 64, shown by the green arrow in the neural network. In every step
of the decoding stage, there is frequent application of 2 × 2 upsampling
layers, each followed by 5 × 5 convolution layers instead of 3 × 3, as
mentioned earlier. The deconvolution layer up samples the feature map
that increases the image’s dimension from 14 to 224.

In this semantic segmentation, the image size is gradually reduced
while the image depth increases. It starts from 224 × 224 ×1 and
ends at 14 × 14 ×512 in down-sampling. So, spatial information is
lost. To restore lost information, the feature maps at a particular level
of the encoder get copied to the corresponding level of the decoder.
The principal idea of the concatenation process is to merge the feature
maps from corresponding convolution layers to get an appropriate and
precise segmentation network output at deconvolution layers. Before
copying, it needs to be cropped to resolve the two feature maps are
the same. Skip connections are used to skip some layers in the neural
network. It explicitly copies feature maps or feeds one layer’s output
to another, skipping a few layers in between. Some information is cap-
tured in the initial layers and is required for reconstruction during the
later layers of upsampling using the skip architecture. Skip-connection
prevents information loss when passing through multiple layers. It
also helps traverse information faster in deep neural networks. Skip-
connection is liable to use redundant information from the encoder
5

low-level feature map. It leads to poor efficacy when appending with
the decoder high-level feature map. That can produce dense predictions
at multi-levels. The proposed neural network has some superiority
compared to other studies in the literature.

3.1.5. Attention gate
To overcome deficiencies and weaknesses, introduce an attention

mechanism into the skip-connection of the encoder feature and cor-
responding decoder feature. It keeps the essential feature maps or
regions. Before concatenation, the attention mechanism is allowed
in the segmentation network. The attention mechanism in [49–51]
combines linear transformation and non-linear activation function. The
residual attention [52] extracts local and non-local features. The atten-
tion mechanism keeps the high-level major and low-level minor feature
maps. The block diagrams of the attention mechanism are shown in
Figs. 5 and 6.

 = 𝜎2

[

𝑤

{

𝑤𝑖

(

𝜎1
(

𝑤𝑥𝑥 +𝑤𝑔𝑔 + 𝑏𝑥,𝑔
)

)

+ 𝑏𝑖

}

+ 𝑏

]

(5)

𝜎1 = 𝑅𝑒𝐿𝑈 (𝑥) = 𝑚𝑎𝑥(0, 𝑥) (6)

𝜎2 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒𝑥𝑝(−𝑥)

(7)

Attention Gate (AG) evaluates the attention coefficient  using
Eq. (5), 6, and 7. 𝑥 and 𝑔 are the feature mapping of the AG inputs
from the encoder and decoder, respectively. 𝜎1 and 𝜎2 are the ReLU
and sigmoid functions, respectively. The 𝜎1 ranges between {0,1}. Let
𝑤 represent the weights of the network. 𝑤𝑥𝑥 and 𝑤𝑔𝑔 are the linear
transformation. The given bias is the 𝑏𝑥,𝑔 , 𝑏𝑖, and b. Finally, the output
of AGs is ’Scaled 𝑥’, which is the multiplication of attention coefficient
 and input 𝑥 is given in Eq. (8).

Scaled 𝑥 =  ⋅ 𝑥 (8)

The feature maps are transposed by 1 × 1 convolution to generate
desired segmentation output. However, the final output loss is not
effectively gradient back-propagated.

3.1.6. Deep supervision
To minimize this issue, the deep supervision [53,54] is implemented

to combine secondary supervision maps by considering various res-
olution feature maps from the previous levels to the final level in
the segmentation network. Then, it integrates predictions from various
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Fig. 7. Deep Supervision Mechanism. The secondary segmentation maps are created from feature maps transposed by 1 × 1 convolutions at each decoder level. Also, the lower
level (L-1) low-resolution segmentation map is up-sampled to get the same size as the immediately higher level (L) segmentation map. Then, these two segmentation maps are
added element-wise, then again up-sampled and added to the next higher level (L+1) segmentation map and so on till the final level (L+2).
resolution feature maps from earlier levels and reproduces the final in-
depth supervision combined segmentation output, as shown in Fig. 7.
The losses associated with the individual segmentation prediction are
weighted and appended with the last loss. Therefore, more efficient
gradient back-propagation is achieved. Also, further refinement of the
final segmentation prediction at the final level is optional, as multi-
scale context information can be achieved due to the presence of skip
connections. As a result, the deep supervision mechanism produces
better segmentation results and faster convergence than only with
skip connections. The evaluation of the deep supervision mechanism
is based on Eqs. (9) and (10). Let 𝑤 represents weights of the main
network and 𝑤𝐿 be the weights of levels where 𝐿 ∈

{

𝓁-1, 𝓁, 𝓁+1, 𝓁+2
}

.
For, the predicted output 𝑦 corresponds to input feature 𝑥, the dice loss
function is given in Eq. (9).

The dice loss function:

𝐷𝑖𝑐𝑒𝐿𝑜𝑠𝑠
(

𝑦, 𝑥
)

= 1 −
2
∑

𝐿 𝑥𝑦
∑

𝐿 𝑥 +
∑

𝐿 𝑦
(9)

When  is the 2 regularization term with hyper-parameter  then
total dice loss function:

𝐷𝑖𝑐𝑒𝐿𝑜𝑠𝑠𝐿
(

𝑦, 𝑥;𝑤,𝑤𝑙−1, 𝑤𝑙 , 𝑤𝑙+1, 𝑤𝑙+2
)

=

𝑤
(

∑

𝐿∈{𝓁−1,𝓁,𝓁+1,𝓁+2}
𝑤𝐿𝐷𝑖𝑐𝑒𝐿𝑜𝑠𝑠

(

𝑦, 𝑥;𝑤,𝑤𝐿
)

)

+
(


(

𝑤
)

+
∑

𝐿∈{𝓁−1,𝓁,𝓁+1,𝓁+2}

(

𝑤𝐿
)

)

(10)

3.1.7. Training process
The aim is to learn a model function 𝑓 (𝑥, 𝑦; 𝜃) in a supervised man-

ner through a training process which parameterizes with 𝜃 and maps
input features 𝑥 to target features 𝑦, and minimizes the objective or loss
function 𝐿(𝑥, 𝑦; 𝜃) which returns-optimized 𝜃, as defined in Eq. (11). It
predicts the values of the target features 𝑦 based on depictions of the
input features 𝑥 of test data.

𝜃𝑜𝑝𝑡 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜃

(𝐿(𝑥, 𝑦; 𝜃)) (11)

The proposed COVID-19 lesion segmentation neural network is trained
and validated on chest CT images of size 224 × 224. The input training
6

Fig. 8. Dataset split in 5-fold cross-validation.

image samples are divided into four mini-batches. The proposed model
is trained on 5-fold cross-validation for better assessment. There are
100 epochs in each fold. One epoch is passed forward and backwards
through the entire training dataset only once in the neural networks. In
each epoch, there are n-number of iterations, calculated as the division
between the number of training image samples and batch size. The
proposed model is trained to minimize the cost functions of dice loss.
An Adam optimizer reduces the cost function, and an initial learning
rate of 0.0001 is used to update the model’s weights. The learning
rate reduction (decay) manner minimizes by a value of 0.000001. If
the validation loss is stopped minimizing after ten consecutive epochs
(patience), then an early stop is occurred and restores the best weights.
The early stopping condition and dropout of 0.5 are used to avoid
model overfitting. We have trained and validated our proposed deep
neural network model with an evenly balanced weight so that the
positive and negative training samples would contribute equally to
the cost function. The evenly proportional weights help to arrive at
faster convergence. The activation function ReLU and batch-normalized
are used in neural networks. We have experimented with parameters
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Table 2
Experimental setup for proposed models.

Folds Epochs Early Early Image Size Batch Optimizer Learning Decay Loss Activation
Stopping Stopping Rate Function Function
Patience Monitor

5 100 10 val loss 224 × 224 4 adam 1e−4 1e−6 dice loss ReLU,Sigmoid
in kernel sizes, pooling operations, and strides, followed by hyper-
parameter settings—the best set of parameter and hyper-parameter
values chosen by parameter optimization techniques that provide min-
imum validation loss. We have designed a typical experimental setup
given in Table 2.

3.1.8. Proposed algorithm

input: D : Dataset containing COVID-19 CT images and corresponding
infection mask images

d1 : Training set from D
d2 : Validation set from D
d3 : Testing set from D
𝜇 : Learning rate
f : Number of folds
𝜖 : Number of epochs
s : Callbacks(Early Stop)
𝜉 : Number of iterations
𝛽 : Batch size i.e. number of images trained in one iteration

output: 𝜔 : DNN weights in training
m : Trained proposed models
roi : Corresponding predicted region of interest for input image x in

testing
preprocessing: Resize each CT image to dimension 224×224

Generate COVID-19 CT images based on data augmentation
Normalize each CT image between [0,1]

begin: 1. Evaluate initial DNN class weights
2. Selecting d1, d2, and d3 from split data
3: Proposed encoder-decoder model for COVID-19

lesion segmentation
Set proposed model layers with encoder, densenet, attention gate, decoder,
and deep supervision

4: Initialize hyper-parameters: 𝜇, f, 𝜖, s, 𝜉 and 𝛽
5: Train the proposed model
for f = 1 to 5 do // for training and validation

for 𝜖 = 1 to s do // if validation loss is not improving for 10 epochs
6. Randomly select 𝛽 from d1 // select d1 and d2 for training and validation
for 𝜉 = 1 to d1 ∕ 𝛽 do // select d1 and d2 for training and validation

7. Forward propagation and compute dice loss with 𝜇, dice coeff,
jaccard coeff, accuracy, specificity, sensitivity, precision, f1 score

8. Back propagation, update 𝜔 with Adam optimizer and
train m

end
end

end
end

begin:
for each x in d3 do // for testing

predict roi = m(x)
compute dice loss, dice coeff, and jaccard coeff

end
end

3.1.9. 5-Fold cross validation
5-fold cross-validation [55] is used for better evaluation. For 5-fold

cross-validation, the dataset is split into five folds. We pick four folds
for training and the rest one fold for validation at every time, as shown
in Fig. 8. 5-fold cross-validation takes more training data. Therefore,
the learning efficiency of the neural network is faster, and the result is
relatively better.

4. Materials

The main concern regarding the involvement of machine learning
and the deep learning approach concentrates on relevant and ap-
propriate data. We have used publicly available COVID-19 chest CT
segmentation dataset [32] found at the Italian Society of Medical and
Interventional Radiology (SIRM) and MedSeg database. The dataset
consists of 100 axial chest CT images from more than 40 patients with
COVID-19 and its corresponding infection masks. The segmented masks
or the ground truths were already done by expert radiologists using
MedSeg tool [32], and they labelled lesions in the chest CT images.
Therefore, it has been considered that all the lesions are labelled as
COVID-19 lesions. All image files are in greyscale.
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Fig. 9. COVID-19 Chest CT and corresponding ground truth with pleural effusion(fluid
in pleura), ground glass opacities(hazy opacity), and consolidation(fluid in alveoli).

Table 3
Statistics of data split [32] for COVID-19 lesion segmentation.

Dataset Training set Validation set Test set Total
(57%) (16%) (27%) (100%)

COVID-19 CT 57 16 27 100
Augmented COVID-19 CT 114 32 54 200

The dataset is split into three subsets. The percentage of the dataset
used in training, validation, and testing are 57%, 16%, and 27%,
respectively. The COVID-19 Chest CT and its relevant ground truth are
shown in Fig. 9. In addition, the statistical distribution of images is
given in Table 3 for COVID-19 chest CT [32].

5. Evaluation metrics

The widely used evaluation metrics [56] are Accuracy, Specificity,
Sensitivity or Recall, Precision, F1-Score, Dice Similarity Coefficient
(DSC), Dice Loss, and Jaccard Coefficient or IoU (Intersection over
Union) are defined in Equations 13, 14, 15, 16, 17, 18, 19, and 20
respectively. This metrics value ranges between 0 and 1. Zero denotes
the lowest similarity, and one denotes the highest similarity. Accuracy,
Specificity, Sensitivity/Recall, Precision, and F1-Score are calculated
from the Confusion Matrix, defined in Eq. (12).

𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥 = 𝐴𝑐𝑡𝑢𝑎𝑙
⎛

⎜

⎜

⎝

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
𝑇𝑃 𝐹𝑁
𝐹𝑃 𝑇𝑁

⎞

⎟

⎟

⎠

(12)

Where 𝑇𝑃 : True Positive, 𝑇𝑁 : True Negative, 𝐹𝑃 : False Positive, 𝐹𝑁 :
False Negative

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(13)

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

(14)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(15)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(16)

𝐹1𝑆𝑐𝑜𝑟𝑒 =
2(𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(17)

Dice Coefficient and Jaccard Coefficient calculated the similarity
among the ground truth infectious regions (G) and predicted infectious
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Table 4
Validation performance of COVID-19 lesion segmentation on chest CT dataset [32].

Performance

Fold Dice Loss Dice Coeff Jaccard Accuracy Specificity Sensitivity or Recall Precision F1 Score

Fold-1 0.99 0.06 0.03 0.90 0.99 0.02 0.37 0.03
Fold-2 0.42 0.52 0.35 0.92 0.97 0.44 0.56 0.49
Fold-3 0.07 0.87 0.76 0.92 0.98 0.74 0.87 0.80
Fold-4 0.03 0.88 0.78 0.93 0.98 0.77 0.91 0.83
Fold-5 0.11 0.83 0.70 0.95 0.98 0.79 0.89 0.83
Fig. 10. Graph plot showing the training dice loss results from the 5Fold-CV on
COVID-19 lesion segmentation.

regions (P).

𝐷𝑖𝑐𝑒𝐶𝑜𝑒𝑓 = 2𝑇𝑃
2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

=
2|𝑃 ∩ 𝐺|

|𝑃 | + |𝐺|

(18)

𝐷𝑖𝑐𝑒𝐿𝑜𝑠𝑠 = 1 −𝐷𝑖𝑐𝑒𝐶𝑜𝑒𝑓 (19)

𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝐶𝑜𝑒𝑓 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

=
|𝑃 ∩ 𝐺|

|𝑃 ∪ 𝐺|

(20)

6. Results and discussion

The proposed models are implemented using Tensor-flow and Keras
framework in Python. The experiments use 32 GB of RAM, an Intel Core
i7 processor of 2.3 GHz, and 8 GB of GPU (NVIDIA GE-FORCE RTX).

6.1. Results of proposed deep neural network (ADU-Net)

We have trained and validated our proposed COVID-19 lesion seg-
mentation neural network. We have repeated 100 epochs for five folds
with batch size 4. We have observed the COVID-19 lesion segmentation
encoder–decoder model performance in each fold. We have achieved
the dice coefficient, Jaccard coefficient, accuracy, specificity, sensitivity
or recall, precision, and f1-score are 0.83, 0.70, 0.95, 0.98, 0.79, 0.89,
and 0.83, respectively, from the 5-folds cross-validation (5Fold-CV)
which is demonstrated in Table 4 and shown violin plot in Fig. 12
and graph plots in Figs. 10 and 11. The average results are calculated
on 160 data (= 5 folds ×32 validation data per fold). In addition, we
have observed and compared the test performance of the proposed
encoder–decoder ADU-Net model with state-of-the-art models illus-
trated in Table 7. The proposed COVID-19 lesion segmentation model
has achieved a 0.82 test dice coefficient and shown better performance
than state-of-the-art models.
8

Fig. 11. Graph plot showing the validation dice loss results from the 5Fold-CV on
COVID-19 lesion segmentation.

Fig. 12. Violin plot showing the validation dice coeff results from the 5Fold-CV on
COVID-19 lesion segmentation.

We have evaluated the role of attention gate, densenet, and deep
supervised module on the backbone of UNet in our work by performing
an ablation study as given in Table 5.

We have tested the performance of the model by using 3 × 3, 5 × 5,
and 7 × 7 kernel size. We have performed an ablation study as shown
in Table 6. We have got the best performance using 5 × 5 kernel size.

The dice coefficient of ResNeXt [34] is 0.83. The ResNeXt [34]
is also trained with 500 CT augmented from 100 COVID-19 CT [32]
images. It achieved a high dice coefficient of 0.94 with data augmen-
tation. The number of training samples affects the performance of a
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Table 5
Ablation study on test results of the model.

Models Used in CT Dice Jaccard
Coeff Coeff

UNet 0.71 0.55
UNet+AttentionBlock 0.77 0.63
UNet+DenseBlock 0.79 0.66
UNet+DenseBlock+AttentionBlock 0.81 0.68
UNet+DenseBlock+AttentionBlock
+DeepSupervisedBlock (Proposed ADUNet)

0.82 0.70

Proposed ADUNet
(with data augmentation)

0.86 0.75

Table 6
Ablation study on test results of the model.

Models Used in CT Dice Jaccard
Coeff Coeff

ADUNet (3 × 3 kernel size) 0.81 0.68
ADUNet (5 × 5 kernel size) 0.82 0.70
ADUNet (7 × 7 kernel size) 0.75 0.61

Table 7
Comparison of test results between existing models and proposed model on COVID-19
chest CT segmentation dataset [32].

Models Used in CT Dice Jaccard Dice
Coeff Coeff Loss

MLAttentionUNet+DGAN [30] 0.68 0.53 0.32
MiniSeg [40] 0.75 0.61 0.25
Anam-Net [18] 0.76 0.62 0.24
Multi Task Learning [17] 0.78 0.64 0.22
FSS-2019-nCov [43] 0.79 0.66 0.21
ResNeXt [34] 0.83 0.70 0.17
TV-Unet [42] 0.86 0.73 0.14
Proposed ADUNet Model 0.82 0.70 0.18
Proposed ADUNet Model
(with data augmentation)

0.86 0.75 0.14

deep neural network. In contrast, the test dice coefficient of Multilay-
erAttentionUNet DenseGAN [30], MiniSeg [40], Anam-Net [18], Multi
Task Learning [17], FSS-2019-nCov [43], and TV-Unet [42] models
are 0.68, 0.75, 0.76, 0.78, 0.79, and 0.86 respectively as given in
Table 7. We have augmented data using parameterized transformations
and generated 200 CT augmented from 100 COVID-19 CT [32] images
as shown in Table 3. We observed that our proposed ADUNet model
achieved a test dice coefficient of 0.86 with data augmentation. The
obtained test dice coefficient by the proposed method is close to
the TV-Unet [42]. However, the Jaccard coefficient of the proposed
method and the TV-Unet are 0.75 and 0.73, respectively. Therefore, the
performance of the proposed COVID-19 lesion segmentation model is
comparable and shows better performance than state-of-the-art models
as shown in Table 7.

6.1.1. Reasons for superiority of proposed method
The reasons for the superiority of the proposed method are:
The convolution kernel size 5 × 5 extracts useful features from a

small field view at once and reduces image sizes to create a deep
network. The best performance is achieved by kernel 5 × 5 for the
COVID-19 chest CT.

The batch normalization technique is applied after each convolution
operation and before the ReLU activation to normalize the inputs to a
layer, achieve a training speedup from higher learning rates, and attain
optimized performance for the neural network.

The encoding stage of U-Net is a CNN which extracts patterns by
increasing features resolution from 64 to 1024 and reducing image size
from 224 × 224 to 14 × 14. As a result, the spatial information is
lost due to downsampling at encoding. To restore lost information, the
feature maps at a particular level of the encoder get concatenated to the
corresponding level of the decoder. However, the image size and depth
9

start from 14 × 14 ×1024 and end at 224 × 224 ×1 in the decoding
stage to generate the image output from the input image.

DenseNet removes the vanishing gradient problem, and weights
are updated adequately to the initial convolution layers, improving
backpropagation in the training phase.

Skip-connection is liable to use redundant information from the
encoder, leading to poor efficacy when appending with the decoder.
On the other hand, it can produce dense predictions at multi-levels.
Therefore, the attention gate is applied on skip-connection and before
concatenation to keep the high-level and low-level essential features
using linear transformation and non-linear activation functions.

However, the final output loss needs to be effectively gradient
back-propagated. Finally, deep supervision integrates predictions from
various resolution feature maps from earlier levels and reproduces the
final in-depth supervised segmentation output.

Therefore, the proposed attention dense U-Net based deep super-
vised DNN (ADU-Net) is a new, efficient, and hybrid model for auto-
mated lesion segmentation of COVID-19 from chest CT images. As a
result, the proposed model achieves a test dice coefficient of 82% and
86% with data augmentation, which outperforms the state-of-the-art
models.

6.1.2. Analysis of layer-wise visualizations on ADU-Net
To visualize the images and representations of the feature maps

which are being passed on from each layer, a layer-wise output for each
layer has been depicted for the used models in Fig. 13(a-d). The input
data of one COVID-19 chest CT image is fed into the layers or functional
blocks in the encoder and decoder limbs of the proposed DNN. There
are five levels and 228 layers in the proposed DNN model. The decoded
embeddings from both the sub-nets are sent to the final covering layers
of the proposed network for the actual output.

The primary difference present in the Attention U- Net and Dense
U-Net networks are between the feature targets accumulated by the net-
works. The Dense U-Net network focus on the more minor features and
the Attention U-Net network focuses on the more significant features.
This inference is constructed based on the fact that the concatenated
structure of the Dense U-net does not allow it to lose focus of the minute
details of the feature maps, while for Attention U-Net dives deep to a
point where only the sharp edges are persistent, to bring out the best
features, thus losing the minor details in the process. Therefore, the
proposed model combines attention U-Net and dense U-Net. Fig. 13(a-
d) shows that the feature maps have a consistent amount of fine details
throughout all the layer outputs. In contrast, in the outputs of levels
1 and 2 for the encoder limb of the model, we can only see the sharp
edges, and again the feature maps are reconstructed as we move up
the decoder limb. A quick comparison between the three output layers
shows that the features are best highlighted within the embedding lay-
ers of the final proposed network. The features are distinctly separated
from one another and allow the identification of individual components
in the image. The layer-wise visualization provides concrete qualitative
validation that the results brought about by the conjunction of the two
separate networks outperform the individual results.

6.1.3. Comparison between ground truth and predicted output
The output prediction of the proposed COVID-19 lesion segmenta-

tion model is shown in Fig. 14(a-c). The proposed model generates the
predicted value, and the true value is the ground truth.

The error comparison between the ground truth and the predicted
output of the proposed method is visualized in Fig. 15 for true positive
and false positive lesion regions. We have observed that the proposed
method has shown comparable results with high accuracy.
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Fig. 13(a-d). Intermediate outputs of proposed ADU-Net model for lesion segmenta-
tion.

7. Conclusion

In this research work, we have proposed a novel attention-based
dense U-Net architecture that is trained under deep supervision and
improves the quality of segmentation of COVID-19 lesions from the
lung CT images of COVID-19-infected patients. The U-Net is utilized as
the backbone of the segmentation network. The dense net effectively
removes the vanishing gradient problem, updates weights adequately,
10
Fig. 14(a-c). (a) Column1: Chest CT, (b) Column2: Ground Truth, (c) Column3:
Predicted COVID-19 lesion segmentation on proposed ADU-Net encoder-decoder model.

Fig. 15. The true positive lesion regions are shown in the green border, whereas red
represents false positive lesion regions at the predicted output of the proposed ADU-Net.

and improves back-propagation. The attention gate efficiently keeps at-
tention to essential features using linear transformation and non-linear
activation functions while suppressing irrelevant features. The deep
supervision effectively integrates predictions from various resolution
feature maps from earlier levels and reproduces the final in-depth su-
pervised segmentation output. We evaluated the model by performing
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an ablation study. The proposed model can better segment the COVID-
19-affected areas in the lungs from the chest CT images. The publicly
available COVID-19 chest CT segmentation dataset has trained the
proposed model. The efficacy of the trained model has experimented
with test images. The proposed DNN model outperforms the state-of-
the-art models and has achieved the segmentation test dice coefficient
of 0.86 and Jaccard coefficient of 0.75 with data augmentation. The
proposed methodology may become a helpful tool for physicians for
COVID-19 disease management.
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