
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:6591  | https://doi.org/10.1038/s41598-023-33796-7

www.nature.com/scientificreports

Prediction of ground vibration 
due to mine blasting in a surface 
lead–zinc mine using machine 
learning ensemble techniques
Shahab Hosseini 1, Rashed Pourmirzaee 2*, Danial Jahed Armaghani 3 & 
Mohanad Muayad Sabri Sabri 4

Ground vibration due to blasting is identified as a challenging issue in mining and civil activities. 
Peak particle velocity (PPV) is one of the blasting undesirable consequences, which is resulted during 
emission of vibration in blasted bench. This study focuses on the PPV prediction in the surface 
mines. In this regard, two ensemble systems, i.e., the ensemble of artificial neural networks and the 
ensemble of extreme gradient boosting (EXGBoosts) were developed for PPV prediction in one of 
the largest lead–zinc open-pit mines in the Middle East. For ensemble modeling, several ANN and 
XGBoost base models were separately designed with different architectures. Then, the validation 
indices such as coefficient determination (R2), root mean square error (RMSE), mean absolute error 
(MAE), the variance accounted for (VAF), and Accuracy were used to evaluate the performance of the 
base models. The five top base models with high accuracy were selected to construct an ensemble 
model for each of the methods, i.e., ANNs and XGBoosts. To combine the outputs of the top base 
models and achieve a single result stacked generalization technique, was employed. Findings showed 
ensemble models increase the accuracy of PPV predicting in comparison with the best individual 
models. The EXGBoosts was superior method for predicting of the PPV, which obtained values of 
R2, RMSE, MAE, VAF, and Accuracy corresponding to the EXGBoosts were (0.990, 0.391, 0.257, 
99.013(%), 98.216), and (0.968, 0.295, 0.427, 96.674(%), 96.059), for training and testing datasets, 
respectively. However, the sensitivity analysis indicated that the spacing (r = 0.917) and number of 
blast-holes (r = 0.839) had the highest and lowest impact on the PPV intensity, respectively.

Mining activities and civil projects are carried out using one of the most important operations, namely rock 
blasting, as a wide and economical way to rock breakage and displacement of them1. In this regard, the rock 
mass is drilled (drilling operations), and then many blast-holes are charged using explosive materials (blasting 
operations). Inevitably, blasting operations are caused several side environmental consequences/issues such as fly-
rock, back-break, dust pollution, air-overpressure, and ground vibration2–7. The blast-induced, air over-pressure, 
ground vibration, and flyrock are the most adverse phenomenon among them1,8,9. Therefore, the blasting sites 
and mine environment must be safe by monitoring and eliminating the adverse effects of the aforementioned 
consequences. It should be noted that the accurate amount of each phenomenon should be determined/pre-
dicted before conducting the operations. The pre-split and power-deck methods can be used to minimization 
adverse effects1.

Ground vibration is the most crucial side environment effect due to bench blasting based on previous 
investigations10,11. The effective parameters on ground vibration should be identified for its prediction/evalua-
tion. The ground vibrations can be measured/recorded based on two different terms: peak particle velocity (PPV) 
and frequency12–15. According to various standards, the PPV is the most famous representative for estimating 
and evaluating blast-induced ground vibration in surface mines1,16,17. The most significant parameters on PPV 
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are the number of blast-holes, hole depth, burden, spacing, powder factor, the charge per delay, and the distance 
between installed seismograph and blasting bench18–21.

In recent decades, many models have been introduced for PPV prediction in mines and open pits. The 
empirical models have been developed by Davis et al.22, Ambraseys and Hendron23, Dowding24, Roy25, and Rai 
and Singh26 for estimation of blast-induced PPV. However, the performance of empirical predictive models is 
weak and unacceptable. In addition, the empirical equations do not have the ability to accurately predict the 
PPV values while they must be accurately estimated to overcome the adverse effects. On the other hand, new 
computational techniques i.e., soft computing (SC) and artificial intelligence (AI) are capable to resolve science 
and engineering problems in terms of accuracy level27–30.

In the field of PPV, a vast range of SC/AI techniques have been proposed for prediction purposes7,31–35. For 
example, Hasanipanah et al.35 predicted the PPV values using a genetic algorithm. They concluded that this 
optimization algorithm can predict PPV values with high accuracy. Imperialist competitive algorithm (ICA) 
as another optimization algorithm was employed to estimate the value of PPV in the research conducted by 
Armaghani et al.6. They concluded that the ICA algorithm is capable for PPV prediction with high performance. 
In another study, Taheri et al.36 combined artificial neural network (ANN) and artificial bee colony (ABC) to 
the prediction of PPV; then results were compared to empirical equations. Their results indicated that the per-
formance of the ANN-ABC model is higher than empirical models. Fuzzy system (FS) combined with ICA was 
introduced in the study conducted by Hasanipanah et al.13 to predict PPV. The results of their hybrid model 
showed that FS-ICA can forecast PPV with a high level of accuracy. Fouladgar et al.37 used the cuckoo search (CS) 
as a novel swarm intelligence algorithm for PPV prediction induced by mine blasting. Additionally, Hasanipanah 
et al.38 established a particle swarm optimization (PSO) technique for forecasting PPV values. In other studies, 
different techniques such as adaptive neuro-fuzzy inference system (ANFIS) were developed by Iphar et al.39 
for the estimation of PPV with an acceptable degree of prediction performance. Table 1 summarises the most 
important studies related to PPV estimation by utilizing the AI and SC techniques.

An overview of the literature demonstrated that various SC/AI models have been established to estimate the 
PPV values. Nevertheless, scholars are always looking for models with the highest performance to enhance the 
accuracy of developed predictive models and decrease the adverse effect of PPV on the environment. Hence, 
in this study, to increase the accuracy and performance of AI models in the estimation of PPV, an ensemble of 
XGBoost as well as ANN models are proposed. According to certain research, no machine learning algorithm 
could ever consistently outperform every other algorithm. In reaction to this assertion, the ensemble learn-
ing method was created. Contrary to traditional machine learning approaches, which try to learning a single 
hypothesis from train dataset, ensemble learning algorithms develop numerous hypotheses and integrate them 
to solve a specific issue. Ensemble algorithms have resulted in significant improvements and minimized the 
overfitting issue by integrating numerous learners and fully using these learners. They also offer the flexibility 
to handle various jobs. Three well-known ensemble approaches include bagging, boosting, and stacking, while 
there are a few variations and more ensemble algorithms that have been put to use in real-world scenarios63. In 
this way, several publications analysed the performance capability of ensemble models in the various fields such 
as health science64, sport science65, agriculture66,67, finance68, wireless sensor network (WSN)69 and geosciences70.

The combination of multiple networks and creating an ensemble system can reduce the risk of incorrect results 
and potentially improve the accuracy and generalization capability. Indeed, an ensemble technique is a robust 
machine learning method that combines several learners, e.g., ANNs or any other machine learning methods, 
to improve overall prediction accuracy. In most cases, an ensemble of machine learning methods in comparison 
to a single learner gives better results70–72. This study will introduce a new viewpoint of ensemble modeling to 
estimate PPV based on two machine learning methods, i.e., XGBoost and ANN models as a stacked generaliza-
tion technique. For comparison purposes, the performance of the ANNs ensemble method is compared to the 
XGBoost ensemble method. The more accurate model in forecasting blast-produced PPV will be selected based 
on the statistical results of all proposed models.

The main research questions are presented as follows:

•	 How to increase the accuracy of predictive models?
•	 How is the accuracy level of the model evaluated?
•	 How is the performance of the proposed model compared to the literature?
•	 How to measure the validity of the model?
•	 How is output parameter performance measured against input parameters?

Case study and data preparation.  This study was focused on the Anguran lead–zinc open-pit mine 
(Iran), which is located at between longitudes 47° 23′ 27″ N and 47° 25′ 50″ N, and between latitudes 36° 36′ 
37″ N and 36° 38′ 04″ N. In addition, the altitude of this mine reported about 2935 m above sea level. Anguran 
is one of the largest mines in the Middle East (Fig. 1), which is operated with an annual 1.2 Mt extraction rate.

The previous studies considered the blast design parameters as effective parameters on PPV intensity. In 
this study, we considered the seven blasting pattern design parameters which are used as models’ inputs. These 
parameters include the number of blast-holes (n), hole depth (ld), burden (B), spacing (S), powder factor (q), 
the charge per delay (Q), and the distance between installed seismograph and blasting bench (d). A total num-
ber of 162 blasting rounds were monitored and the effective parameters were measured during operations. The 
descriptive statistics of the aforementioned parameters are tabulated in Table 2. In the Anguran mine, initiation 
sequence is inter-row with the time delay of 9 to 23 ms.

The significant relationships between effective parameters and PPV were determined using Pearson cross-
correlation. The Pearson test measured the linear correlation of bivariable. The Pearson correlation between 
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parameters and PPV is demonstrated in Table 3, in which the values are calculated in the range of − 1 to + 1. The 
positive and negative values indicated the positive and negative dependence degree, respectively. Besides, the 
value of 0 denoted no correlation between the two parameters74.

As can be found, the correlation between PPV and PF is high and positive; while PPV and Di have a low and 
negative correlation. The matrix plot of all parameters is shown in Fig. 2.

Method background
Artificial neural network (ANN).  ANN is one of the AI techniques, which first presented in the 1970s. 
The application of ANN has penetrated various fields of science75. A model of ANN is designed based on activi-
ties of artificial neural of the human brain. The architecture of an ANN is constructed using the input layer, 
hidden layer(s), and output layer76. Noteworthy, each layer includes many nodes (neurons) which are linked to 
each other by the weight of the processing components (connections). Input signals, which are the same as input 
data, are propagated throughout the network using input neurons. Then, input signals pass through the hidden 

Table 1.   Literature review of PPV estimation using AI and SC methods. B Burden, S Spacing, HL Hole length, 
ST Stemming, PF Powder factor, B Blastability index, SVM Support vector machine, MC Maximum charge 
per delay, RD Rock density, D Hole diameter, HD Hole depth, BS Burden to spacing, N Number of row, PSO 
Particle swarm optimization, SD Sub-drilling, DI Distance from the blast face, TC Total charge, RQD Rock 
quality designation, E Young’s modulus, ICA Imperialist competitive algorithm, Vp p-wave velocity, ANFIS 
Adaptive neuro-fuzzy inference system, FIS Fuzzy inference system, R2 Coefficient of determination, UCS 
Uniaxial compression strength, TS Tensile strength, Js Joint spacing, HD/B Hole depth-to-burden ratio, SC 
Specific charge, DPR Delay per row, GEP Gene expression programming, RMR Rock mass rating, f Rock 
hardness, CART​ Classification and regression tree, CHIAD Chi-square automatic interaction detection, RF 
Random forest, HKM K-means clustering, FA Firefly algorithm, WOA Whale optimization algorithm, XGBoost 
Extreme gradient boosting, SSO Sparrow search optimization, ELM Extreme learning machine.

References Year Model Inputs Model performance (R2)

Singh et al.40 2005 ANN D, N, HD, B, S, ST, MC, HDI, RDI 0.82

Iphar et al.39 2007 ANFIS DI, CD 0.99

Monjezi et al.41 2011 ANN CD, DI, ST, HD 0.95

Mohamed42 2011 ANN, FIS DI, MC ANN = 0.94
FIS = 0.90

Khandelwal et al.43 2011 ANN DI, MC 0.92

Fişne et al.44 2011 FIS DI, MC 0.92

Mohamadnejad et al.11 2012 SVM, ANN DI, MC SVM = 0.89
ANN = 0.85

Ghasemi et al.45 2013 FIS B, S, ST, N, MC, DI 0.95

Masoud et al.46 2013 ANN MC, DI, TC 0.93

Armaghani et al.47 2014 PSO-ANN S, B, ST, PF, MC, D, N, RD, SD 0.94

Hajihassani et al.20 2015 ICA-ANN BS, ST, PF, MC, DI, Vp, E 0.98

Dindarloo48 2015 SVM RD, E, UCS, TS, Js, B, S, HD/B, SC, ST, DPR, DI 0.99

Hajihassani et al.49 2015 PSO-ANN BS, MC, HD, ST, SD, DI, PF, RQD 0.89

Hasanipanah et al.50 2015 SVM DI, MC 0.96

Armaghani et al.51 2015 ANFIS DI, MC 0.97

Ghoraba et al.52 2016 ANN, ANFIS DI, MC ANFIS = 0.95
ANN = 0.89

Faradonbeh et al.10 2016 GEP B, S, ST, D, HD, PF, MC, DI 0.88

Hasanipanah et al.53 2017 CART​ DI, MC 0.95

Shahnazar et al.54 2017 PSO-ANFIS DI, MC 0.98

Armaghani et al.6 2018 ICA DI, MC 0.95

Nguyen et al.55 2019 HKM-CA DI, MC, PF, B, S, HD 0.99

Nguyen et al.56 2020 SVR-GA DI, MC, B, S, N 0.99

Zhang et al.57 2020 RF,CART,CHAID B/S, DI, ST, MC, PF, HD
RF = 0.94
CART = 0.97
CHAID = 0.91

Zhou et al.58 2020 RF DI, ST, MC, PF, HD 0.93

Huang et al.21 2020 FA-ANN B/S, DI, ST, MC, PF, HD, RQD, N, SD 0.91

Zhou et al.12 2021 GEP-MC B/S, DI, ST, MC, PF, HD 0.91

Lawal et al.59 2021 ANN-MFO DI, MC, N, HD, RMR 0.97

He et al.60 2022 RF-WOA B/S, DI, ST, MC, PF, HD 0.99

Ragam et al.61 2022 XGBoost-RF N, B, S, HD, D, HD, ST, MC, DI 0.95

Nguyen et al.62 2023 SSO-ELM B, S, PF, MC, f 0.91
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Figure 1.   Location of Anguran lead–zinc mine and designed pit73 (this figure is modified by EdrawMax, 
version 12.0.7, www.​edraw​soft.​com).

Table 2.   The properties of the parameters and their ranges.

Parameter Sign Unit Minimum Maximum Mean Standard deviation

Inputs

Number of blast-holes n – 10 323 77.28 45.05

Hole depth ld m 2 12 9.95 2.65

Burden B m 3 4.2 4.02 0.33

Spacing S m 3.5 6 4.85 0.31

Powder factor q Kg/m3 0.06 0.75 0.35 0.11

Charge per delay Q Kg 43.06 697.72 187.43 88.83

Distance d m 305 1167 741.22 248.32

Output

Peak particle velocity PPV mm/s 1.25 28.15 15.08 4.35

Table 3.   Pearson’s correlation matrix of parameters and PPV.

n ld B S q d Q PPV
n 1

ld 0.191 1

B 0.278 0.609 1

S 0.257 0.453 0.848 1

q 0.540 0.141 0.019 0.029 1

d 0.028 0.081 0.076 0.063 0.166 1

Q 0.064 0.028 0.027 0.045 0.045 0.188 1

PPV 0.296 0.101 0.161 0.205 0.797 0.059 0.068 1
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layer(s) and access the output layer. In other words, some calculations are performed during passing signals in 
each layer and then delivered to the subsequent layer77–79. These calculations are formulated in Eq. (1) which 
simulated the training process of the network80

where f denotes activation function, w is the weight of connections, b indicates bias, and x is input data. Notably, 
the monolayer architecture of the neural network is suitable for simple problems, as well multi-layer architecture 
is used for complex problems81. However, an ANN architecture with two hidden layers for solving engineering 
problems is usually efficient75.

Extreme gradient boosting (XGBoost).  XGBoost is one of the applicable artificial intelligence tech-
niques, which is firstly introduced by Chen et al.82 in 2015. XGBoost, as an AI method, is developed based on the 
gradient boosting decision. The most important characteristic of this method is creating boosted trees effectively 
and generating them in parallel. Besides, XGBoost deals with well-known classification and regression problems 
e.g., Bhattacharya et al.83, Duan et al.75, Nguyen et al.84, Ren et al.85, and Zhang and Zhan86. In XGBoost, gradi-
ent boosting (GB) creates a status under which an objective function (OF) is determined. The optimization of 
the value of OF is the core of the XGBoost algorithm, which operating to each various optimization technique. 
Overcoming the problems of data science has made it a robust algorithm. In XGBoost, parallel tree boosting of 
GB decision tree and GB machine can accurately solve many problems75,84. Training loss (L) and regularization 
(Ω) are the two main components of an OF in this algorithm that defined as follows:

(1)y = fi

(

n
∑

i=1

wijxj + bi

)

Figure 2.   Scatter matrix plot of all parameters considered in this study.
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The model performance related to training data is measured using training loss. Notably, the control and 
overcome overfitting problem as a model complexity is performed by the regularization term. In this regard, the 
complexity associated with each tree is calculated in several ways; nevertheless, the following formula is widely 
used to determine the complexity:

where n indicates the number of leaves and ω denotes the vector of scores on leaves. In XGBoost, the structure 
score is the OF represented as:

where q is the best ωj for a presented structure (a quadratic form). Noteworthy, the ωj is an independent vector.

Ensemble modeling.  The ensemble of multiple individual learners (base models) is a robust way to enhance 
the performance and accuracy of artificial intelligence predictive models. In other words, the ensemble model 
deals with the combination of various models with different results87. In general, ensemble modeling includes 
two components, i.e., an ensemble of base models and a combiner. Training several base models/networks by dif-
ferent subsets of the training data, and employing the different architectures for each of the base models are two 
common techniques to build the base models71, which in current work later method for constructing the base 
models are used. Also, to the combination of base models, different strategies are proposed where all attempt to 
reduce the error of estimation.

Generally, combiners are divided into two main groups, i.e., trainable and non-trainable methods. For the 
combination of the outputs of the base models to achieve a single solution two non-trainable methods, i.e., 
majority voting and averaging methods, are widely used by scholars, e.g., Barzegar and Asghari Moghaddam88, 
Dogan and Birant89, and Krogh and Vedelsby90. As such, the mixture of experts and stacked generalization are 
two trainable combiners that are successfully used in different studies, e.g., Alizadeh et al.70, Jacobs et al.91, and 
Wolpert92. The trainable combination methods are trained by outputs of base models and expected correct 
results to predict the final results. The trainable combiners for predicting models that there are complex relations 
between inputs and targets are more efficient.

In this study, for each of the methods, i.e., XGBoost and ANN, several models to predict the PPV by stacked 
generalization technique were combined. In this regard, some ANNs models with a different number of hidden 
nodes, various activation functions, and different training algorithms for predicting PPV were used. Then top 
ANNs architectures were combined by the stacked generalization methods to construct the ensemble ANNs 
that named EANNS model. Notably, various XGBoost models as individual models are developed with different 
nrounds and different maximum depth for PPV estimation, and then top XGBoost models were combined by the 
stacked generalization technique, which this newly constructed model is called ensemble XGBoosts (EXGBoosts) 
model. Figure 3 represents the framework of EANNs and EXGBoosts methods, respectively.

Stacking ensemble model.  The stacking model basis is divided into two main phases, which are referred 
to as level-0 and level-1 structures, respectively. Base models are referred to as level-0, whereas the meta model 
at level-1 allows base-model predictions to be combined. Estimates provided by base-models are employed 
throughout the meta-training model’s phase. In the case of regression or classification, the predictions result 
of the basic-models are utilized as inputs and can be of genuine use to the meta-model69. The methods of ANN 
and XGBoost are employed as the base-models in our research. Noteworthy, these models’ several separately 
architectures are each employed individually as meta-learners.

Pre‑analysis of modeling process.  This study develops EXGBoosts and EANNs models with seven effec-
tive variables and only one output variable to estimate PPV in Anguran lead–zinc mine. In the first step of 
modeling, all data were normalized in the interval of [0,1], for better network training. Equation (6) was used 
for normalization of data:

where xnorm denotes normalized value, xmax and xmin are the maximum and minimum values, and xi indicates the 
input value. In the second step, to present the PPV predictive models, the collected data from the blasting site is 
randomly divided into two parts, i.e., training and testing datasets. In this regard, 80% of the whole data, namely 
approximately 130 blasting events, were specified randomly to the training part of models. While the remaining 
data (approximately 32 blasting events) were used for evaluation of the models’ performance.

(2)OF(θ) = L(θ) +�(θ)

(3)�
(

f
)

= (γ · n)+ 1/2� ·

n
∑

j=1

(

ω2
j

)

(4)OF =

n
∑

j=1

q+ (γ · n)

(5)q =
(

Gj · ωj

)

+

(

1/2
[

Hj + �
]

ω2
j

)

(6)xNORM =

(

[xi − xmin]

[xmax − xmin]

)
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In the third step, several base models are developed for PPV estimation and the performance of models is 
compared and evaluated using several statistical indicators such as coefficient determination (R2), root mean 
square error (RMSE), mean absolute error (MAE), the variance accounted for (VAF), and Accuracy (Eqs.7 to 
11). These indices are calculated to evaluate the relationship between measured PPV values and estimated one 
by developed models.

(7)R2 = 1−









n
�

i=1

(Oi − Pi)
2

n
�

i=1

(Pi − Pi)2









(8)RMSE =

√

√

√

√

1

n

n
∑

i=1

(Oi − Pi)2

(9)
Accuracy = 100−

(

100

N

)

×

2×
n
∑

i=1

|Oi − Pi|

(Oi − Pi)

Figure 3.   A schematic representation of EANNs and EXGBoosts methods for predicting PPV.
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where Oi, Pi, and Pi are measured value, predicted value, and the average of the predicted values, respectively. 
Also, n indicates the number of datasets. However, the value of R2, RMSE, MAE, VAF, and Accuracy for the most 
accurate system are one, zero, zero, 100, and 100, respectively.

PPV predictive models.  ANN model.  In the present study, for PPV prediction in a surface mine the 
multi-layer perceptron (MLP) artificial neural network as the most popular structure of ANN was used. The 
MLP structure contains at least one hidden layer. Hence, the determination of the training algorithm, number 
of hidden nodes, and hidden layers is a challenge in MLP modeling. In other words, the MLP structure must be 
designed to train optimally. The feedforward-backpropagation algorithm was used for MLP structure training. 
In addition, the “trial-and-error” procedure was employed to achieve an MLP model with an optimal structure 
to predict accurately PPV value. Therefore, 15 different MLP models as base models were developed (Table 4). 
As can be found, each of the models was trained with different training algorithms, hidden activation functions, 
output activation functions, and architectures. To determine the optimal architecture, the validation indices of 
R2, RMSE, Accuracy, MAE, and VAF that were formulated in Eqs. (7) to (11) were separately calculated for ANN 
training and testing datasets. Remarkably, the scoring system proposed by Zorlu et al.93 was applied to calculate 
the rate of each indices for MLP developed models. Table 5 shows the rating indices and ranking of MLP mod-
els. Based on results, base model number three with two hidden layers, “tansig” as hidden and output activation 
functions, and Levenberg–Marquardt (LM) training algorithm is the best base model for PPV prediction. This 
base model had the 141 total rates out of 150, that the values of (0.948, 0.567, 0.350, 94.767, 94.247) and (0.928, 
0.293, 0.487, 92.773, 90.254) are obtained for R2, RMSE, MAE, VAF, and Accuracy of training and testing data-
sets, respectively.

XGBoost model.  Herein, the XGBoost algorithm is used for PPV prediction. Before that, two main stopping 
criteria, including maximum tree depth and nrounds, were determined. These criteria have a significant impact 
on the performance of models. Similar to MLP networks, the overfitting problem there is also in XGBoost, which 
is occurred when the tree depth and the nrounds are set in the much values. Therefore, the range of [1–3] and 
[50–200] are considered for the maximum tree depth and nrounds. Similar to the ANN, the “trial-and-error” 
technique was used to determine an XGBoost model with the best performance. As shown in Table 6, the valida-
tion indices were computed to evaluate the base models of XGBoost performance. To construct the ensemble of 
XGBoost, 15 base models with different values of nrounds and maximum tree depth were developed. Based on 
Table 7, 15 base models of XGBoost were evaluated using Zorlu et al.93 scoring system. The results were shown 
that XGBoost base model number two, with the values of 50 and 1 for nrounds and maximum tree depth had 
the best performance in the PPV prediction, which this base model of XGBoost gets the score of 145 out of 150. 

(10)MAE =
1

n

n
∑

i=1

|Oi − Pi|

(11)VAF = 100 ·

(

1−
var(Oi − Pi)

var(Oi)

)

Table 4.   The base models of ANN and their evaluations. LM Levenberg–Marquardt, GDX Adaptive learning 
rate, SCG Scaled conjugate gradient, OSS One-step secant.

ANN 
models

Training 
algorithm

Number 
of total 
hidden 
nodes

Hidden 
activation 
function

Output 
activation 
function Architecture

Training Testing

R2 RMSE MAE VAF Accuracy R2 RMSE MAE VAF Accuracy

ANN1 TrainSCG 4 Tansig Tansig 7-4-1 0.934 0.660 0.428 93.415 91.471 0.724 1.193 0.724 68.725 87.644

ANN2 TrainSCG 7 Logsig Tansig 7-7-1 0.937 0.693 0.283 93.100 94.829 0.643 1.459 0.756 57.458 85.260

ANN3 TrainLM 10 Tansig Tansig 7-4-6-1 0.948 0.567 0.350 94.767 94.247 0.928 0.293 0.487 92.773 90.254

ANN4 TrainLM 12 Purelin Tansig 7-5-7-1 0.883 0.864 0.535 87.290 89.503 0.802 1.395 0.820 77.386 85.371

ANN5 TrainOSS 13 Logsig Logsig 7-5-8-1 0.932 0.672 0.411 93.213 91.816 0.850 0.492 0.508 84.935 90.061

ANN6 TrainGDX 14 Tansig Logsig 7-7-7-1 0.939 0.684 0.483 93.774 91.529 0.906 0.754 0.666 89.952 87.247

ANN7 TrainLM 16 Logsig Logsig 7-7-9-1 0.930 0.643 0.332 92.783 94.510 0.924 0.589 0.360 96.392 90.164

ANN8 TrainGDX 14 Purelin Purelin 7-9-5-1 0.906 0.799 0.499 90.543 91.588 0.841 0.850 0.622 83.640 87.034

ANN9 TrainSCG 17 Tansig Purelin 7-9-8-1 0.947 0.677 0.432 94.696 91.873 0.816 0.993 0.606 80.912 88.465

ANN10 TrainGDX 24 Logsig Logsig 7-11-13-1 0.915 0.913 0.624 88.188 88.413 0.879 1.126 0.985 80.926 79.481

ANN11 TrainSCG 26 Tansig Tansig 7-11-15-1 0.938 0.619 0.336 93.654 93.553 0.882 1.023 0.586 88.018 90.555

ANN12 TrainGDX 32 Purelin Tansig 7-15-17-1 0.922 0.680 0.387 92.201 93.114 0.866 0.978 0.392 86.559 88.953

ANN13 TrainLM 37 Tansig Tansig 7-17-20-1 0.906 0.900 0.628 88.409 87.744 0.763 0.992 0.822 73.105 85.883

ANN14 TrainSCG 39 Purelin Logsig 7-17-22-1 0.855 0.916 1.501 87.608 64.877 0.765 0.596 1.357 79.748 87.901

ANN15 TrainLM 42 Tansig Logsig 7-17-25-1 0.913 1.035 0.844 90.418 87.033 0.758 0.981 0.893 75.765 82.328
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The validation indices, i.e., R2, RMSE, MAE, VAF, and Accuracy were calculated as (0.977, 0.650, 0.402, 97.578 
(%), 96.828) and (0.979, 0.536, 0.680, 97.895(%), 96.528) for training and testing datasets, respectively. However, 
a comparison between top base models of XGBoost and ANN reveals the superiority of the XGBoost method in 
the prediction of PPV.

Ensemble model of ANNs (EANNs) to predict PPV.  For the ensemble model of ANN, first, 15 base models for 
ANN are developed, and then after evaluation of the base models, five top base models for combination were 
chosen, that the scores of these models were 141, 127, 118, 106, and 100 out of 150, respectively. The correlation 
of measured PPV and predicted ones by five base models are illustrated in Fig. 4. After that, the stacked generali-
zation combination technique was employed to combine the selected base models. For combination, the results 
of selected base models a feed-forward neural network with sigmoid activation function for hidden layers were 
used (Fig. 5). The input data of the combiner network consists of seven variables and the target dataset is the 
measured value of PPV.

The correlation graph of predicted values using the stacked generalization technique and measured values is 
illustrated in Fig. 6. The values of (0.960, 0.402, 0.233, 95.963(%), 95.724) and (0.941, 0.189, 0.219, 92.827(%), 
95.713) were obtained for both R2, RMSE, MAE, VAF, and Accuracy of training and testing datasets, respectively. 
Results proved that the EANNs model predicts PPV better than individual ANN (base models), so that the 

Table 5.   Performance of the base models of ANN and their rankings.

ANN models

Training Testing

Total rate RankR2 rating RMSE rating MAE rating VAF rating
Accuracy 
rating R2 rating

RMSE 
rating MAE rating VAF rating

Accuracy 
rating

ANN1 10 12 9 11 6 2 3 7 2 8 70 9

ANN2 11 7 15 9 15 1 1 6 1 3 69 10

ANN3 15 15 12 15 13 15 15 13 14 14 141 1

ANN4 2 5 5 1 5 6 2 5 5 4 40 12

ANN5 9 11 10 10 9 9 14 12 10 12 106 4

ANN6 13 8 7 13 7 13 11 8 13 7 100 5

ANN7 8 13 14 8 14 14 13 15 15 13 127 2

ANN8 4 6 6 6 8 8 10 9 9 6 72 8

ANN9 14 10 8 14 10 7 6 10 7 10 96 7

ANN10 6 3 4 3 4 11 4 2 8 1 46 11

ANN11 12 14 13 12 12 12 5 11 12 15 118 3

ANN12 7 9 11 7 11 10 9 14 11 11 100 5

ANN13 3 4 3 4 3 4 7 4 3 5 40 12

ANN14 1 2 1 2 1 5 12 1 6 9 40 12

ANN15 5 1 2 5 2 3 8 3 4 2 35 15

Table 6.   The base models of XGBoost and their evaluations.

XGBoost models nrounds Maximum tree depth

Training Testing

R2 RMSE MAE VAF Accuracy R2 RMSE MAE VAF Accuracy

XGBoost1 50 1 0.967 0.803 0.526 96.502 95.315 0.962 0.966 0.645 95.760 95.293

XGBoost2 50 2 0.977 0.650 0.402 97.578 96.828 0.979 0.536 0.680 97.895 96.528

XGBoost3 50 3 0.904 1.395 0.876 90.053 92.825 0.899 1.122 0.848 89.762 93.295

XGBoost4 100 1 0.957 0.896 0.629 95.593 94.562 0.952 0.943 0.723 94.777 95.340

XGBoost5 100 2 0.938 1.112 0.764 93.474 93.579 0.937 1.175 0.805 93.248 94.695

XGBoost6 100 3 0.952 0.923 0.626 95.169 94.595 0.968 0.795 0.651 96.645 95.387

XGBoost7 100 1 0.950 0.990 0.66 94.773 94.442 0.943 0.906 0.679 94.238 94.612

XGBoost8 150 2 0.923 1.182 0.771 92.003 93.397 0.882 1.598 1.241 85.342 92.732

XGBoost9 150 3 0.957 0.973 0.631 94.796 94.741 0.959 1.033 0.723 95.330 93.528

XGBoost10 150 1 0.909 1.367 0.861 90.419 92.900 0.900 0.653 0.791 90.020 94.786

XGBoost11 150 2 0.935 1.160 0.762 93.092 93.567 0.951 1.144 0.461 93.577 91.276

XGBoost12 150 3 0.928 1.219 0.828 92.017 93.046 0.952 0.942 0.814 94.961 94.355

XGBoost13 200 1 0.943 1.059 0.708 94.131 93.913 0.924 0.684 0.644 92.392 95.753

XGBoost14 200 2 0.963 0.812 0.568 96.507 94.978 0.904 1.007 0.85 90.304 94.105

XGBoost15 200 3 0.965 0.811 0.547 96.402 95.117 0.909 0.863 0.795 90.701 94.561
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EANNs model 41% and 55% improved the RMSE of PPV prediction for training and testing part, respectively, 
in comparison with the best base model.

Ensemble model of XGBoosts (EXGBoosts) to predict PPV.  To construct EXGBoosts model for the prediction of 
PPV, first, several XGBoost models were developed. In this regard, 15 constructed XGBoost models were ana-
lyzed, and the five top base models with the highest score were selected. The numbers 145, 126, 115, 100, and 98 
were the scores of the five top base models. The EXGBoosts model was structured based on a combination of five 
XGBoost base models. The base models using stacked generalization technique was combined to predict PPV. 
Figure 7 showed the correlation of PPV estimations by five XGBoost base models and measured values of PPV. 
The combiner was structured using a nrounds of 15 and a maximum tree depth of three. The results of stacked 
generalization show, the accuracy of the EXBoosts model in comparison with the best XGBoost base models is 
better (Fig. 8 and Table 8). To better comparing of the applied methods capability in estimating of PPV value, 
the performance of developed ANN, EANNs, XGBoost, and EXGBoosts models are tabulated in Table 8. The 
obtained statistical indices indicated that the EXGBoosts model with the value of (0.990, 0.391, 0.257, 99.013(%), 
98.216) and (0.968, 0.295, 0.427, 96.674(%), 96.059) for R2, RMSE, MAE, VAF, and Accuracy of training and test-
ing datasets, respectively, represents the highest performance for prediction of PPV among all applied models. 
Besides, EXGBoosts model 66% and 82% improved the RMSE of PPV prediction for training and testing part, 
respectively, in comparison with the best base model. The obtained results of performance indices regarding 
to our model presented in Table 9. This table compares the prediction accuracy and performance level of out 
proposed approach with three latest research. The results demonstrates that EXGBoost model has more perfor-
mance capacity in model and estimation of PPV in comparison with the other methods.

It is known that the significance of the estimation of level l (where l reveals the percentage of estimation) 
stands the quotient of the number of samples in which the estimations are within l absolute limit of measured 
values divided by the total number of samples. A common metric for evaluating the best models is P(0.25) ≥ 0.75 
or 75%94. The level of 25% was used to test model in our study.

In which, where n is the number of dataset, Pi denotes the predicted value, and Oi indicates the observed 
values.

The 25% level estimation of ANN, XGBoost, EANNs, and EXGBoosts are showed in Table 10. As can be 
seen, the ANN at P(0.25) is not acceptable in validation dataset, but other models is acceptable in both testing 
and validation datasets. It can be concluded that the ensemble models developed in this study have the highest 
performance and capability in predicting PPV.

Multiple parametric sensitivity analysis (MPSA).  In this part, a parametric analysis was conducted to specify 
which influential parameters have the highest impact on the average PPV value. In this regard, a multiple para-
metric sensitivity analysis (MPSA) was performed that follows the six main steps for applying to the outputs of 
the system for a specific set of parameters. These steps are as follows:

Step 1 Selecting the effective parameters to be subjected.
Step 2 Adjusting the range of input parameters.
Step 3 Generating a set of independent parameters in the form of random numbers with a uniform distribu-

tion for each parameter.

Table 7.   Performance of the base models of XGBoost and their rankings.

XGBoost 
models

Training Testing

Total rate RankR2 rating
RMSE 
rating MAE rating VAF rating

Accuracy 
rating R2 rating

RMSE 
rating MAE rating VAF rating

Accuracy 
rating

XGBoost1 14 14 14 13 14 13 7 13 13 11 126 2

XGBoost2 15 15 15 15 15 15 15 10 15 15 145 1

XGBoost3 1 1 1 1 1 2 4 3 2 3 19 15

XGBoost4 10 11 10 11 9 10 8 9 10 12 100 4

XGBoost5 6 6 5 6 6 7 2 5 7 9 59 11

XGBoost6 9 10 11 10 10 14 12 12 14 13 115 3

XGBoost7 8 8 8 8 8 8 10 11 9 8 86 8

XGBoost8 3 4 4 3 4 1 1 1 1 2 24 14

XGBoost9 11 9 9 9 11 12 5 8 12 4 90 6

XGBoost10 2 2 2 2 2 3 14 7 3 10 47 13

XGBoost11 5 5 6 5 5 9 3 15 8 1 62 10

XGBoost12 4 3 3 4 3 11 9 4 11 6 58 12

XGBoost13 7 7 7 7 7 6 13 14 6 14 88 7

XGBoost14 12 12 12 14 12 4 6 2 4 5 83 9

XGBoost15 13 13 13 12 13 5 11 6 5 7 98 5
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Figure 4.   Correlation graph between measured and predicted values of PPV, using five top base models of 
ANN.
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Step 4 Running the machine learning method utilizing the generated series and calculating the objective 
function using Eq. (12). The objective function was computed using the sum of square errors between measured 
and predicted values95:

(12)fh =

n
∑

i=1

[

xo,h − xc,h(i)
]2

Figure 5.   The architecture of the ensemble ANN model for PPV prediction in Anguran mine (this figure is 
generated by EdrawMax, version 12.0.7, www.​edraw​soft.​com).

Figure 6.   Correlation graph between predicted data (EANNs model) and measured data.

http://www.edrawsoft.com
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Figure 7.   Correlation graph between predicted PPV by various XGBoost base models and measured data.
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where fh denots the objective function value for a particular PPVt variable h; xo,h indicates the measured values; 
xc,h(i) is the calculated value xc for variable h for each generated inputs; and n is the number of variables contained 
in the random set. In the computation process, the Monte Carlo simulation was used to generate 162 random 
data for seven effevtive parameters used in this study. At each iteration of the model, the trained models were 
provided with the newly produced values for one parameter.

Figure 8.   Correlation graph between predicted data (EXGBoosts model) and measured data.

Table 8.   Performance of the ensemble and the best individuals of ANN and EXGBoosts.

Techniques Part R2 RMSE MAE VAF Accuracy

ANN
Training 0.948 0.567 0.350 94.767 94.247

Testing 0.928 0.293 0.487 92.773 90.254

EANNs
Training 0.960 0.402 0.233 95.963 95.724

Testing 0.941 0.189 0.219 92.827 95.713

XGBoost
Training 0.977 0.650 0.402 97.578 96.828

Testing 0.979 0.536 0.680 97.895 95.528

EXGBoosts
Training 0.990 0.391 0.257 99.013 98.216

Testing 0.968 0.295 0.427 96.674 96.059

Table 9.   Accuracy comparison of our proposed technique with other reseach. TR Train, TS Test.

Author Year Method R2

Huang et al.21 2020 FA-ANN 0.91

Zhou et al.12 2021 GEP-MC 0.91

Lawal et al.59 2021 ANN-MFO 0.97

Ragam et al.61 2022 XGBoost-RF 0.95

Nguyen et al.62 2023 SSO-ELM 0.91

Proped technique
EXGBoosts TR = 0.99, TS = 0.97

EANNs TR = 0.96, TS = 0.94

Table 10.   Estimation level at 25% in testing and validation datasets.

Techniques Part P(0.25)

ANN
Testing 76.254

Validation 33.563

EANNs
Testing 100

Validation 92.987

XGBoost
Testing 97.255

Validation 79.654

EXGBoosts
Testing 100

Validation 100
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Step 5 Determining the relative importance of effevtive parameters separately using Eq. (13)95:

In which, h is the variable that is used to introduce pairs of effective parameters. The outcomes that were 
achieved for each of the evaluated parameters were produced by using the technique that was provided to the 
PPVt model. Equation (13) had a significant importance in the accomplishment of these results.

Step 6 Evaluating parametric sensitivity and determining relative relevance of effective parameters using 
Eq. (14)95:

where the δt is computed from the first series of dataset (h = 1) to the maximum values ( iPPV ,max ), which is 162 
data for developed model in this study. Table 11 provides a tabular breakdown of the value spectrum that was 
employed throughout the evaluating of each parameter.

The lower the γ index value for each parameter, the less sensitive the st model is to that parameter, and the 
higher the γ index, the more sensitive the model is to the parameter under consideration. Table 11 has presented 
the γ index to evaluate the impact of model parameters and identify the most sensitive parameters. The calculated 
γ index for each parameter is depicted in Fig. 9. It can be found that the order of the sensitivity of the PPV to 
the parameters is ld < S < n < Q < q < B < d. It can be concluded that the PPV is highly sensitive to d, B, q, Q, and 
n, as well as sensitive to S and ld.

Influence of delay sequence on PPV.  The seismic energy is what causes the blasting  vibrations to be gener-
ated, and it also literally symbolizes the problems created to the rock-mass that extends beyond the bounda-
ries of the explosion patch. The blasting pattern design specifications, explosives type and properties, and the 
physio-mechanical characteristics of the rock-mass all affect how much PPV occurs. The generation of PPV 
for several  experimental implementing blasting has been obtained; the PPV value is reported as 5.12–17.23, 
3.91–12.14, and 1.48–5.93 in the delay sequence (row to row) of 9, 15, and 23 ms. It can be concluded that the 

(13)δh =
fh

xo,h

(14)γ =

iPPV ,max
∑

h=1

δh

Table 11.   The range of γ index to determine sensitivity of each parameter95.

γ Index Model parameter sensitivity

γ ≤ 1 Insensitive

1 < γ ≤ 100 Sensitive

γ ≥ 100 Highly sensitive
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Figure 9.   The impact of effective parameters on PPV.
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23 ms delay between the rows will assist in lowering the PPV, which may be lowered up to a particular value by 
choosing the right delay sequence in production blast, according to field observations and data analysis.

The superimposition of waveform due to delay sequence refers to the effect of time delays on the coherence of 
signals. When two or more signals are delayed relative to each other, their waveforms may overlap and interfere 
with each other, resulting in a composite waveform that may be difficult to interpret. The impact of this effect on 
the outcome of a result depends on the specific context of the analysis. In some cases, such as in signal processing 
or communication systems, delay sequences are intentionally introduced to improve signal quality or reduce 
interference. In these cases, the superimposition of waveforms may be a desirable effect. However, in other cases, 
such as in physiological or biological signal analysis, the superimposition of waveforms due to delay sequences 
can lead to a loss of information and inaccuracies in the analysis. For example, in electroencephalogram (EEG) 
recordings, time delays between signals from different brain regions can result in overlapping waveforms that 
make it difficult to identify the underlying brain activity.

Results and discussions
This paper was accurately focused on estimation PPV due to mine blasting. In this way, the most effective 
parameters on PPV variation were identified. Two AI-based models i.e., ANN and XGBoost, were considered for 
choosing the best between PPV predictive models. For each predictive method, an ensemble model, i.e., EANNs 
and EXGBoosts, was developed, and the best one was chosen. The obtained results from statistical indicators (R2 
and RMSE) associated with the best predictive models of ANN, XGBoost, EANNs, and EXGBoosts for training 
and testing parts were illustrated in Figs. 10 and 11.

The predictive model of EXGBoosts has specified capable of presenting the highest performance prediction 
level in train and test parts. Therefore, EXGBoosts was found a superior accuracy level regarding statistical indi-
cators values among other predictive models. The R2 values of (0.948, 0.977, 0.960, and 0.990) and (0.928, 0.979, 
0.941, and 0.968) were calculated for training and testing phases of ANN, XGBoost, EANNs, and EXGBoosts 
models, respectively. Besides, RMSE values of (0.567, 0.650, 0.402, and 0.391) and (0.293, 0.536, 0.189, and 0.295) 
were obtained for training and testing parts of ANN, XGBoost, EANNs, and EXGBoosts models, respectively. 
The EXGBoosts model revealed a maximum performance and minimum system error between other predictive 
models. In situations where the testing datasets reflect adequate generalizability of predictive techniques, the 
excellent efficiency of the train phases suggests the success of the learning procedures of the predictive models.

Benefits and drawbacks of the study.  The main benefit of this study is in improving the performance 
and accuracy of the proposed ANN and XGBoost models. These models separately provide lower accuracy than 
the ensemble models. Therefore, using the combination of these methods and constructing an ensemble model, 
it is possible to predict the PPV with acceptable accuracy. Noteworthy, neural network base models each have 
different results and have uncertainty due to being a black-box. However, the ensemble model solves this prob-
lem to an acceptable. This study also has drawbacks. In this study, only two AI models have been used i.e., ANN 
and XGBoost. However, the number of AI models can be increased to reach maximum accuracy. It should be 
noted that the number of base models in this study is acceptable; nevertheless, more models can be obtained and 
run the ensemble model based on them.
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Figure 10.   The value of R2, RMSE, and MAE for selecting the best model in the predicting PPV values.
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Conclusions
In this study, the PPV induced from bench blasting is studied in Anguran lead–zinc mine, Iran. Consider-
ing the crucial importance of the adverse effects of ground vibration in blasting operations, the prediction of 
PPV at a high level of accuracy is essential. Therefore, this study investigates the ensemble of various artificial 
intelligence models to construct an accurate model for PPV estimation using 162 blasting datasets and seven 
effective parameters. For this aim, several ANN and XGBoost base models were developed and the five top base 
models among them were combined to generate EANNs and EXGBoosts models. To combination of top base 
models’ outputs and achieve a single result stacked generalization technique was used. The statistical indexes of 
R2, RMSE, MAE, VAF, and Accuracy were used to evaluate the performance of developed models and a scoring 
system was applied to select the best ANN and XGBoost base models with optimal structure. The results revealed 
that the EANNs with R2 of (0.960, and 0.941), RMSE of (0.402, and 0.189), MAE of (0.233, and 0.219), VAF of 
(95.963(%), and 92.827(%)), and Accuracy of (95.724, and 95.713) for training and testing datasets, respectively, 
and EXGBoosts model with R2 of (0.990, and 0.968), RMSE of (0.391, and 0.295), MAE of (0.257, and 0.427), 
VAF of (99.013(%), and 96.674(%)), and Accuracy of (98.216, and 96.059) for training and testing datasets, 
respectively, were two efficient machine learning ensemble methods for forecasting PPV. Comparison of the 
results of developed ensemble methods, i.e., EANNs and EXGBoosts, with the best individual models showed 
the superiority of ensemble modeling in predicting PPV in surface mines. Moreover, EXGBoosts model was most 
accurate compared to the EANN model. In the final step of this study, the effectiveness of each input variable 
on PPV intensity is determined using the CA method, which results denoted the spacing has the most impact 
on PPV. From practical applications, the proposed model can be updated for other engineering fields, specially 
mining and civil activities. Meanwhile, the ensemble machine learning approach can be applied to improve 
performance capacity of machine learning techniques and increase the accuracy level of prediction targets. The 
proposed models can be used to analyze safety data and identify potential hazards, blasting safety zone, and risks 
in blasting operations. The PPV values can be predicted before blasting operations to check any potential issues 
or damage to the workers, equipment and surrounding residential area. If the predicted results are higher than 
those suggested in literature or standards, the blasting pattern/design can be reviewed again to have a predicted 
PPV values within the suggested safe ranges. Generally, machine learning algorithms can be used to analyze 
environmental data and monitor the impact of mining operations on the environment.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Received: 28 March 2022; Accepted: 19 April 2023

References
	 1.	 Jiang, W., Arslan, C. A., Tehrani, M. S., Khorami, M. & Hasanipanah, M. Simulating the peak particle velocity in rock blasting 

projects using a neuro-fuzzy inference system. Eng. Comput. 35, 1203–1211 (2019).
	 2.	 Bakhtavar, E., Hosseini, S., Hewage, K. & Sadiq, R. Green blasting policy: Simultaneous forecast of vertical and horizontal distribu-

tion of dust emissions using artificial causality-weighted neural network. J. Clean. Prod. 283, 124562 (2021).

94
.7
67

92
.7
73

95
.9
63

92
.8
27

97
.5
78

97
.8
95

99
.0
13

96
.6
74

94
.2
47

90
.2
54

95
.7
24

95
.7
13 96
.8
28

95
.5
28

98
.2
16

96
.0
59

84

86

88

90

92

94

96

98

100

Training Testing Training Testing Training Testing Training Testing

ANN EANNs XGBoost EXGBoosts

ycarucc
A

dna
F

A
VfostluseR

VAF Accuracy

Figure 11.   The value of VAF and accuracy for selecting the best model in the predicting PPV values.



18

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6591  | https://doi.org/10.1038/s41598-023-33796-7

www.nature.com/scientificreports/

	 3.	 Bakhtavar, E., Hosseini, S., Hewage, K. & Sadiq, R. Air pollution risk assessment using a hybrid fuzzy intelligent probability-based 
approach: Mine blasting dust impacts. Nat. Resour. Res. https://​doi.​org/​10.​1007/​s11053-​020-​09810-4 (2021).

	 4.	 Hosseini, S., Monjezi, M., Bakhtavar, E. & Mousavi, A. Prediction of dust emission due to open pit mine blasting using a hybrid 
artificial neural network. Nat. Resour. Res. https://​doi.​org/​10.​1007/​s11053-​021-​09930-5 (2021).

	 5.	 Hosseini, S., Mousavi, A. & Monjezi, M. Prediction of blast-induced dust emissions in surface mines using integration of dimen-
sional analysis and multivariate regression analysis. Arab. J. Geosci. 15, 163 (2022).

	 6.	 Armaghani, D. J., Hasanipanah, M., Amnieh, H. B. & Mohamad, E. T. Feasibility of ICA in approximating ground vibration result-
ing from mine blasting. Neural Comput. Appl. 29, 457–465 (2018).

	 7.	 Nguyen, H. & Bui, X.-N. Soft computing models for predicting blast-induced air over-pressure: A novel artificial intelligence 
approach. Appl. Soft Comput. 92, 106292 (2020).

	 8.	 Faradonbeh, R. S., Armaghani, D. J., Amnieh, H. B. & Mohamad, E. T. Prediction and minimization of blast-induced flyrock using 
gene expression programming and firefly algorithm. Neural Comput. Appl. 29, 269–281 (2018).

	 9.	 Koopialipoor, M., Fallah, A., Armaghani, D. J., Azizi, A. & Mohamad, E. T. Three hybrid intelligent models in estimating flyrock 
distance resulting from blasting. Eng. Comput. 35, 243–256 (2019).

	10.	 Shirani Faradonbeh, R. et al. Prediction of ground vibration due to quarry blasting based on gene expression programming: A 
new model for peak particle velocity prediction. Int. J. Environ. Sci. Technol. https://​doi.​org/​10.​1007/​s13762-​016-​0979-2 (2016).

	11.	 Mohamadnejad, M., Gholami, R. & Ataei, M. Comparison of intelligence science techniques and empirical methods for prediction 
of blasting vibrations. Tunn. Undergr. Sp. Technol. 28, 238–244 (2012).

	12.	 Zhou, J., Li, C., Koopialipoor, M., Armaghani, D. J. & Pham, B. T. Development of a new methodology for estimating the amount 
of PPV in surface mines based on prediction and probabilistic models (GEP-MC). Int. J. Mining Reclam. Environ. 35, 48–68 (2020).

	13.	 Hasanipanah, M. et al. Prediction of an environmental issue of mine blasting: An imperialistic competitive algorithm-based fuzzy 
system. Int. J. Environ. Sci. Technol. 15, 551–560 (2018).

	14.	 Agrawal, H. & Mishra, A. K. Modified scaled distance regression analysis approach for prediction of blast-induced ground vibra-
tion in multi-hole blasting. J. Rock Mech. Geotech. Eng. 11, 202–207 (2019).

	15.	 Nguyen, H., Drebenstedt, C., Bui, X.-N. & Bui, D. T. Prediction of blast-induced ground vibration in an open-pit mine by a novel 
hybrid model based on clustering and artificial neural network. Nat. Resour. Res. 29, 691–709 (2020).

	16.	 Duvall, W. I. & Fogelson, D. E. Review of Criteria for Estimating Damage to Residences from Blasting Vibrations, vol. 5968 (US 
Department of the Interior, Bureau of Mines, 1962).

	17.	 Siskind, D. E. Structure Response and Damage Produced by Ground Vibration from Surface Mine Blasting, vol. 8507 (US Department 
of the Interior, Bureau of Mines, 1980).

	18.	 Qiu, Y. et al. Performance evaluation of hybrid WOA-XGBoost, GWO-XGBoost and BO-XGBoost models to predict blast-induced 
ground vibration. Eng. Comput. 1–18 (2021).

	19.	 Zeng, J. et al. Prediction of peak particle velocity caused by blasting through the combinations of boosted-CHAID and SVM models 
with various kernels. Appl. Sci. 11, 3705 (2021).

	20.	 Hajihassani, M., Armaghani, D. J., Marto, A. & Mohamad, E. T. Ground vibration prediction in quarry blasting through an artificial 
neural network optimized by imperialist competitive algorithm. Bull. Eng. Geol. Environ. 74, 873–886 (2015).

	21.	 Huang, J., Koopialipoor, M. & Armaghani, D. J. A combination of fuzzy Delphi method and hybrid ANN-based systems to forecast 
ground vibration resulting from blasting. Sci. Rep. 10, 1–21 (2020).

	22.	 Davies, B., Farmer, I. W. & Attewell, P. B. Ground vibration from shallow sub-surface blasts. Engineer 217, (1964).
	23.	 Ambraseys, N. R. & Hendron, A. J. Dynamic Behavior of Rock Masses, Rock Mechanics in Engineering Practice (eds. Stagg, K. 

G. & Zienkiewicz, O. C.) (1968).
	24.	 Dowding, C. H. Blast Vibration Monitoring and Control 288–290 (Prentice-Hall Inc, 1985).
	25.	 Roy, P. P. Putting ground vibration predictions into practice. Colliery Guard. (Kingdom) 241 (1993).
	26.	 Rai, R. & Singh, T. N. A new predictor for ground vibration prediction and its comparison with other predictors. (2004).
	27.	 Mottahedi, A., Sereshki, F. & Ataei, M. Development of overbreak prediction models in drill and blast tunneling using soft com-

puting methods. Eng. Comput. 34, 45–58 (2018).
	28.	 Sadeghi, F., Monjezi, M. & Armaghani, D. J. Evaluation and optimization of prediction of toe that arises from mine blasting opera-

tion using various soft computing techniques. Nat. Resour. Res. 29, 887–903 (2020).
	29.	 Xie, C. et al. Predicting rock size distribution in mine blasting using various novel soft computing models based on meta-heuristics 

and machine learning algorithms. Geosci. Front. 12, 101108 (2021).
	30.	 Gao, W., Alqahtani, A. S., Mubarakali, A. & Mavaluru, D. Developing an innovative soft computing scheme for prediction of air 

overpressure resulting from mine blasting using GMDH optimized by GA. Eng. Comput. 36, 647–654 (2020).
	31.	 Nguyen, H., Bui, N. X., Tran, H. Q. & Le, G. H. T. A novel soft computing model for predicting blast-induced ground vibration in 

open-pit mines using gene expression programming. J. Min. Earth Sci. 61, 107–116 (2020).
	32.	 Mokfi, T., Shahnazar, A., Bakhshayeshi, I., Derakhsh, A. M. & Tabrizi, O. Proposing of a new soft computing-based model to 

predict peak particle velocity induced by blasting. Eng. Comput. 34, 881–888 (2018).
	33.	 Arthur, C. K., Temeng, V. A. & Ziggah, Y. Y. Soft computing-based technique as a predictive tool to estimate blast-induced ground 

vibration. J. Sustain. Min. 18, 287–296 (2019).
	34.	 Bui, X.-N., Nguyen, H., Le, H.-A., Bui, H.-B. & Do, N.-H. Prediction of blast-induced air over-pressure in open-pit mine: Assess-

ment of different artificial intelligence techniques. Nat. Resour. Res. https://​doi.​org/​10.​1007/​s11053-​019-​09461-0 (2019).
	35.	 Hasanipanah, M., Golzar, S. B., Larki, I. A., Maryaki, M. Y. & Ghahremanians, T. Estimation of blast-induced ground vibration 

through a soft computing framework. Eng. Comput. 33, 951–959 (2017).
	36.	 Taheri, K., Hasanipanah, M., Golzar, S. B. & Abd Majid, M. Z. A hybrid artificial bee colony algorithm-artificial neural network 

for forecasting the blast-produced ground vibration. Eng. Comput. 33, 689–700 (2017).
	37.	 Fouladgar, N., Hasanipanah, M. & Amnieh, H. B. Application of cuckoo search algorithm to estimate peak particle velocity in 

mine blasting. Eng. Comput. 33, 181–189 (2017).
	38.	 Hasanipanah, M., Naderi, R., Kashir, J., Noorani, S. A. & Qaleh, A. Z. A. Prediction of blast-produced ground vibration using 

particle swarm optimization. Eng. Comput. 33, 173–179 (2017).
	39.	 Iphar, M., Yavuz, M. & Ak, H. Prediction of ground vibrations resulting from the blasting operations in an open-pit mine by adap-

tive neuro-fuzzy inference system. Environ. Geol. https://​doi.​org/​10.​1007/​s00254-​007-​1143-6 (2008).
	40.	 Singh, T. N. & Singh, V. An intelligent approach to prediction and control ground vibration in mines. Geotech. Geol. Eng. https://​

doi.​org/​10.​1007/​s10706-​004-​7068-x (2005).
	41.	 Monjezi, M., Ghafurikalajahi, M. & Bahrami, A. Prediction of blast-induced ground vibration using artificial neural networks. 

Tunn. Undergr. Sp. Technol. 26, 46–50 (2011).
	42.	 Mohamed, M. T. Performance of fuzzy logic and artificial neural network in prediction of ground and air vibrations. JES. J. Eng. 

Sci. 39, 425–440 (2011).
	43.	 Khandelwal, M., Kumar, D. L. & Yellishetty, M. Application of soft computing to predict blast-induced ground vibration. Eng. 

Comput. https://​doi.​org/​10.​1007/​s00366-​009-​0157-y (2011).
	44.	 Fişne, A., Kuzu, C. & Hüdaverdi, T. Prediction of environmental impacts of quarry blasting operation using fuzzy logic. Environ. 

Monit. Assess. https://​doi.​org/​10.​1007/​s10661-​010-​1470-z (2011).

https://doi.org/10.1007/s11053-020-09810-4
https://doi.org/10.1007/s11053-021-09930-5
https://doi.org/10.1007/s13762-016-0979-2
https://doi.org/10.1007/s11053-019-09461-0
https://doi.org/10.1007/s00254-007-1143-6
https://doi.org/10.1007/s10706-004-7068-x
https://doi.org/10.1007/s10706-004-7068-x
https://doi.org/10.1007/s00366-009-0157-y
https://doi.org/10.1007/s10661-010-1470-z


19

Vol.:(0123456789)

Scientific Reports |         (2023) 13:6591  | https://doi.org/10.1038/s41598-023-33796-7

www.nature.com/scientificreports/

	45.	 Ghasemi, E., Ataei, M. & Hashemolhosseini, H. Development of a fuzzy model for predicting ground vibration caused by rock 
blasting in surface mining. JVC/J. Vib. Control https://​doi.​org/​10.​1177/​10775​46312​437002 (2013).

	46.	 Monjezi, M., Hasanipanah, M. & Khandelwal, M. Evaluation and prediction of blast-induced ground vibration at Shur River Dam, 
Iran, by artificial neural network. Neural Comput. Appl. https://​doi.​org/​10.​1007/​s00521-​012-​0856-y (2013).

	47.	 Armaghani, D. J., Hajihassani, M., Mohamad, E. T., Marto, A. & Noorani, S. A. Blasting-induced flyrock and ground vibration 
prediction through an expert artificial neural network based on particle swarm optimization. Arab. J. Geosci. 7, 5383–5396 (2014).

	48.	 Dindarloo, S. R. Peak particle velocity prediction using support vector machines: A surface blasting case study. J. S. Afr. Inst. Min. 
Metall. https://​doi.​org/​10.​17159/​2411-​9717/​2015/​v115n​7a10 (2015).

	49.	 Hajihassani, M., Armaghani, D. J., Monjezi, M., Mohamad, E. T. & Marto, A. Blast-induced air and ground vibration prediction: 
A particle swarm optimization-based artificial neural network approach. Environ. Earth Sci. 74, 2799–2817 (2015).

	50.	 Hasanipanah, M., Monjezi, M., Shahnazar, A., Jahed Armaghani, D. & Farazmand, A. Feasibility of indirect determination of blast 
induced ground vibration based on support vector machine. Meas. J. Int. Meas. Confed. https://​doi.​org/​10.​1016/j.​measu​rement.​
2015.​07.​019 (2015).

	51.	 Armaghani, D. J., Momeni, E., Abad, S. V. A. N. K. & Khandelwal, M. Feasibility of ANFIS model for prediction of ground vibra-
tions resulting from quarry blasting. Environ. Earth Sci. https://​doi.​org/​10.​1007/​s12665-​015-​4305-y (2015).

	52.	 Ghoraba, S., Monjezi, M., Talebi, N., Armaghani, D. J. & Moghaddam, M. R. Estimation of ground vibration produced by blasting 
operations through intelligent and empirical models. Environ. Earth Sci. https://​doi.​org/​10.​1007/​s12665-​016-​5961-2 (2016).

	53.	 Hasanipanah, M., Faradonbeh, R. S., Amnieh, H. B., Armaghani, D. J. & Monjezi, M. Forecasting blast-induced ground vibration 
developing a CART model. Eng. Comput. https://​doi.​org/​10.​1007/​s00366-​016-​0475-9 (2017).

	54.	 Shahnazar, A. et al. A new developed approach for the prediction of ground vibration using a hybrid PSO-optimized ANFIS-based 
model. Environ. Earth Sci. https://​doi.​org/​10.​1007/​s12665-​017-​6864-6 (2017).

	55.	 Nguyen, H., Bui, X.-N., Tran, Q.-H. & Mai, N.-L. A new soft computing model for estimating and controlling blast-produced 
ground vibration based on hierarchical K-means clustering and cubist algorithms. Appl. Soft Comput. 77, 376–386 (2019).

	56.	 Nguyen, H., Choi, Y., Bui, X. N. & Nguyen-Thoi, T. Predicting blast-induced ground vibration in open-pit mines using vibration 
sensors and support vector regression-based optimization algorithms. Sensors (Switzerland) https://​doi.​org/​10.​3390/​s2001​0132 
(2020).

	57.	 Zhang, H. et al. A combination of feature selection and random forest techniques to solve a problem related to blast-induced 
ground vibration. Appl. Sci. https://​doi.​org/​10.​3390/​app10​030869 (2020).

	58.	 Zhou, J., Asteris, P. G., Armaghani, D. J. & Pham, B. T. Prediction of ground vibration induced by blasting operations through 
the use of the Bayesian Network and random forest models. Soil Dyn. Earthq. Eng. https://​doi.​org/​10.​1016/j.​soild​yn.​2020.​106390 
(2020).

	59.	 Lawal, A. I., Kwon, S. & Kim, G. Y. Prediction of the blast-induced ground vibration in tunnel blasting using ANN, moth-flame 
optimized ANN, and gene expression programming. Acta Geophys. https://​doi.​org/​10.​1007/​s11600-​020-​00532-y (2021).

	60.	 He, B., Lai, S. H., Mohammed, A. S., Sabri, M. M. S. & Ulrikh, D. V. Estimation of blast-induced peak particle velocity through the 
improved weighted random forest technique. Appl. Sci. 12, 5019 (2022).

	61.	 Ragam, P., Komalla, A. R. & Kanne, N. Estimation of blast-induced peak particle velocity using ensemble machine learning algo-
rithms: A case study. Noise Vib. Worldw. 53, 404–413 (2022).

	62.	 Nguyen, H., Bui, X.-N. & Topal, E. Reliability and availability artificial intelligence models for predicting blast-induced ground 
vibration intensity in open-pit mines to ensure the safety of the surroundings. Reliab. Eng. Syst. Saf. 231, 109032 (2023).

	63.	 Zhang, Y., Liu, J. & Shen, W. A review of ensemble learning algorithms used in remote sensing applications. Appl. Sci. 12, 8654 
(2022).

	64.	 Doğru, A., Buyrukoğlu, S. & Arı, M. A hybrid super ensemble learning model for the early-stage prediction of diabetes risk. Med. 
Biol. Eng. Comput. 1–13 (2023).

	65.	 Buyrukoğlu, S. & Savaş, S. Stacked-based ensemble machine learning model for positioning footballer. Arab. J. Sci. Eng. 1–13 
(2022).

	66.	 Buyrukoğlu, S. New hybrid data mining model for prediction of Salmonella presence in agricultural waters based on ensemble 
feature selection and machine learning algorithms. J. Food Saf. 41, e12903 (2021).

	67.	 Buyrukoğlu, G., Buyrukoğlu, S. & Topalcengiz, Z. Comparing regression models with count data to artificial neural network and 
ensemble models for prediction of generic Escherichia coli population in agricultural ponds based on weather station measure-
ments. Microb. Risk Anal. 19, 100171 (2021).

	68.	 Buyrukoğlu, S. Promising cryptocurrency analysis using deep learning. In 2021 5th International Symposium on Multidisciplinary 
Studies and Innovative Technologies (ISMSIT) 372–376 (IEEE, 2021).

	69.	 Akbas, A. & Buyrukoglu, S. Stacking ensemble learning-based wireless sensor network deployment parameter estimation. Arab. 
J. Sci. Eng. 1–10 (2022).

	70.	 Zhou, Z.-H., Wu, J. & Tang, W. Ensembling neural networks: Many could be better than all. Artif. Intell. 137, 239–263 (2002).
	71.	 Alizadeh, S., Poormirzaee, R., Nikrouz, R. and Sarmady, S. Using stacked generalization ensemble method to estimate shear wave 

velocity based on downhole seismic data: A case study of Sarab-e-Zahab, Iran. J. Seism. Explor. (2021).
	72.	 Nadeem, F., Alghazzawi, D., Mashat, A., Faqeeh, K. & Almalaise, A. Using machine learning ensemble methods to predict execu-

tion time of e-science workflows in heterogeneous distributed systems. IEEE Access 7, 25138–25149 (2019).
	73.	 Production, I. M. Supply Company (IMPASCO). Final Rep. Complement. Explor. Oper. Anguran Lead Zinc Depos. Zanjan, Dandi, 

Iran 313 (2019).
	74.	 Khoshalan, H. A., Shakeri, J., Najmoddini, I. & Asadizadeh, M. Forecasting copper price by application of robust artificial intel-

ligence techniques. Resour. Policy 73, 102239 (2021).
	75.	 Duan, J., Asteris, P. G., Nguyen, H., Bui, X.-N. & Moayedi, H. A novel artificial intelligence technique to predict compressive 

strength of recycled aggregate concrete using ICA-XGBoost model. Eng. Comput. 1–18 (2020).
	76.	 Yegnanarayana, B. Artificial Neural Networks (PHI Learning Pvt. Ltd., 2009).
	77.	 Fausett, L. V. Fundamentals of Neural Networks: Architectures, Algorithms, and Applications (Prentice-Hall, Inc., 1994).
	78.	 Dragičević, T. & Novak, M. Weighting factor design in model predictive control of power electronic converters: An artificial neural 

network approach. IEEE Trans. Ind. Electron. 66, 8870–8880 (2018).
	79.	 Sengupta, A., Shim, Y. & Roy, K. Proposal for an all-spin artificial neural network: Emulating neural and synaptic functionalities 

through domain wall motion in ferromagnets. IEEE Trans. Biomed. Circuits Syst. 10, 1152–1160 (2016).
	80.	 Hodo, E. et al. Threat analysis of IoT networks using artificial neural network intrusion detection system. In 2016 International 

Symposium on Networks, Computers and Communications (ISNCC) 1–6 (IEEE, 2016).
	81.	 Bui, D. T., Tuan, T. A., Klempe, H., Pradhan, B. & Revhaug, I. Spatial prediction models for shallow landslide hazards: A compara-

tive assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model 
tree. Landslides 13, 361–378 (2016).

	82.	 Chen, T. et al. Xgboost: Extreme gradient boosting. R Packag. version 0.4-2 1, 1–4 (2015).
	83.	 Bhattacharya, S. et al. A novel PCA-firefly based XGBoost classification model for intrusion detection in networks using GPU. 

Electronics 9, 219 (2020).
	84.	 Nguyen, H., Bui, X.-N., Bui, H.-B. & Cuong, D. T. Developing an XGBoost model to predict blast-induced peak particle velocity 

in an open-pit mine: A case study. Acta Geophys. 67, 477–490 (2019).

https://doi.org/10.1177/1077546312437002
https://doi.org/10.1007/s00521-012-0856-y
https://doi.org/10.17159/2411-9717/2015/v115n7a10
https://doi.org/10.1016/j.measurement.2015.07.019
https://doi.org/10.1016/j.measurement.2015.07.019
https://doi.org/10.1007/s12665-015-4305-y
https://doi.org/10.1007/s12665-016-5961-2
https://doi.org/10.1007/s00366-016-0475-9
https://doi.org/10.1007/s12665-017-6864-6
https://doi.org/10.3390/s20010132
https://doi.org/10.3390/app10030869
https://doi.org/10.1016/j.soildyn.2020.106390
https://doi.org/10.1007/s11600-020-00532-y


20

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6591  | https://doi.org/10.1038/s41598-023-33796-7

www.nature.com/scientificreports/

	85.	 Ren, X., Guo, H., Li, S., Wang, S. & Li, J. A novel image classification method with CNN-XGBoost model. In International Workshop 
on Digital Watermarking 378–390 (Springer, 2017).

	86.	 Zhang, L. & Zhan, C. Machine learning in rock facies classification: An application of XGBoost. In International Geophysical 
Conference, Qingdao, China, 17–20 April 2017 1371–1374 (Society of Exploration Geophysicists and Chinese Petroleum Society, 
2017).

	87.	 Nguyen, H., Bui, X.-N., Nguyen-Thoi, T., Ragam, P. & Moayedi, H. Toward a state-of-the-art of fly-rock prediction technology in 
open-pit mines using EANNs model. Appl. Sci. 9, 4554 (2019).

	88.	 Barzegar, R. & Asghari Moghaddam, A. Combining the advantages of neural networks using the concept of committee machine 
in the groundwater salinity prediction. Model. Earth Syst. Environ. https://​doi.​org/​10.​1007/​s40808-​015-​0072-8 (2016).

	89.	 Dogan, A. & Birant, D. A weighted majority voting ensemble approach for classification. In 2019 4th International Conference on 
Computer Science and Engineering (UBMK) 1–6 (IEEE, 2019).

	90.	 Krogh, A. & Vedelsby, J. Neural network ensembles, cross validation, and active learning. Adv. Neural Inf. Process. Syst. 7, 231–238 
(1995).

	91.	 Jacobs, R. A., Jordan, M. I., Nowlan, S. J. & Hinton, G. E. Adaptive mixtures of local experts. Neural Comput. 3, 79–87 (1991).
	92.	 Wolpert, D. H. Stacked generalization. Neural Netw. 5, 241–259 (1992).
	93.	 Zorlu, K., Gokceoglu, C., Ocakoglu, F., Nefeslioglu, H. A. & Acikalin, S. Prediction of uniaxial compressive strength of sandstones 

using petrography-based models. Eng. Geol. 96, 141–158 (2008).
	94.	 Sharma, M., Agrawal, H. & Choudhary, B. S. Multivariate regression and genetic programming for prediction of backbreak in 

open-pit blasting. Neural Comput. Appl. 1–12 (2022).
	95.	 Corrêa, J. M., Farret, F. A., Popov, V. A. & Simões, M. G. Sensitivity analysis of the modeling parameters used in simulation of 

proton exchange membrane fuel cells. IEEE Trans. Energy Convers. https://​doi.​org/​10.​1109/​TEC.​2004.​842382 (2005).

Author contributions
S.H.: Data collection, conceptualization, methodology, results, analysis, writing. R.P.: Conceptualization, meth-
odology, writing and editing, supervision. D.J.A: Writing, reviewing and editing, supervision. M.M.S.S: Writing, 
reviewing and editing, resources, funding.

Funding
The research is partially funded by the Ministry of Science and Higher Education of the Russian Federation under 
the strategic academic leadership program ‘Priority 2030’ (Agreement 075-15-2021-1333 dated 30 September 
2021).

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to R.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

https://doi.org/10.1007/s40808-015-0072-8
https://doi.org/10.1109/TEC.2004.842382
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Prediction of ground vibration due to mine blasting in a surface lead–zinc mine using machine learning ensemble techniques
	Case study and data preparation. 
	Method background
	Artificial neural network (ANN). 
	Extreme gradient boosting (XGBoost). 
	Ensemble modeling. 
	Stacking ensemble model. 
	Pre-analysis of modeling process. 
	PPV predictive models. 
	ANN model. 
	XGBoost model. 
	Ensemble model of ANNs (EANNs) to predict PPV. 
	Ensemble model of XGBoosts (EXGBoosts) to predict PPV. 
	Multiple parametric sensitivity analysis (MPSA). 
	Influence of delay sequence on PPV. 


	Results and discussions
	Benefits and drawbacks of the study. 

	Conclusions
	References


