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Abstract Functional 1H magnetic resonance spectroscopy (fMRS) is a
derivative of dynamic MRS imaging. This modality links physiologic
metabolic responses with available activity and measures absolute or relative
concentrations of various metabolites. According to clinical evidence, the
mitochondrial glycolysis pathway is disrupted in many nervous system
disorders, especially Alzheimer disease, resulting in the activation of
anaerobic glycolysis and an increased rate of lactate production. Our study
evaluates fMRS with J-editing as a cutting-edge technique to detect lactate in
Alzheimer disease. In this modality, functional activation is highlighted by
signal subtractions of lipids and macromolecules, which yields a much higher
signal-to-noise ratio and enables better detection of trace levels of lactate
compared with other modalities. However, until now, clinical evidence is not
conclusive regarding the widespread use of this diagnostic method. The
complex machinery of cellular and noncellular modulators in lactate
metabolism has obscured the potential roles fMRS imaging can have in
dementia diagnosis. Recent developments in MRI imaging such as the advent
of 7 Tesla machines and new image reconstruction methods, coupled with a
renewed interest in the molecular and cellular basis of Alzheimer disease,
have reinvigorated the drive to establish new clinical options for the early
detection of Alzheimer disease. Based on the latter, lactate has the potential to
be investigated as a novel diagnostic and prognostic marker for Alzheimer
disease.
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Functional 1H magnetic resonance spectroscopy (fMRS) is a deriv-
ative of dynamic MRS imaging. This modality links metabolic

response with functional activity, showing spectra of resonances that
measure absolute or relative concentrations of metabolites.1 When a
specific functional area of the brain becomes engaged in a task,
fMRS can identify the neuronal activity by measuring and recording
metabolite alterations, which is a necessary component of effective
neuronal firing.2

Alzheimer disease (AD) is an irreversible neurodegenerative
brain disorder and is the primary cause of dementia worldwide. The
central aspect of this disease is cognitive impairment, ranging from
memory loss in early phases to distortion of executive functioning in
later phases.3,4 Identifying metabolite changes in biochemical path-
ways involving different diseases will disclose how these alterations
affect interconnected reactions. This will make it possible to follow
changes as the disease progresses.5,6

Evidence indicates that when glycolysis and mitochondrial
metabolic pathways are disrupted in neurons or when the necessary
substances for aerobic metabolism are not available, the anaerobic
glycolysis cycle will be activated, generating lactate as the final product
of the anaerobic pathway. Importantly, in pathological conditions and
while the Krebs cycle is deficient, increased lactate levels are identified
due to the reduction of oxygen (hypoxia or ischemia).7,8 This metabolite
resonates in 1.32 ppm but shows a significant overlap with lipids/mac-
romolecules, and this makes it challenging to differentiate. To overcome
this issue, using echo time (TE) (135–144 msec) displayed to be helpful,
so the lactate molecule (CH3COHCOOH) appears inverted and sub-
tracted from lipids/macromolecules.8

Meanwhile, J-difference editing as a cutting-edge technique
defines the “OFF” and “ON” spectra. ON acquisition includes a
single-voxel Point Resolved Spectroscopy (PRESS) sequence.9

Mescher-Garwood scheme (MEGA)–PRESS is one of the popular
protocols because it makes it possible to simultaneously edit the
spectra and water suppression.10 These strategies can measure lac-
tate metabolite in AD individuals. In this article, we discuss various
facets of pathophysiologic conditions in AD (low blood flow and
mitochondrial dysfunction) that directly or indirectly contribute to
lactate imbalance. Furthermore, we will discuss the limitations and
benefits of current imaging techniques while considering that the
current literature surrounding fMRS imaging in AD is limited, we
aim to emphasize on the potential role of lactate imaging in this
disease.

PATHOGENESIS OF ALZHEIMER DISEASE: MORE
THAN TANGLES

Cerebral Blood Flow and Microcirculation
Cerebral blood flow (CBF) is defined as the blood volume

circulating through 100 grams of brain tissue per minute (50 ml/
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minute).11,12 The amount of blood gas and cerebral perfusion pres-
sure are among the factors that determine the overall flow of blood
through the brain tissue. CBF can change due to several factors; an
increase in intracranial pressure due to the increased hydrostatic
pressure results in high vessel outflow.12–15 Glial fibrillary acidic
protein in astrocytes acts as another CBF regulator, which is
believed to be reduced in both AD models and AD individuals.
Alongside the CBF reduction because of the aging process, Ab
deposition, tauopathy, and reduced glial fibrillary acidic protein
are expected, which intensify the deteriorating effect on the micro-
circulation of the central nervous system (CNS).16–18 This reduced
blood flow can be used as an imaging marker in functional MR
techniques, as it will be discussed further.

Energy, Metabolism, and Cell Signaling
Like other parts of the body, the function of neurons is highly

dependent on glucose. After entering the brain cells, glucose is used
in the Krebs cycle. Thirty-six to thirty-eight ATP molecules are
expected to be produced throughout the Krebs cycle.19–21 This cycle
requires oxygen for proper maintenance, and as oxygen supply
drops, the anaerobic pathway is inevitably activated to provide the
minimum amount of energy needed. In addition to the much lower
amount of ATP produced, lactate will be present in the cytoplasm as
the ultimate product of this cycle.22–24 After the increased lactate in
neurons and astrocytes, there will be a decrease in pH and more
potassium will be transported through the cell membranes, resulting
in a disturbance of action potential.26

Dysregulation of Mitochondrial Function
Mitochondria have a crucial role in protein synthesis and ATP

production in aerobic conditions (Krebs cycle), and mitochondrial
dysfunction has been suggested as the main pathology of AD in
some studies.26,27 Chou et al.26 observed mitochondrial dysfunctions
as an early event in AD mouse models.

Hypoxia in various conditions such as decreased CBF as a
secondary expected phenomenon in AD results in reduced ATP
production, exacerbation of oxidative stress, and the formation of a
defective cycle that leads to cell death due to an increase in reactive
oxygen species.

Neurotransmitter Dysregulation
(GABA/GLU—Lactate)

Neurotransmitters are chemical messengers in the central and
peripheral nervous system and are made up of small amino acids or
peptides and cause changes in the autonomic system regulation.
Gamma-aminobutyric acid (GABA) and glutamate (GLU) are 2
neurotransmitters that are normally in equilibrium. This balance
controls individual neurons and complexes of functional neurons in
excited and nonexcited states. Any changes in the GABA/GLU
balance lead to essential outcomes; in the case of excessive
stimulation, GLU increases and GABA decreases, and in the cases
of suppression, GABA increases in comparison with GLU, which
causes parasympathetic overactivation.28–32 Acetylcholine levels are
claimed to be reduced in AD individuals with consequent memory
impairment.33,34 A higher ratio of GLU to GABA in AD individuals
compared with the normal population is expected due to the effect of
AD on GLU-GABA balance in the temporal lobe.28

Oxidative Stress and REDOX Damage
Oxidative stress is an unfortunate phenomenon that can occur

in any cellular and subcellular components because of the imbalance
between oxidants and pro-oxidants with antioxidants. In this
phenomenon, superoxide is produced, which is highly reactive and

can easily cause oxidative damage.35 It is now widely recognized
that oxidative stress contributes to AD pathology. Accumulation of
oxidizing cations such as iron and copper, Ab deposits outside the
cell, and hyperphosphorylated tau and mitochondrial dysfunction
inside the cell are among the factors that have been known to
cause oxidative stress and its exacerbation in AD individuals.36,37

Glutathione is an antioxidant that plays a vital role in the prevention
of a defective cycle of oxidative stress in different parts of the body.
Neuronal cells contain small quantities of glutathione, making the
neurons susceptible to oxidative damage.37 Thus, it seems that low
CBF in AD individuals result in lactate increase, which occurs
because of the activation of the intracellular anaerobic cycle and
neuronal cells fall into a defective cycle. This phenomenon leads
to severe mitochondrial dysfunction.

LACTATE AND NEURODEGENERATION

Lactate Metabolism and Significance in Glycolysis
Lactate is the conjugate base of lactic acid, a byproduct of

energy metabolism in cells. Classically, glucose can be metabolized
in 2 main ways. In low-oxygen environment, anaerobic glycolysis is
the main route of energy production.38 Glucose is first phosphory-
lated to remain in the cytosol. Then, isomerase turns glucose-6-p to
fructose-6-p, which itself is again phosphorylated to fructose 1,6-
bisphosphate. Then, aldolase and subsequent machinery of enzymes
lead to creating 2 pyruvate molecules from a single glucose mole-
cule. Overall, the pathway produces 2 ATP and 2 nicotinamide
adenine dinucleotide (NADH) molecules, which can be further used
in energy production. NAD+ plays a vital role in various metabolic
pathways, and its lack is inconsistent with prolonged cellular phys-
iology. Thus, if NAD+ cannot be generated using the electron trans-
port chain in the mitochondria, it is regenerated through the
production of lactate from pyruvate, A step mediated by the lactate
dehydrogenase.38–40

In oxygen sufficiency, pyruvate is turned into acetyl coenzyme
A through pyruvate dehydrogenase, with the latter molecule entering
the tricarboxylic acid cycle. For each Acetyl-CoA molecule, the
cycle generates 3 NADH, a single guanosine triphosphate molecule,
and a single flavin adenine dinucleotide (FADH2) molecule.41,42

These are then entered into the electron transport chain in the mito-
chondria and subsequently used to maintain an H+ gradient along
with the spaces of the mitochondria. This gradient is used by an ATP
synthesis complex to form ATP from adenosine diphosphate and
inorganic phosphate. The completed aerobic pathway creates 36
ATP molecules, and the anaerobic way makes a scant 4 ATPs.43–45

Thus, many cells rely on the aerobic method to generate
energy. Only a limited number of cells in the human body depended
solely on anaerobic glycolysis to survive (namely red blood cells).46

Role of Lactate in Energy Metabolism: The
Astrocyte-Neuron Lactate Shuttle

Energy metabolism in the CNS is highly dependent on aerobic
glycolysis, especially in high neuronal activity. Much of the energy
consumed in the neurons is bound to fuel Na/K pumps, which are
essential for transmitting signals from one neuron to the other.47

Conventionally, it was assumed that because of the high rates of
aerobic glycolysis, lactate would be scant in intercellular spaces of
the CNS. This was refuted by in vivo studies suggesting that lactate
had a more than expected presence, even when neuronal activity was
not significant.48 Further light was shed on this issue when histo-
pathologic studies highlighted the cellular heterogeneity of the CNS
because cells derived from an embryonic mesodermal origin in the
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CNS were not as dependent on aerobic metabolism. Astrocytes and
oligodendrocytes processed glycogen glycolytically, yielding lactate
and pyruvate from glucose.49

Interestingly, astrocytes particularly have multiple mitochon-
dria and would be expected to benefit from the more productive
aerobic pathway. However, owing to enzymatic profiles (hyper-
phosphorylation of pyruvate dehydrogenase) and structural variants
in the mitochondrial respiratory chain, complexes cause suboptimal
mitochondrial respiration.50 This phenomenon is similar to the aer-
obic glycolysis seen in malignant tissue, otherwise known as the
Warburg effect.51 Pellerin L et al. presented a unified model to link
the drastically different metabolisms of astrocytes and neurons,
further expanding through numerous animal studies.52 According
to this theory (and based on the evidence presented by observa-
tional studies), increased neuronal activity leads to increased GLU
release to the extracellular space through the excitatory amino acid
transporter 3 (EAAT3) transporters, presumed to exist exclusively
on neuronal cell membranes. Astrocytes then uptake GLU through
EAAT1-2 transporters, driven by a Na gradient. This also causes
an increased uptake of glucose, which is entered into the glycolytic
pathway. The resulting lactate then trickles out of the astrocyte,
into the extracellular fluid, and into neurons, where it is further
processed using lactate dehydrogenase, turned into pyruvate,
which then can create mediators entering the tricarboxylic acid
cycle.53–56

Physiologic Role of Lactate in Neuronal
Functioning

As mentioned, astrocytes may have more critical roles in
neuronal physiology than previously thought. Recently, an increased
focus has been put on the part of astrocytes in metabolically
supporting neurons in instances of improved neuronal functioning. It
is now proposed that gluconeogenesis dependent on astrocytic
glycogenolysis may be critical in generating neurotransmitters such
as GLU and GABA.57,58 It is postulated that the same could be true
for lactate. Empiric evidence suggests that distribution of the lactate
transfer from astrocytes to neurons (either by upstream metabolic
distributions which reduce lactate synthesis or by downstream loss
of function of lactate transfer molecules out of astrocytes) leads to
the impairment of memory formation.

Moreover, loss of function of monocarboxylate transporter 2
channels, situated on neurons and responsible for entering lactate
into them, leads to the distribution of memory formation even when
an excess amount of lactate is present in the extracellular space.59–62

More studies suggest that lactate may be involved in various forms
of learning and decision making, which relies on signal transduction
among different anatomic structures such as cortex, amygdala, cin-
gulate gyrus, and hippocampus.63,64 One interesting observation is
that adding lactate to the hippocampus can mitigate the amnesic
effects of anti-beta adrenergic such as propranolol.65,66 b-adrenergic
signaling initiated by neurons located in locus coeruleus has a crit-
ical role in consolidating inhibitory avoidance memory and is a
classic example of how lactate may affect neuronal signaling.67

Importantly, restoring or injecting excess glucose only marginally
substitutes lactate, suggesting that lactate’s memory-enhancing and
proplasticity effects may be partially energy independent.68 These
effects may be mediated by gene-amplifying characteristics of lac-
tate or due to the shifts in redox balance (with the introduction of
NADH after lactate formation). Whatever the cause, studies show
that heightened aerobic glycolysis is correlated with increased neu-
ronal plasticity, with direct genomic relations, as the expression of
certain neotenic genes ensures plasticity in specific areas of the brain
in mammals69,70 (Figure 1).

Lactate as a Cellular Messenger in Cell Signaling
Pathways

Scholars have looked at the possible roles of lactate in neuronal
signaling owing to the significant amounts of lactate in the
extracellular spaces in the CNS and the demonstrated role of lactate
in cell signaling outside of the CNS (such as in cancers).71,72

One peculiar association has been proposed to be the role of
lactate in locus coeruleus. In vivo studies have found that injection
of L-lactate in physiologic concentrations can increase the produc-
tion of norepinephrine, such as excitatory neurotransmitters includ-
ing L-GLU. Importantly, these effects are not dependent on neuronal
associations of astrocytes, and lactate can exhibit the mentioned
effects without ever having to enter neurons.73 More studies have
shown that these effects are not mediated by lactate shunts and are
exerted through 2 opposing lactate binders. One of these receptors is
the orphan receptor coupled with Gi, G protein–coupled receptor 81,
and the other is the G protein–coupled receptors (GPCRs), excitatory
receptor, which increases the levels of cyclic adenosine monophos-
phate by activating protein kinase A.74

In vivo studies on mice have also suggested that lactate may have
a role in maintaining the sleep-wake cycles. It has been shown that
preventing intercellular trafficking of lactate by clocking connexin
molecules in mice hippocampus inhibits the excitatory synaptic activity.
Similar effects are also seen in other brain regions, such as subthalamic
nuclei, pyramidal cells, and CA1 subregion of the hippocampus.75–77

Interestingly, other signaling cascades are also affected by
lactate. Yang et al. in 2014 showed that lactate can promote neuronal
plasticity by potentiating the effects of the NMDA GLU recep-
tor.68,78 It also increased the intracellular NADH and calcium levels,
leading to brain-derived neurotrophic factor signaling potentiation.
Brain-derived neurotrophic factor is a mediating neuronal factor that
has established a role in exercise-related neuronal plasticity. Many
studies suggest that lactate modulates the exact mechanism involved
in exercise-related neuronal plasticity by SIRT1 activation, which
enhances PGC1a/FNDC5/BDNF signaling.70,79

IMAGING IN ALZHEIMER DISEASE
Currently, AD diagnosis is challenging because there are no

precise paraclinical criteria, and it is usually made based on the
clinical criteria, which themselves are combinations of clinical signs
and symptoms and mental status examination results, while bio-
markers (e.g., concentrations of Ab peptides [Ab1–42:Ab1–40
ratio]) and neuroimaging modalities, such as MRI and positron
emission tomography (PET) scan, are widely used as confirmatory
for the primary diagnosis.80,81 The Food and Drug Administration
has approved the florbetapir (Amyvid) PET scan to estimate beta-
amyloid neurotic plaque density in AD individuals.82 Nonetheless,
amyloid PET scan is an invasive modality with high radiation dos-
age, and the cost effectiveness of this modality is still questionable.83

MR imaging of the nervous system can facilitate the detection
of early changes associated with dementia such as regional atrophy,
and some advanced MR techniques have been investigated, mainly
in research, for the early detection of AD disease. These techniques,
such as functional magnetic resonance imaging (fMRI) and arterial
spin labeling (ASL), facilitate the diagnosis by providing dynamic
and static imaging, respectively. Nonetheless, some of these
methods need further clinical evaluation and represent hypotheses
during preclinical studies.84,85

MRI in Alzheimer Disease
The traditional MR imaging in AD is classically based on

Braak staging.86 The levels of atrophy are evaluated by an expert
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neurologist, in some areas of the brain such as the medial temporal
lobe including hippocampus and entorhinal cortex.87,88 In addition,
the loss of limbic gray matter (thalamus, amygdala, and cingulate
gyrus), which is associated with memory loss, is another finding in
MR imaging.89,90

MR imaging could also determine signal intensities related to
AD plaques which could be detected on T2-weighted images and
fluid-attenuated inversion recovery (FLAIR) images.91 White matter
hyperintensities are also shown to be associated with disease activity
and even severity of clinical signs.84,92 In this regard, white matter
high T2-weighted, T2*-weighted with susceptibility-weighted imag-
ing sequence, coronal 2D T2-weighted turbo-FLAIR, coronal 2D T2
turbo/fast spin-echo, sagittal 3D T1 MPRAGE/IR-SPGR postcon-
trast, and axial spin-echo T1 postcontrast are strongly suggested.93

Undoubtedly, going through all the noted modalities is not realistic,
and it seems that selecting the most suitable shall be according to the
local equipment and facilities. Nonetheless, static MRI techniques
cannot be used in assessing the proclivity of the condition to dete-
riorate and even pinpoint the most recent changes, and other
advanced dynamic techniques are required for this purpose.

Advanced MR Techniques
Among advanced MR techniques, DTI, ASL, and fMRI are

suggested. DTI is based on the anisotropic diffusion and Brownian
motion of water molecules of the brain. In this modality, mean
diffusivity (MD) and fractional anisotropy (FA), which relate to the
average rate of water molecule diffusivity and the variability
associated with diffusion, are respectively measured.84 Increased
MD in some brain regions such as the frontal and occipital lobes
is shown to be associated with AD. By contrast, FA is decreased in
the occipital and parietal lobes. That is because this method is
dependent on water motion. Accordingly, artifacts would be more
common in this technique. In addition, initially, metabolic changes
occur in these tissues and can be detected by DTI if these metabolic
changes lead to structural changes.94,95

On the other hand, ASL is a noninvasive and noncontrast MR
perfusion technique. ASL labels arterial blood water protons;
therefore, it can measure fluctuations in cerebral blood flow as an
AD marker. The CBF is reduced significantly in AD individuals in
temporal, frontal, parietal, thalamus, hippocampus, and amyg-
dala.96,97 Furthermore, lower CBF has been shown to be associated
with faster cognitive decline in AD individuals.98 Although this
modality is noninvasive and nonionizing, alterations in signal
intensity and the low signal-to-noise ratio (SNR) reduce image qual-
ity.99,100 fMRI is a blood-oxygen-level-dependent or BOLD-contrast
imaging technique.101 Individuals can be evaluated for brain activity
during the task or resting state. Studies showed that hippocampal
and medial temporal lobe have low activation rates in AD
individuals.102

Working memory, semantic knowledge, attention, motor perfor-
mance, and visuospatial ability are among the functions included in
the task mode.103,104 The posterior cingulate cortex, entorhinal cortex,
and hippocampus were evaluated in this mode, but the most engaged
structure was medial temporal lobe.105,106 Nonetheless, fMRI is not

used in routine clinical evaluation, possibly because of its low SNR
for neuronal activity.107

As discussed, many dynamic modalities encounter quality
limitations in clinical diagnostics. However, quantitative imaging
techniques have shown promise in recent years. MRS as a quantitative
imaging measures CNS metabolite concentrations. For example, N-
acetyl aspartate (NAA)/creatine (Cr) and NAA/myo-inositol (mI) can
be used as markers for AD.108 This modality, however, has limited
sensitivity for diagnosing AD; therefore, the combination of different
modalities could yield a better image in both quantity and quality. In
this manner, fMRS has been developed to detect CNS abnormalities
in mice and humans.2,8,108–115

fMRS PROTOCOL

Repetition Time, Echo Time, and T2* Relaxation
Repetition time (TR) and TE are measured in milliseconds

(msec). The degree of longitudinal magnetization recovery between
each pulse determines by TR between successive pulse sequences
applied to the same slice.116 The time interval between radio fre-
quency pulse transmissions and the reception of echo signals is
called TE. Furthermore, TE regulates the quantity of T2* (transverse
relaxation time),117 during which the gradient echo (GRE) loses
signal strength.118 Magnetic field inhomogeneity can be macro-
scopic (constant across a voxel) or microscopic (variable across a
voxel). The phase shift in a GRE image reflects the average mag-
netic field of protons in a voxel, which is affected by the tissues’
local susceptibility.119

For the primary GRE sequence fast low-angle shot (FLASH),
the greater flip angles give the image more T1 weighting and the
lower flip angles give the image more T2* weighting while TE has
increased.120 In this fast GRE sequence, the gradian is diminished
semirandomly after every echo, eradicating transverse magnetization
by changing the phase space. In addition, to avoid susceptibility
artifact, the amount of TE is set to minimum.121

By contrast, there is no 1808 refocusing pulse in GRE
sequences; thus, dephasing effects are not reduced. As a result,
transverse relaxation (i.e., T2* relaxation) in GRE sequences is a
mix of “true” T2 relaxation and relaxation produced by magnetic
field inhomogeneities. The 1/T2* = 1/T2 + g DBinhom equation
showed that T2* is shorter than T2; in this equation, DBinhom is
the magnetic field inhomogeneity across a voxel and g is the gyro-
magnetic ratio.122

There have been few studies evaluating lactate with 1H-MRS in
AD individuals in recent years. In these studies, MRI equipment
used 1.5 and 3 Tesla (T), short TE (11–35 msec), and long TR (500–
2000 msec) with direct dimension bandwidth (2 and 2.5 kHz). These
studies used the PRESS protocol (Table 1).127–130

However, the fMRS protocol for lactate in healthy volunteers
was run with short and long TE (6–144 msec) and long TR (1500–
7500 msec) and using MEGA, LASER, SPECIAL, PRESS, and
STEAM protocols (Table 2).2,8,108–115

Table 1. Summarize Characteristics of MRS Protocol With Lactate for AD Individuals

Study MRI Equipment Coil MRS Protocol MRS TE (msec) MRS TR (msec) DDB (kHz)

R Mullins et al., 2018123 Philips 3T 8‐channel SENSE head coil J‐PRESS 35 2000 2
KE Weaver et al., 2015124 Philips 3 T 8-channel SENSE head coil PRESS 24 2000 2
T Ernst et al., 1997125 GE 1.5 T NA PRESS 11 500 2.5
W. Block et al., 1995126 Philips 1.5 T NA NA NA 2000 NA

J‐PRESS, J‐modulated point‐resolved spectroscopy, DDB, direct dimension bandwidth.
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Table 2. Summarized Characteristics and Technical Specifications of fMRI Imaging in Studies Aiming to Quantify Lactate Levels

Study MRI Equipment Population Evaluation MRS Protocol
MRS TE
(msec)

MRS TR
(msec) fMRI Paradigm Outcomes

Y Koush et al.,
2021120

3 T Siemens Prisma
scanner using 64-channel

head/neck coil

Twenty healthy
volunteers

Cortical areas in
the human brain

MEGA 144 2700 Visual stimulation/
cognitive task

Lactate increased on
activating the visual cortex
but did not change on

deactivating the posterior
cingulate cortex.

CC Fernandes
et al., 2020119

7 T Philips, 32‐channel
receive head coil

Six healthy
volunteers

Human visual
cortex

MEGA (semi‐
LASER)

144 2000 Visual stimulation Lactate increases
significantly (;10%).

Ligneul et al.,
2020117

9.4 T Bruker BioSpec
scanner

20 mice (C57Bl6
females, age 3–4

months)

Mouse superior
colliculus activity

LASER 28 1500 Visual stimulation NAAG, PCr, Cr, and GLU
were increased measured in

the superior colliculus
Y Koush et al.,
2019116

4 T Bruker spectrometer
using a 16-channel

transmit-receive head coil

Ten healthy
volunteers

Human motor
cortex

MEGA 144 3330 Finger-to-thumb tapping J-edited fMRS has high
sensitivity and specificity
for task-induced lactate

modulation.
R Mekle et al.,
2017127

7 T Siemens whole‐body
system with a 60‐cm bore
and a whole-body gradient

coil

Twenty healthy
volunteers

Human visual
cortex

SPECIAL 30 2000 Visual stimulation An increase in lactate of
0.04 mmol/L (7%) was the
only significant effect.

P Bedna�rík
et al., 2015118

7 T/90-cm magnet
(Agilent/Magnex

Scientific)

Fifteen healthy
volunteers

Human visual
cortex

Semi-LASER 26 5000 The block-designed
paradigm of visual

stimulation

BOLD-fMRI signals were a
linear relationship positively

correlated with lactate
concentration changes.

B Schaller et al.,
20142

7 T/68-cm scanner
Siemens, 2-channel receive

coil

Eleven healthy
volunteers

Motor activation SPECIAL 12 7500 Finger-to-thumb tapping Increases in lactate during
motor stimulation are small.
The lactate changes may be
a general manifestation of
the increased neuronal

activity.
B Schaller et al.,
2013128

7 T/68-cm Siemens Ten healthy
volunteers

Human visual
cortex

SPECIAL 6 5000 Visual stimulation The rate of lactate
concentration increases.

AL Lin et al.,
2010121

3 T Trio MRI scanner
(Siemens)

Twelve healthy
volunteers

Human visual
cortex

PRESS 30 2000 The reversing-
checkerboard paradigm of

visual stimulation

The energy demand of task-
induced brain activation is

approximately 15%.
Increases in CBF positively

correlated with lactate
production.

S Mangia et al.,
2007122

7 T/90-cm horizontal bore
magnet (Magnex

Scientific)

Twelve healthy
volunteers

Human visual
cortex

STEAM 6 5000 Visual stimulation The lactate concentration
reached the new steady-state
level within the first minute
of activation and returned to

baseline only after the
stimulus ended.

Spin‐echo full‐intensity acquired localized (SPECIAL), Mescher-Garwood scheme (MEGA)
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Metabolites such as lactate in pathologies could be recorded
with edited 1H-MRS protocol if the expected levels are higher.
In addition, long TE (144 msec) can differentiate the overlapping
signals from lipids/macromolecules, which is required for exact
evaluation of changes in lactate (or other metabolites) at low
SNR.2,8

Signal-to-Noise Ratio
In imaging, the SNR is a measure of genuine signal (i.e.,

representing actual anatomy) to noise (e.g., random quantum
mottle).131,132 The SNR is routinely evaluated in MRI by measuring
the signal intensity difference between the region of interest (ROI)
and the background.133

When MRI is used instead of 2D imaging, volume acquisition
can increase the SNR. However, imaging time for spin-echo
sequences is longer than GRE sequences.134 The use of surface coils
increases the SNR, and increasing the number of excitations reduces
the TE while increasing the TR.126,135

The main challenge of formulating a proper fMRS protocol
with long TE is to reduce SNR while reaching a good SNR for
measuring lactate. On the other hand, SNR can be reduced by
decreasing bandwidth (BW) or increasing averaging. In addition,
correcting the uniformity of the field automatically or manually
could enhance SNR. Placing the MRS voxel in the correct position
could also decrease noise (not including air and water inside the
voxels and selecting voxels with dexterity, especially where the
anatomical tissue changes are large, e.g., the base of the skull).
Correctly placing the suppression bands around the voxel can also
be effective. Increasing the TR also helps to some extent, although
the amount of TR should not be less than 2000 msec.8,111

fMRS Examination
The fMRI technique measures brain activity and identifies

minor changes in blood flow, showing stimuli or actions (most
frequently BOLD imaging). This modality relies on minute changes
in a low SNR environment, making it technically challenging.123,125

FIGURE 1. Physiologic role of lactate in neuronal functioning. Note that the figure was created by using the website BioRender.
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The individual’s activity or stimulus is referred to as a para-
digm, and each one is meant to extract a specific cerebral response.
Many paradigms with varying levels of complexity have been devel-
oped. Four paradigms were assigned to different clinical responses
(visual, motor, speech, memory, and clinical practice). It can look at
the brain’s functional architecture to see which regions oversee spe-
cific functions. It can be used to assess the impact of stroke, trauma,
and degenerative diseases such as AD on brain function.114,116

Repeated paradigms are separated by blocks of inactivity or
alternate action in a block design. In clinical fMRI, this is by far the
most common design. Individual events, rather than blocks, are used
in the event-related design, and they can be dispersed arbitrarily
across the research. During an fMRI examination, tapping fingers or
toes, pursing lips, moving tongue, reading, seeing images, listening
to speech, and playing simple word games are possible ways to
show the brain’s activity.111,112

The fMRI is now a cornerstone of neuroimaging in clinical and
fundamental brain research. However, fMRI would be an ideal
diagnostic tool because of its noninvasive nature and significant
spatial resolution while limited in temporal resolution. On the other
hand, human studies were shown to cause a consistently detectable
BOLD response, with even modest lactate alterations, creating
plasma concentrations equivalent to moderate muscular activ-
ity.124,125,136 Similarly, the lactate level was significantly higher in
the rodent somatosensory barrel cortex (S1bf) during stimulation or

on the early visual cortex in animal experiments with the BOLD
response.137,138 Nonetheless, fMRI shows functional activity, but
brain metabolism is missed. There are some techniques such as
autoradiography, positron emission tomography (PET), two-photon
fluorescent confocal microscopy (TPEF or 2PEF), and MRS to ana-
lyze brain metabolism.139–141 Both autoradiography and PET are
noninvasive methods and have low spatial resolution images.142 In
addition, MRS reveals the number of metabolites but not the brain
activity.135 As a result, functional MRS (fMRS) is a noninvasive and
nonradioactive technique and may investigate any brain region.143

The peak of macromolecule is unknown; variations in their
quantities have been linked to stroke, multiple sclerosis, and
malignancies. Several peaks are at 0.9, 2.05, and 3.0 ppm.144

Acetate and macromolecular proteins are among the lipids with
multiple vast peaks between 0.8 and 1.3 ppm. Lipid levels, lactate,
and alanine increase in various cancers.145 The methine proton is J-
coupled to the 3 methyl group protons in lactate through the C-C
connection. In addition, 63.47 Hz (J=6.93 Hz) of precession fre-
quency shift is caused by coupling between 2 groups of protons.146

As proton MR spectroscopy shows, anaerobic glycolysis ends
with the lactate resonance. Stroke, high-grade malignancies, and
abscesses are examples of diseases compatible with our understand-
ing of the biochemical processes taking place in the body. Long-
echo proton MRS investigations use J-coupling to distinguish lactate
methyl and methine proton peaks (which occur at 7 Hertz).10

FIGURE 2. fMRS experimental design and results. Note that the figure was created by using the website BioRender.
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FIGURE 3. Long TE can differentiate the overlapping signals from lipids/macromolecules; the main challenge of formulating a proper fMRS
protocol with long TE is to reduce SNR while reaching a good SNR for measuring lactate.
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If lengthy echo durations (144 and 288 msec) (multiples of 1/7
Hz) are used, it can differentiate lactate signals from lipid signals in
the blood. Spin or J-coupling inverts the resonance when sampling
with a 144 ms echo period.143,147 As a result, the lactate doublet
peak may be distinguished from macromolecules and lipids. Still,
the signal strength is reduced, particularly troublesome at low con-
centrations. At 288 msec, the doublet peak appears above the base-
line.8,110 The lactate peak seen at the doublet may be unbalanced
due to transmission and reception problems. In addition, the signal
should physically match the high-fat sign-on imaging at a time
interval of 288 ms if it originates from lipids. Thus, anaerobic gly-
colysis is the cause of lactate development which is considered
pathological. Depending on the situation, the lactate signal may
potentially represent mitochondrial dysfunction.148

A greater B0 field demands different methods to B1-related
abnormalities in J-difference MRS in vivo, although the MEGA-
PRESS sequence is the most frequent lactate detection by 1H-MRS
with a long TE J-difference, which naturally eliminates overlapping
signals. The MEGA-PRESS is a J-difference edited MRS pulse
sequence consisting of ‘ON’ and ‘OFF’ subexperiments.149 In con-
trast to the ‘OFF’ experiment, the’ ON’ experiment uses frequency-
selective radio frequency editing pulses to edit the lactate molecule’s
1.32 ppm resonance.8

Lactate is separated from overlapping resonances and macro-
molecules using spectral editing with J-modulation, which uses the
quantum mechanical characteristics of specific molecules to “edit”
them out of the overall 1H-MRS spectrum.8,111 On the other hand, J-
editing is prone to subtraction mistakes caused by motion, which can
hide tiny changes in the lactate by using quantum mechanical char-
acteristics of lactate to remove it from the overall spectrum; J-edited
1H-MRS can provide direct insights into the overlapped resonances
that occur from numerous molecules such as fatty acids or macro-
molecules.110 Because of considerable suppression of the relatively
short T2 for the lipid and macromolecule background signals, 1H-
MRS has demonstrated that physiological modulations of lactate in
the visual cortex may be seen even at 1.5 T using long TE.143

Overall, J-edited fMRS has high sensitivity and specificity for
task-induced lactate modulation8 and shows the rate of increase in
lactate concentration.2 Compared with the fixation condition, a sig-
nificant increase was detected in lactate levels.8,108,111 The rate of
lactate increases significantly between 7 and 15 percent.110,112,114 In
addition, the result shows that lactate increased on activating the
visual cortex but did not change on deactivating the posterior cin-
gulate cortex111; however, increases in lactate during motor stimu-
lation are less significant2 (Figure 2, Figure 3).150

LIMITATIONS AND FUTURE PROSPECTS
Although the prospect of different derivatives of MRI

imaging in AD is promising, several issues limit the possible
beneficence of these techniques in routine clinical consideration.
One problem is the low specificity of certain imaging signs and
quantitative outputs (such as those of MRS) in differentiating
dementia from other common clinical pathologies, such as stroke,
benign senile changes, and mild to moderate mental decline.151

Furthermore, there is no consensus on the criteria for patient selec-
tion for specific derivatives of MR imaging in dementia, and sim-
ply changing the study population could have significant effects
on the diagnostic profile of the studied modality (most notably the
positive and negative predictive values). Importantly, the relative
importance of quantifiable findings (such as those of MRS) is not
known compared with anatomical studies, which are the major
yield in conventional MR imaging.152 Note that, in contrary to

Cholin and NAA, specifically NAA can demonstrate relationship
to disease severity,153–155 clinical results for this association for
lactate levels are limited. A recent clinical study on AD and mild
cognitively impaired adults showed that CSF lactate levels were
associated with age and blood-brain barrier integrity but not with
clinical severity or CSF biomarkers of AD.156 This hypothesis
should be investigated through clinical studies, and future research
could focus on the possible role of lactate imaging in AD diagno-
sis by focusing on the combined efficacy of novel quantitative MR
methods and the anatomic preciseness offered by conventional
MR imaging.

CONCLUSION
This comprehensive review concludes that fMRS with J-editing

is a cutting-edge technique to detect lactate in ADs. This modality
during functional activation by omitting overlapping lipid and
macromolecule signals provides high SNR than other modalities
to measure lactate. However, this method is still not indicated for
diagnostic purposes based on the clinical evidence. Still, it seems
that lactate evaluation with high B0 fMRS equipment increase 3–7
Tesla provides more accurate results.
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