Skip to main content
. 2023 Apr 21;13:6591. doi: 10.1038/s41598-023-33796-7

Table 4.

The base models of ANN and their evaluations.

ANN models Training algorithm Number of total hidden nodes Hidden activation function Output activation function Architecture Training Testing
R2 RMSE MAE VAF Accuracy R2 RMSE MAE VAF Accuracy
ANN1 TrainSCG 4 Tansig Tansig 7-4-1 0.934 0.660 0.428 93.415 91.471 0.724 1.193 0.724 68.725 87.644
ANN2 TrainSCG 7 Logsig Tansig 7-7-1 0.937 0.693 0.283 93.100 94.829 0.643 1.459 0.756 57.458 85.260
ANN3 TrainLM 10 Tansig Tansig 7-4-6-1 0.948 0.567 0.350 94.767 94.247 0.928 0.293 0.487 92.773 90.254
ANN4 TrainLM 12 Purelin Tansig 7-5-7-1 0.883 0.864 0.535 87.290 89.503 0.802 1.395 0.820 77.386 85.371
ANN5 TrainOSS 13 Logsig Logsig 7-5-8-1 0.932 0.672 0.411 93.213 91.816 0.850 0.492 0.508 84.935 90.061
ANN6 TrainGDX 14 Tansig Logsig 7-7-7-1 0.939 0.684 0.483 93.774 91.529 0.906 0.754 0.666 89.952 87.247
ANN7 TrainLM 16 Logsig Logsig 7-7-9-1 0.930 0.643 0.332 92.783 94.510 0.924 0.589 0.360 96.392 90.164
ANN8 TrainGDX 14 Purelin Purelin 7-9-5-1 0.906 0.799 0.499 90.543 91.588 0.841 0.850 0.622 83.640 87.034
ANN9 TrainSCG 17 Tansig Purelin 7-9-8-1 0.947 0.677 0.432 94.696 91.873 0.816 0.993 0.606 80.912 88.465
ANN10 TrainGDX 24 Logsig Logsig 7-11-13-1 0.915 0.913 0.624 88.188 88.413 0.879 1.126 0.985 80.926 79.481
ANN11 TrainSCG 26 Tansig Tansig 7-11-15-1 0.938 0.619 0.336 93.654 93.553 0.882 1.023 0.586 88.018 90.555
ANN12 TrainGDX 32 Purelin Tansig 7-15-17-1 0.922 0.680 0.387 92.201 93.114 0.866 0.978 0.392 86.559 88.953
ANN13 TrainLM 37 Tansig Tansig 7-17-20-1 0.906 0.900 0.628 88.409 87.744 0.763 0.992 0.822 73.105 85.883
ANN14 TrainSCG 39 Purelin Logsig 7-17-22-1 0.855 0.916 1.501 87.608 64.877 0.765 0.596 1.357 79.748 87.901
ANN15 TrainLM 42 Tansig Logsig 7-17-25-1 0.913 1.035 0.844 90.418 87.033 0.758 0.981 0.893 75.765 82.328

LM Levenberg–Marquardt, GDX Adaptive learning rate, SCG Scaled conjugate gradient, OSS One-step secant.