Skip to main content
. 2023 Apr 21;13:6591. doi: 10.1038/s41598-023-33796-7

Table 6.

The base models of XGBoost and their evaluations.

XGBoost models nrounds Maximum tree depth Training Testing
R2 RMSE MAE VAF Accuracy R2 RMSE MAE VAF Accuracy
XGBoost1 50 1 0.967 0.803 0.526 96.502 95.315 0.962 0.966 0.645 95.760 95.293
XGBoost2 50 2 0.977 0.650 0.402 97.578 96.828 0.979 0.536 0.680 97.895 96.528
XGBoost3 50 3 0.904 1.395 0.876 90.053 92.825 0.899 1.122 0.848 89.762 93.295
XGBoost4 100 1 0.957 0.896 0.629 95.593 94.562 0.952 0.943 0.723 94.777 95.340
XGBoost5 100 2 0.938 1.112 0.764 93.474 93.579 0.937 1.175 0.805 93.248 94.695
XGBoost6 100 3 0.952 0.923 0.626 95.169 94.595 0.968 0.795 0.651 96.645 95.387
XGBoost7 100 1 0.950 0.990 0.66 94.773 94.442 0.943 0.906 0.679 94.238 94.612
XGBoost8 150 2 0.923 1.182 0.771 92.003 93.397 0.882 1.598 1.241 85.342 92.732
XGBoost9 150 3 0.957 0.973 0.631 94.796 94.741 0.959 1.033 0.723 95.330 93.528
XGBoost10 150 1 0.909 1.367 0.861 90.419 92.900 0.900 0.653 0.791 90.020 94.786
XGBoost11 150 2 0.935 1.160 0.762 93.092 93.567 0.951 1.144 0.461 93.577 91.276
XGBoost12 150 3 0.928 1.219 0.828 92.017 93.046 0.952 0.942 0.814 94.961 94.355
XGBoost13 200 1 0.943 1.059 0.708 94.131 93.913 0.924 0.684 0.644 92.392 95.753
XGBoost14 200 2 0.963 0.812 0.568 96.507 94.978 0.904 1.007 0.85 90.304 94.105
XGBoost15 200 3 0.965 0.811 0.547 96.402 95.117 0.909 0.863 0.795 90.701 94.561