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A B S T R A C T   

In order to quickly and accurately determine the protein content of corn, a new characteristic wavelength se-
lection algorithm called anchor competitive adaptive reweighted sampling (A-CARS) was proposed in this paper. 
This method first lets Monte Carlo synergy interval PLS (MC-siPLS) to select the sub-intervals where the char-
acteristic variables exist and then uses CARS to screen the variables further. A-CARS-PLS was compared with 6 
methods, including 3 feature variable selection methods (GA-PLS, random frog PLS, and CARS-PLS) and 2 in-
terval partial least squares methods (siPLS and MWPLS). The results showed that A-CARS-PLS was significantly 
better than other methods with the results: RMSECV = 0.0336, R2

c = 0.9951 in the calibration set; RMSEP =
0.0688, R2

p = 0.9820 in the prediction set. Furthermore, A-CARS reduced the original 700-dimensional variable 
to 23 variables. The results showed that A-CARS-PLS was better than some wavelength selection methods, and it 
has great application potential in the non-destructive detection of protein content in corn.   

1. Introduction 

Corn is one of the most important grains in the world. According to 
the United States Department of Agriculture (USDA), the total global 
corn production in 2020/21 was 1207 million metric tons, however, 
wheat was only 778.6 million metric tons and rice was only 509.8 
million metric tons (https://www.ers.usda.gov/data-products/internati 
onal-baseline-data/). In terms of yield, it is enough to show that corn is 
the most important grain, and corn has high nutritional value. The high 
nutrients such as riboflavin contained in corn are very beneficial to the 
human body. Corn is rich in nutrients such as starch and protein that are 
needed for human health (Shen et al., 2018). Therefore, it is important 
to determine the protein content in corn. 

In recent years, near-infrared (NIR) spectroscopy has been widely 
used for qualitative and quantitative analysis of foods. Costa Pereira 
et al. applied NIR and interval partial least-squares (iPLS) regression 
combined with variable selection method to determine the quality pa-
rameters in vegetable (Costa Pereira et al., 2008). Lan et al. made use of 
NIR spectroscopy to describe and predict pure quality from the non- 
destructive apple measurements (Lan et al., 2020). Basile et al. uti-
lized NIR Spectroscopy and Artificial Neural Networks to predict grape 

texture (Basile et al., 2022). The above studies show that NIR spec-
troscopy plays an important role in food non-destructive testing. 
Furthermore, Li et al. carried out the non-destructive identification and 
monitoring of Cu-Pb pollution in corn based on near-infrared spectros-
copy (Li et al., 2023). Liu et al. processed near-infrared hyperspectral 
images of both sides of corn seeds to determine single-grain starch 
content (Liu et al., 2020). Zhang et al. used near-infrared spectroscopy to 
detect moisture content in corn stalk silage (Zhang et al., 2019). Zhang 
et al. classified the frozen corn seeds via hyperspectral VIS/NIR reflec-
tance imaging (Zhang, Dai & Cheng, 2019). The above studies show that 
near-infrared spectroscopy plays an important role in the field of corn 
research. 

Characteristic wavelength selection, as a hot research field in recent 
years, is often combined with spectral techniques to simplify the final 
model. It is one of the important methods of spectral multivariate cali-
bration. During the last 20 years, many single variable selection algo-
rithms based on model population analysis (MPA) have been proposed 
including ant colony (AO) (Dorigo et al., 2006), uninformative variable 
elimination (UVE) (Cai et al., 2008), Monte Carlo uninformative vari-
able elimination (MC-UVE) (Han et al., 2008), competitive adaptive 
reweighted sampling (CARS) (Li et al., 2009), margin influence analysis 

* Corresponding authors at: School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China (X. Wu). 
E-mail addresses: wxh419@ujs.edu.cn (X. Wu), zhx05150515@163.com (H. Zhou).  

Contents lists available at ScienceDirect 

Food Chemistry: X 

journal homepage: www.sciencedirect.com/journal/food-chemistry-x 

https://doi.org/10.1016/j.fochx.2023.100666 
Received 28 September 2022; Received in revised form 23 March 2023; Accepted 27 March 2023   

https://www.ers.usda.gov/data-products/international-baseline-data/
https://www.ers.usda.gov/data-products/international-baseline-data/
mailto:wxh419@ujs.edu.cn
mailto:zhx05150515@163.com
www.sciencedirect.com/science/journal/25901575
https://www.sciencedirect.com/journal/food-chemistry-x
https://doi.org/10.1016/j.fochx.2023.100666
https://doi.org/10.1016/j.fochx.2023.100666
https://doi.org/10.1016/j.fochx.2023.100666
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Food Chemistry: X 18 (2023) 100666

2

(MIA) (Li et al., 2011), random frog (RF) (Li et al., 2012), variable 
iterative space shrinkage approach (VISSA) (Deng et al., 2014), variable 
in projection (VIP) (Galindo-Prieto et al., 2015), and bootstrapping soft 
shrinkage (BOSS) (Deng et al., 2016). Most of the variable selection 
algorithms use statistical methods to evaluate model performance. At 
the same time, these variable selection algorithms are also widely 
applied in non-destructive detection. For example, Wang et al. evaluated 
maize photosynthetic pigment contents of maize with continuous 
wavelet transform and UVE-PLS (Wang et al., 2020). Guo et al. predicted 
antioxidant capability and active constituents of green tea by AO-PLS, 
SA-PLS, and GA-PLS, combined with NIR spectroscopy (Guo et al., 
2020). Sun et al. used fractional Savitzky-Golay derivation coupled with 
wavelength selection algorithm CARS to estimate moisture content in 
corn leaves (Sun et al., 2021). Yang et al. utilized CARS-SVM and Ter-
ahertz spectroscopy combined with chemometrics to identify corn va-
rieties with 100% accuracy (Yang et al., 2021). From the foregoing, 
researchers make use of variable selection algorithms to simplify the 
model in order to improve the accuracy of the model. Therefore, the 
variable screening method is an important modeling method. However, 
some researchers believe that due to the high collinearity of NIR spec-
troscopy, variable selection methods are unstable and weak interpret-
able compared with the interval selection algorithms (Yun et al., 2019). 

The competitive adaptive reweighted sampling (CARS) was based on 
Darwin’s theory of evolution, and the variables are selected according to 
survival of the fittest (Li et al., 2009). The CARS builds a PLS model on a 
randomly selected subset of variables from the calibration set by Monte 
Carlo method, and then adaptive reweighted sampling (ARF) and 
exponential descending Function (EDF) are served as important in-
dicators for wavelength selection. After that, a partial least squares 
model is established for each newly generated subset, and the model 
with the smallest RMESE will be used as the calibration model (Li et al., 
2009). 

In this work, we proposed a new characteristic variable selection 
method called anchor competitive adaptive reweighted sampling (A- 
CARS) to determine the relationship between protein content in corn 
and near-infrared spectra of corn. Monte Carlo synergy interval PLS 
(MC-siPLS) was used to combine with CARS to improve the reliability of 
the model, and it eliminated irrelevant variables and selected relevant 
variables at the same time. MC-siPLS was used to filter the interval in 
which the characteristic variable exists, and combine the results of each 
selection until the interval size no longer changes. CARS could reduce 
variables based on the previously selected intervals by MC-siPLS. The 
purpose of MC-siPLS was to select intervals as many characteristic var-
iables as possible and then combine them. This allows CARS to make 
further selections in intervals containing a large number of correlated 
variables and it can significantly improve the interpretability of the 
model. 

2. Materials and methods 

2.1. Corn dataset 

The corn dataset contains NIR spectra of 80 corn samples. The 
spectral wavelength range 1,100–2,498 nm consisted of 700 wavelength 
points, which were scanned at the interval of 2 nm. The dataset collected 
at Cargill was from an m5 instrument and the protein of each sample was 
considered as the independent variable. The Kennard-Stone (KS) method 
was used to divide the samples (Morais et al., 2019), and the ratio of the 
calibration dataset and prediction dataset was 3:1. The calibration 
dataset contains 60 samples, and the prediction dataset contains 20 
samples. The advantage of using KS to divide samples is that it can 
effectively improve the generality of the model. More information on 
corn dataset can be found at: https://www.eigenvector.com/d 
ata/Corn/index.html. 

2.2. Monte Carlo synergy interval PLS(MC-siPLS) 

For the traditional siPLS, its steps are as follows: 
Step 1: Divide the spectrum into equal intervals. 
Step 2: Combine 2, 3, or 4 sub-intervals. 
Step 3: Build PLS models for each combination, and the number of 

sub PLS models established by siPLS can be known from the combination 
number formula as C(m, n) = m!

n!(m− n)!, of which, n is the number of 
combined intervals and m is the number of intervals (Nørgaard et al., 
2005). 

Step 4: Choose the best interval combination as the calibration model 
according to the minimum root mean square error of cross validation 
(RMSECV). 

As an improved version of the iPLS algorithm, siPLS adds an interval 
combination function base on iPLS. But it does not optimize the interval 
division method. Therefore, the model will always choose the interval 
combination with the smallest RMSE, and it is easy to fall into the local 
minimum situation (Hulland, 1999). Therefore, the Monte Carlo (MC) 
method (Shapiro, 2003) was used to optimize the interval division. The 
intervals were divided using the Monte Carlo method as follows: at the 
stage of dividing P-1 points were randomly generated in the whole 
spectrum by the Monte Carlo method. The number of variables between 
each point including the start and end should be larger than the 
maximum number of components. If conditions were unsatisfactory, the 
program would regenerate the points. Through the MC method, each 
interval division was different, so more interval combinations could be 
generated. Therefore, the intervals with the most feature variables could 
be further searched, and MC-siPLS was used to screen characteristic 
variable intervals. 

2.3. Anchor competitive adaptive reweighted sampling (A-CARS) 

In this section, A-CARS will be introduced in detail. First of all, MC- 
siPLS will give the best way to divide the interval and the bes-
t interval combination (Zeng et al., 2023). Suppose that the character-
istic variable interval selected by MC-siPLS each time is Mi (i = 1,2, ...,
n), where i is the number of times that MC-siPLS is run. The interval Ω is 
the final selected interval. The definition of Ω is given as follows: 

Ω = M1 ∪ M2 ∪ ... ∪ Mi (i = 1, 2, ..., n) (1) 

The convergence conditions are as follows: 

Ω = M1 ∪ M2 ∪ ... ∪ Mj = M1 ∪ M2 ∪ ...Mj ∪ ... ∪ Mk (1 < j < k < n) (2) 

The above convergence conditions indicate that the algorithm con-
verges when the size of Ω does not change after the interval selected 
from the jth to the kth is merged with the previous. 

After the algorithm converges, the interval boundary of each interval 
in Ω is the anchor point. Finally, the selected feature variable intervals 
are sent to CARS for further variable screening. 

As is shown in Fig. 1, before using CARS, the Monte Carlo method 
was used to divide the intervals, and then the intervals or interval 
combinations were selected with the lowest RMSE. At the same time, the 
selected intervals were recorded for each time, and then they were 
merged. The reason for using MC-siPLS is that the principle of interval 
partial least squares is to find one or several intervals with the most 
correlated variables and exclude intervals with a large number of un-
correlated variables as much as possible. At the same time, MC-siPLS 
divides intervals with unequal intervals through the MC method, and 
the combination of intervals with different sizes is more conducive to 
screening the intervals where the characteristic variables exist. 

2.4. Estimation of model performance 

In the experiments, RMSECV, R2
c and bias were used to evaluate the 

calibration model. At the same time, root mean squared error of the 
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prediction (RMSEP), R2
p and bias were applied to evaluate the model 

performance of the tested model on the predict samples. The RMSE, R2, 
and the formula for the bias are as follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(
1
n

∑n

i=1
||yi − ŷi||

2
)

√

(3)  

R2 = 1 −
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − yi)

2 (4)  

Bias =
∑i=n

i=1(ŷi − yi)

n
(5)  

where yi and ŷi are the observed value and the predicted value, 
respectively. yi is the mean value of observations value; n is the number 
of samples; i is the number of samples from 1 to n. The smaller the RMSE, 
the higher the prediction accuracy. R2 is also known as the coefficient of 
determination, and it is used to evaluate the ability of the model to 
predict. The closer R2 is to 1, the better the interpretation of the inde-
pendent variable to the dependent variable in regression analysis. 

2.5. Hardware and software 

The experimental platform configuration is as follows: CPU E3-1230 
V2 with 16G RAM, GPU: GTX1080, and all algorithms are run in 
MATLAB 2016b. PLS, MWPLS and siPLS algorithms can be found at the 
following URL: https://www.models.kvl.dk. Random Frog, CARS and 
GA-PLS come from the following URL https://www.libpls.net. 

3. Results 

3.1. Studies on model performance 

Table 1 shows the detailed results of seven different algorithms on 
the corn dataset. Overall, the partial least squares algorithm has the 
worst results and the result of A-CARS-PLS is the best among the seven 
algorithms. In the results of the interval partial least squares algorithm, 
the result of MWPLS is slightly better than that of siPLS. Among the 
results of the feature variable extraction algorithm, the result of A-CARS- 
PLS is the best, and the result of random frog is the worst. It is worth 
noting that the results of GA-PLS and Random frog-PLS in the test 
dataset are not as good as the interval partial least squares algorithms, 
but they are better than the interval partial least squares algorithm in the 
calibration dataset. This suggests that the two algorithms may be 
overfitting. The following will show more detailed results analysis and 
comparison. 

3.2. Result of PLS 

The PLS model was optimized by 5-fold cross-validation, and the best 
calibration model was determined by the lowest RMSECV. As could be 
seen from Table 1, the optimal number of PLS components was 27, and 
the result of the full-band PLS was the worst predicted result of all the 
algorithms with RMSECV = 0.0947, R2

c = 0.9808 on the calibration set, 
and RMSEP = 0.1307, R2

p = 0.9070 on the prediction set, respectively. 
The result of the prediction set was shown in the Fig. 4. From the pre-
diction set results, it could be seen that there were some outliers, and the 
predicted results were less than expected. It is not difficult to infer that 
due to the wide spectral range, there are a large number of irrelevant and 
low-correlation variables, and the existence of these variables must 
affect the final model. Therefore, the interval selection method and 
variable selection method are used to eliminate irrelevant and poorly 
correlated variables to improve model accuracy and relevance. 

3.3. Result of MWPLS and SiPLS 

The size of the moving window in MWSPLS was 21; the number of 
sub-intervals was 20 and the combined intervals was 2 in siPLS, 
respectively. The result of siPLS was obtained by combining two sub-
intervals, noted as RMSECV = 0.0588, R2

c = 0.9926, RMSEP = 0.1381, 
and R2

p = 0.9615. Meanwhile, MWPLS selected the interval between 
2168 and 2208 nm, with RMSECV = 0.0841, R2

c = 0.9846, RMSEP =
0.1402, and R2

p = 0.9697. 
The RMSE of siPLS was 0.0588, which was much smaller than the 

RMSE of MWPLS (0.0841) in the calibration dataset. But RMSEP and R2 

of siPLS and MWPLS were very close on the prediction set. Compared 
with other feature variable extraction algorithms, their results were 
unsatisfactory, but they have been greatly improved compared to full- 
band PLS. RMSE of the full-band PLS on the prediction set was smaller 
than both, but R2 and bias of the full-band PLS were much worse than 
those of siPLS and MWPLS. Fig. 2 shows the intervals selected by siPLS 
and MWPLS. The red wireframe was the interval selected by MWPLS, 
and the blue wireframe was selected by siPLS. The area selected by siPLS 
covered the area selected by MWPLS completely. The results of siPLS 
show that there were characteristic variables between the variable 
numbers 491–560 corresponding spectral range 2080–2218 nm, and the 
results of MWPLS algorithm show that characteristic variables were 

Fig. 1. A simple flowchart of A-CARS method.  
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located between the variable number 535–555 corresponding spectral 
range 2168–2208 nm. The reason for this situation lies in the difference 
in the principles of the two algorithms. The principle of siPLS is the 
combination of fixed-size intervals using the enumeration method. 
However, the feature of MWPLS is that the window it generates can 
move on the entire band. Compared with siPLS, the selection of windows 
is more diverse. But, due to the lack of a combination function, the 
variables selected by MWPLS are continuous variables in a single in-
terval. Although the window can be moved freely, it is difficult for 
MWPLS to obtain an accurate model in spectral data with uneven dis-
tribution of characteristic variables. If the window is too large, it will 
cover more irrelevant variables, and if it is too small, it will lead to the 
incomplete selection of feature variables. In spite of the performance of 
MWPLS was not as good as siPLS, the result of MWPLS also has certain 
reference significance. It can tell us that in the current fixed-size inter-
val, the interval with the most characteristic variables was located at 
2168–2208 nm. 

3.4. Result of RF-PLS and GA-PLS 

On the corn dataset, the number of iterations of the random frog was 
10000, and the number of variables selected was 2 at first. Finally, GA 
selected 24 feature variables, and the random frog gave the top ten 
variables with probability. 

The results of GA-PLS were second only to A-CARS-PLS. However, 
the results were unsatisfactory on the prediction dataset, and the RMSEP 
and R2 were 0.1154 and 0.9493, respectively. At the same time, pre-
diction results were quite different from the training results, which in-
dicates that GA-PLS may produce a certain degree of overfitting. The 

reason why the Random Frog results were not good was that only the top 
10 variables with the highest frequency in 10,000 iterations were 
selected. From the results, it can be found that the results of the cali-
bration and prediction sets were very different, and they showed that 
GA-PLS and random frogs have different degrees of overfitting. It is 
worth noting that the correlation coefficient gap between the calibration 
set and the prediction set of the Random Frog algorithm is particularly 
obvious. This shows that it is unreasonable to choose 10 variables to 
replace the original 700 variables. The reason for the overfitting of the 
genetic algorithm is that the algorithm has a certain dependence on the 
selection of the initial population. At the same time, the setting of the 
crossover rate and mutation rate will also affect the result (Katoch et al., 
2021). Although the results of the random frog were not very good, we 
could find that the variable numbers selected by the random frog were 
between 510 and 530 corresponding spectral range of 2110–2158 nm, 
which also confirmed that this interval contained some characteristic 
variables. The intervals were also overlapped with the interval selected 
by MWPLS and siPLS. 

3.5. Result of CARS-PLS and A-CARS-PLS 

The iterations of CARS and A-CARS were both 500. CARS-PLS 
generated RMSECV = 0.0382, R2

c = 0.9937 in the calibration set; 
RMSEP = 0.0852, R2

p = 0.9724 in the prediction set, and A-CARS 
generated RMSECV = 0.0336, R2

c = 0.9951 in the calibration set; 
RMSEP = 0.0688, R2

p = 0.9820 in the prediction set. 
The red vertical line in Fig. 3 indicates the interval boundary after 

the interval converges, which is the anchor point. The colored intervals 
were the area where the characteristic variable exists. After that A-CARS 

Table 1 
Detailed results of seven different algorithms applied to the corn dataset.  

Method selected variables nVAR. nLv. Calibration Prediction     

RMSECV R2
c Bias RMSEP R2

p Bias 

PLS 1–700 700 27 0.0947 0.9808 − 0.0061 0.1307 0.9070 − 0.1290 
MWPLS 535–555 21 5 0.0841 0.9846 0.0005 0.1402 0.9697 0.0619 
siPLS 491–560 70 7 0.0588 0.9926 − 0.0012 0.1381 0.9615 − 0.0728 
GA-PLS 47 57 321 441 486 493 511 515 524 525 528 529 530 532 536 537 539 

543 549 553 554 561 594 610 
24 11 0.0369 0.9941 − 0.001 0.1154 0.9493 0.0154 

Random frog- 
PLS 

518 534 535 529 531 532 536 520 546 528 10 7 0.0517 0.9885 − 0.001 0.1544 0.9093 − 0.044 

CARS-PLS 298 340 341 342 344 346 385 513 515 518 519 530 532 558 14 9 0.0382 0.9937 0.001 0.0852 0.9724 − 0.0408 
A-CARS-PLS 295 341 342 343 384 399 474 497 516 517 518 519 520 529 531 532 

534 535 536 558 563 588 652 
23 9 0.0336 0.9951 − 0.001 0.0688 0.9820 − 0.0350  

Fig. 2. The selected intervals on the corn dataset by MWPLS and siPLS.  
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screened characteristic wavelength on those intervals. The indexes of 
characteristic variable were mostly found at 300–400 and 500–560, 
which correspond to the spectral wavelengths 1698–1898 nm and 
2098–2218 nm by CARS. At the same time, A-CARS selected the number 
of characteristic variables from 300 to 400 and 500–600, which corre-
spond mostly to spectral wavelength 1698–1898 nm and 2098–2298 
nm, respectively. A total of 23 variables were selected by A-CARS, and 
14 feature variables were selected by CARS. It should be noted that 
CARS only selected 7 variables between 2098 and 2298 nm, and the 
variable data selected by the two algorithms between 300 and 400 nm 
was not very different. Notably, the 6 variables were selected at the same 
time, and they were 341, 342, 518, 519, 532, 558, respectively. This 
shows that these six variables had a high correlation with the model. 
From the results of the model, there is no doubt that A-CARS has the best 
performance on the calibration set and the prediction set at the same 
time. It was not difficult to find that the results of A-CARS and CARS on 
the calibration set were very close, but the results of A-CARS on the 
prediction set were better than those of CARS. This also proves from 
another aspect that A-CARS can effectively suppress overfitting while 

increasing the interpretability and correlation of the model. 
The reason why A-CARS can effectively suppress overfitting is that its 

search space has been filtered by MC-siPLS. It is not difficult to find from 
Fig. 1 that MC-siPLS will merge the interval with the best result in a 
single iteration every time. After a certain number of iterations, the final 
feature interval size will not change. Through multiple cycles, MC-siPLS 
can help CARS narrow the search space to avoid the interference of 
irrelevant variables, and it can also improve the efficiency of feature 
variable screening. 

4. Discussion 

Overall, the prediction results of GA-PLS, CARS-PLS, and A-CARS- 
PLS were significantly better than those of full-band PLS and iPLS. This 
shows that the band extraction algorithm was efficient and meaningful. 
Fig. 4 shows the results of seven different algorithms on the prediction 
set, in which the optimal number of PLS components is in parentheses. 
The small font numbers in the figure are the sample number of the 
prediction set. It can be seen from the prediction results that the results 
of MWPLS and PLS are not very good and are far from the diagonal. The 
results of PLS in the prediction set are generally too small, and the results 
of MWPLS are generally too large. The squares and stars in the figure 
represent the results of A-CARS-PLS and CARS-PLS, respectively. The 
prediction results of A-CARS-PLS and CARS-PLS are closest to the di-
agonal line, which shows that the predicted values are close to the 
measured values. Combined with the deviation values in Table 1, the 
deviation values of the seven algorithms on the calibration set are not 
much different, and the corresponding R2 differences are not large, 
which shows that the calibration set model has a strong correlation. But 
the R2 gap is large on the prediction set. The deviation of the PLS al-
gorithm comes to − 0.1290, and R2 is also the worst among all algo-
rithms. The situation of Random frog-PLS is similar to that of PLS. The 
prediction set results are quite different from the calibration set results, 
and the model correlation is far worse than other algorithms. Compared 
with other algorithms, the results of the A-CARS-PLS on the prediction 
set are closer to the calibration set, and it shows that the correlation of 
the A-CARS-PLS model is strong, but the prediction result is slightly 
smaller. It shows that the model has a strong correlation, but considering 
the deviation value, it can be concluded that the overall prediction result 
is small. 

From the interval of the selected variables, except for the full-band 
PLS, the intervals or variables selected by other algorithms were 
located between 500 and 600. A-CARS and CARS selected several 
additional variables between 300 and 400. Due to the selection of var-
iables between 300 and 400, the results of CARS and A-CARS are much 
better than other algorithms. The reason why siPLS and MWPLS did not 
select the variables interval between 300 and 400 may be that the 
calculation unit of these two algorithms is interval, and therefore they 
selected one or more intervals with a large number of characteristic 
variables. However, in the interval of 300–400, the number of irrelevant 
variables may be much larger than the relevant variables, so siPLS and 
MWPLS did not select the intervals between 300 and 400. 

From the above model results and analysis, it is not difficult to 
conclude that the characteristic variable selected by A-CARS is the best 
regression variable with the 23 wavelengths (1688 nm, 1780 nm, 1782 
nm, 1784 nm, 1866 nm, 1896 nm, 2046 nm, 2092 nm, 2130 nm, 2132 
nm, 2134 nm, 2136 nm, 2138 nm, 2156 nm, 2160 nm, 2162 nm, 2166 
nm, 2168 nm, 2170 nm, 2214 nm, 2224 nm, 2274 nm, and 2402 nm). 
Based on 23 feature wavelengths, a linear protein content percentage 
formula can be established: 

Fig. 3. The region where the characteristic variable exists.  

Fig. 4. The results of seven different PLS algorithm on the prediction set and 
the corresponding optimal number of PLS components. 
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Cprotein=11.4004+100.9316λ1688 − 70.6394λ1780 − 73.3481λ1782 − 64.2671λ1784
+104.0654λ1866 − 31.6764λ1896+76.9295λ2046 − 64.7287λ2092 − 73.7524λ2130
− 91.3508λ2132 − 76.8726λ2134 − 55.9868λ2136 − 56.0655λ2138+96.481λ2156

+83.993λ2160+100.2916λ2162+106.8907λ2166+97.9237λ2168+107.0513λ2170
− 135.2116λ2214 − 127.7042λ2224+87.4578λ2274 − 42.1423λ2402

(6) 

Furthermore, the wavelengths selected by A-CARS were concen-
trated around 1700–1900 nm and 2000–2400 nm. This region is 
consistent with complex structural features of proteins, such as the 
bending or stretching of C–H, O–H, and N–H bonds as well as complex 
environments and their interactions. The characteristic wavelengths of 
protein in corn have been investigated in previous research (Li et al., 
2009). Compared with the observations of Li etal., the results of the 
prediction set and the calibration set of A-CARS were better than the 
former. At the same time, this paper not only reduced the 700-dimen-
sional full spectrum to 23 characteristic wavelengths but also gave the 
complete regression equation. Equation (6) shows the relationship be-
tween the percentage of corn protein content and the corresponding 
characteristic wavelengths. The A-CARS algorithm makes the linear 
formula for the determination of corn protein content simpler, which 
brings great convenience to the determination of protein content in 
corn. 

The A-CARS algorithm takes into account the reliability and accu-
racy of the model and greatly reduces the number of variables. We 
believe that if portable near-infrared equipment can be combined with 
this technology in the future, large-scale non-destructive detection can 
be performed more quickly and accurately. At the same time, the cost of 
testing will be greatly reduced due to fewer variables, which can be done 
using embedded devices. 

5. Conclusions 

In order to determine the protein content in corn quickly and accu-
rately, a new wavelength selection algorithm, called A-CARS, based on 
CARS and MC-siPLS was proposed. A-CARS selected 23-dimensional 
characteristic variables from a 700-dimensional full spectrum on the 
corn dataset. At the same time, A-CARS-PLS was compared with six al-
gorithms including PLS, siPLS MWPLS, GA-PLS, random frog PLS, and 
CARS-PLS. The results show that A-CARS had good robustness and ac-
curacy, and it can effectively extract feature variables and prevent 
overfitting. Furthermore, we built an accurate model for the prediction 
of protein content in corn via near-infrared spectroscopy and A-CARS, 
with the results: RMSECV = 0.0336, R2

c = 0.9951 in the calibration set; 
RMSEP = 0.0688, R2

p = 0.9820 in the prediction set. Furthermore, we 
also give a detailed linear regression equation for the prediction of corn 
protein content based on the 23 characteristic wavelengths. A-CARS-PLS 
proposed in this paper can be combined with portable near-infrared 
equipment for faster and more accurate large-scale nondestructive 
detection. At the same time, the reduction in the number of variables can 
effectively reduce the detection cost. 
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