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Abstract

Online adaptive radiotherapy (ART) requires accurate and efficient auto-segmentation of the 

target volumes and organa-at-risk (OARs) in, most times, cone-beam computed tomography 

(CBCT) images, which often have severe artifacts and lack soft tissue contrast, making the 

direct segmentation very challenging. Propagating expert-drawn contours from the pre-treatment 

planning CT (pCT) through traditional or deep-learning (DL) based deformable image registration 

(DIR) can achieve improved results in many situations. Typical DL-based DIR models are 

population based, i.e., trained with a dataset for a population of patients, which may suffer from 

the generalizability problem. In this paper, we propose a method called test-time optimization 

(TTO) to refine a DL-based DIR model, pre-trained on a population of patients, for each 

individual test patient and then progressively for each fraction of online ART treatment. Our 

proposed method is less susceptible to generalizability problem, and thus can improve overall 

performance of different DL-based DIR models by improving model accuracy especially for 

outliers. 239 patients with head and neck squamous cell carcinoma were used in our experiments 

to test the proposed method. Firstly, we trained a population model with 200 patients, and 

then applied TTO to the rest 39 test patients by refining the trained population model to get 

39 individualized models. We compared each of the individualized models with the population 

model in terms of segmentation accuracy. We also evaluated the efficiency gain of deriving the 

individualized models from the pre-trained population model versus from an un-trained model. 

The average improvement of Dice Similarity Coefficient (DSC) and 95% Hausdorff Distance 

(HD95) of the segmentation can be up to 0.04 (5%) and 0.98 mm (25%), respectively, with the 

individualized models compared to the population model over 17 selected OARs and target of 

39 patients. While the average improvement may seem mild, we found that the improvement 

for outlier patients is significant. The number of patients with at least 0.05 DSC improvement 
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or 2 mm HD95 improvement by TTO averaged over the 17 selected structures for the state-of-

the-art architecture Voxelmorph is 10 out of 39 test patients. The average time for deriving 

the individualized model using TTO from the pre-trained population model is approximately 4 

minutes, which is about 150 times faster than that required to derive the individualized model 

from an un-trained model. We also generated the adapted fractional models for each of the 39 test 

patients by progressively refining the individualized models using TTO to CBCT images acquired 

at the later fractions of online ART treatment. When adapting the individualized model to a later 

fraction of the same patient, the average time is reduced to about 1 minute and the accuracy is 

slightly improved. The proposed TTO method can boost the segmentation accuracy for DL-based 

DIR models, especially for outlier patients where the pre-trained models fail, and is well suited for 

online ART.
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1. Introduction

Online adaptive radiotherapy (ART) is an advanced radiotherapy technology where, during 

the treatment course and before the delivery of the daily treatment, the treatment plan is 

adapted to patient’s changing anatomy (e.g., shrinking tumor), typically using cone beam 

computed tomography (CBCT) images. The online nature of the treatment demands high 

efficiency since the patient is immobilized to the treatment position waiting for the treatment 

to start. The time-consuming process of segmenting the tumor volumes and organs at risk 

(OARs) has become a major bottleneck for the widespread use of online ART. Accurate 

auto-segmentation tools are urgently needed1.

Auto-segmentation in CBCT images is a very challenging task, mainly due to severe 

artifacts, low soft-tissue contrast, and image truncations1. Currently there are two main 

categories of CBCT auto-segmentation methods for online ART: deformable image 

registration (DIR) based and deep learning (DL) based2. The DIR-based auto-segmentation 

is widely used in clinical ART workflow1,3,4. It deforms the pre-treatment planning CT 

(pCT) image, in which the target and OAR contours have been determined by experts, to 

the CBCT image, based on which the treatment plan is adapted to the new anatomy. The 

resulted deformation vector field (DVF) is then used to propagate the contours from pCT 

to CBCT. Evaluation of different DIR algorithms for contour propagation between pCT and 

CBCT in head & neck (H&N) ART suggests that careful examinations and modifications are 

still required5. DL-based auto-segmentation has achieved clinically acceptable performance 

in many image modalities2, such as CT. DL-based direct segmentation in CBCT images is 

still very challenging due to the poor image quality. A hybrid auto-segmentation approach 

for CBCT-based online ART has been implemented in clinical practice8. It uses a DL-based 

model to direct segment easier OARs in CBCT images and then uses the segmentation 

results to constraint the DIR between pCT and CBCT, which propagates the target and rest 

of OARs from pCT and CBCT. Although working for some OARs and targets, manual 

editing of challenging OARs and target volumes is still required and time consuming.
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Popular traditional DIR methods include extensively studied B-spline algorithms, 

represented by ELASTIX9 and 3DSlicer B-spline registration10, and Demons 

algorithms11,12. Recently, DL-based DIR methods have shown the state-of-the-art 

performance in many applications. Jaderberg et al in 2015 proposed a spatial transformer 

network (STN), which allows for spatial transformations on the input image inside a neural 

network, is differentiable, and can be added to any other existing architectures13. STN 

network has inspired lots of unsupervised DIR methods. A typical unsupervised DIR model 

can be divided into two parts: DVF prediction and spatial transformation. In DVF prediction, 

a neural network takes a pair of fixed and moving image as input and outputs a DVF. 

Then in spatial transformation, the STN network warps the moving image according to the 

predicted DVF to get the moved image. The loss function for model training is usually 

composed of image similarity loss between the fixed and moved images and a regularization 

term on DVF. Voxelmorph proposed by Dalca et al combined a probabilistic generative 

model and a DL model for diffeomorphic registration14. They used a U-Net architecture 

to predict velocity field and diffeomorphic integration layers to sample DVF from the 

predicted velocity field. Then a STN network is followed to warp the moving images. Image 

similarity and Kullback-Leibler divergence constraint were used in the loss function. A 

similar work, FAIM, used a U-Net architecture to predict DVF directly and a STN network 

to warp images15. The loss function of FAIM is also composed of image similarity and 

regularization terms to constrain DVF smoothness. To further improve the performance of 

unsupervised DL methods, Zhao et al built recursive cascaded networks16 on top of a base 

network including VTN17 and Voxelmorph18. The cascade procedure is done by recursively 

performing registration on warped images. The final DVF is a composition of all predicted 

DVFs. The results showed that recursive cascaded networks outperform the base network 

with significant gains.

These DL models for DIR are all population based, e.g., trained on a dataset representing a 

population of patients. Generalizability problem may exist in these models when deployed 

to patients where the joint distribution of inputs and outputs differs from that of the training 

dataset. In the targeted clinical applications of this work, many factors could cause such a 

problem, including different anatomical sites, scanning machines, and scanning protocols. 

Therefore, the model generalizability problem needs to be carefully addressed.

To solve this problem, inspired by the work of Chen et al22 and Fechter et al23, where one 

shot learning is used for DIR to generate anthropomorphic phantoms and to track periodic 

motion with DL models, respectively, we propose a method called test-time optimization 

(TTO) to individualize a pre-trained population DL model for one pair of fixed and moving 

image, by iteratively refining the weights of the DL model in a traditional optimization 

matter. The predicted DVF is then used to warp the moving image to match the fixed image. 

Essentially, TTO overfits the DL model to a specific pair of moving and fixed images, 

promising a better performance than the direct use of the population DL model and the 

avoidance of potential generalization problem of the population DL model. When TTO is 

applied to a pre-trained DL model, versus to an untrained model as in the work of Chen 

et al22 and Fechter et al23, much improved efficiency is also expected, which is critical for 

online applications. For CBCT-based online ART, TTO can be used to refine a pre-trained 

DL model to a new patient (inter-patient TTO) to get an individualized model and also 
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to further refine the individualized model to a new treatment fraction for the same patient 

(intra-patient TTO) to get a fractional model.

In the following content, we first introduce the common architecture used in unsupervised 

DL-based DIR algorithms in Section 2.1. Then we introduce the concept of inter-patient 

TTO and intra-patient TTO methods that can be applied to the unsupervised DIR algorithms 

in Section 2.2. Lastly, we describe the data used in the experiments and the experiment 

design in Section 2.3 and Section 2.4. Three main experiments have been performed in 

this study. First, we compared the performance of the individualized TTO model with the 

population model for different DL architectures. Second, we compared the efficiency of 

inter-patient TTO starting from a pre-trained population model and an untrained model with 

random weights for two best DL architectures. Third, we further refined the individualized 

model to a later treatment fraction of the same patient to obtain a fractional model to 

illustrate intra-patient TTO application in CBCT-based online ART workflow. We present 

the results of the three experiments in Section 3 and the conclusions and discussion in 

Section 4.

Our main contributions are:

1. We proposed a TTO method that can refine a pre-trained DL-based population 

DIR model for each individual test patient and then progressively for each 

fraction of online ART treatment, to mitigate the model generalizability problem.

2. We did extensive experiments for multiple state-of-the-art DL architectures to 

show that TTO can significantly improve a population model’s performance 

especially when the population model doesn’t work well for a particular patient.

3. We showed that TTO models are less susceptible to the generalizability problem 

which appears quite common for the population models in the targeted clinical 

applications.

4. The individualized models from TTO outperform the population DL models and 

traditional DIR models.

5. We showed that the inter-patient TTO and intra-patient TTO can be 

accomplished in a few minutes.

6. Inter- and intra-patient TTO can be applied to DIR in online ART workflow for 

auto-segmentation effectively and efficiently, by adapting a population model to 

a new patient or adapting an individualized model to a new treatment fraction of 

the same patient.

2. Materials and methods

2.1. Unsupervised DL-based DIR algorithms

Let’s set two pair of images be the moving images Im(x′), and the fixed images If(x); 

we assume that they are pre-rigid aligned. DIR tries to find the best DVF u(x′), that can 

minimize the difference between the fixed and moved images. Thus, an ideal DIR between 

Im and If can be expressed as:
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If x = Im ∘ u = Im x′ + u x′ .

Typical unsupervised DL-based DIR algorithm is shown in Figure 1. A transformation 

neural network is used predict DVF from a pair of moving and fix images and then a STN 

is used to warp the moving image based on predicted DVF to obtain deformed moving 

image. The transformation model can be any neural networks, from very simple one like 

convolutional neural network (CNN) to state-of-the-art architectures like Voxelmorph14, 18 

and cascaded VTN16. The loss function can be described as:

ℒ = ℒsim If, Im ∘ u + λR u = ℒsim If, Im ∘ f Im, If + λR f Im, If ,

where ℒsim is the image similarity measures between fixed and deformed moving images, 

R is regularization terms of u, and λ is a weighting factor. In our study,Im is pCT and If 

is CBCT. And the DL model is optimized to minimize the gradients of loss function. A 

population model is trained on large dataset. After training, during inference phase, DVF can 

be predicted by the population model from a pair of pCT and CBCT images. Then STN can 

be used to warp the contours on pCT to get auto-segmentations on CBCT with the predicted 

DVF.

2.2. Inter-patient TTO and intra-patient TTO

A feedforward network with a single layer is sufficient to represent any function, but 

the layer may be infeasibly large and may fail to learn and generalize correctly24. In the 

mathematical theory of artificial neural networks, universal approximation theorems are 

results25 that establish the density of an algorithmically generated class of functions within 

a given function space of interest. There are variety of results between non-Euclidean spaces 

and other commonly used architectures and, more generally, algorithmically generated 

sets of functions, such as the CNN architecture26,27, radial-basis-function networks28, 

or invariant/equivariant network29. Universal approximation theorems imply that neural 

networks can approximate any functions with appropriate capacities. Thus according to 

universal approximation theorems, a DL neural network can approximate a transformation 

function in DIR with only a moving and a fixed image.

Unlike common DL training strategy where a DL model is trained on large dataset to get 

a population model and tested on unseen dataset, TTO doesn’t need pre-training on lots of 

data. Instead, only one pair of moving and fix image is enough for DL network to generate 

a transformation function for that image pair according to universal approximation theorems. 

In our application, the biggest advantage of TTO is that patient-specific transformation 

model can be generated for each patient rather than a population model applied for all 

patients. Therefore, the common generalizability problem or overfitting problem in machine 

learning can be avoided by the TTO strategy. However, like the other optimization methods, 

TTO may also suffer from computation time cost. This issue can be greatlyt mitigated by 

starting TTO from a pre-trained population model rather than starting from scratch to reduce 

the number of iterations needed. Lots of studies have shown that the amount of time or 

iterations needed to learn an accurate neural network model can be significantly reduced by 
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transfer learning over learning from scratch30–32. Therefore, the model parameters from a 

population model that have been trained on large datasets can be utilized in TTO to start the 

optimization process.

Figure 2 illustrates the concept of inter-patient TTO and intra-patient TTO in our 

application. First step is to get a population model by training a DL network on large dataset. 

If a new patient’s anatomy is very different from the training data, the population model 

might fail. However, TTO can adjust the population model parameters to the new patient to 

obtain the individualized model. That means we can apply TTO to a DL model starting from 

the population model parameters rather than starting from the scratch on a new patient’s data 

in order to achieve the best performance for that specific patient. Therefore, TTO will not 

only improve DIR accuracy compared to population model, it will also decrease the number 

of iterations and optimization time by starting TTO from a warm-start. Thus the second step 

is to get an individualized model by finetuning the population model to a new patient.

In CBCT-based ART workflow, CBCT images are frequently taken during radiation courses 

to monitor anatomical changes. Assuming a new patient has a CBCT image for each 

treatment fraction and already has an individualized model refined to the CBCT image from 

the first fraction. In this case, TTO can be applied to the individualized model on the image 

pair of the next fraction to obtain the fractional model, and so forth. Therefore, each fraction 

will have a fractional model that has the best fit for that fraction by TTO. Then the third 

step is to get a fractional model by fine-tuning the individualized model to a new treatment 

fraction of the same patient.

2.3. Data

We retrospectively collected data from 239 patients with head and neck squamous cell 

carcinoma treated with external beam radiotherapy with radiation dose around 70Gy. Each 

patient includes a 3D pCT volume acquired before the treatment course, OARs and target 

segmentations delineated by physicians on the pCT, and two sets of 3D CBCT volume 

acquired at fraction 20 and fraction 21 during treatment course. The pCT volumes were 

acquired by a Philips CT scanner with 1.17 × 1.17 × 3.00 mm3 voxel spacing. The 

CBCT volumes were acquired by Varian On-Board Imagers with 0.51 × 0.51 × 1.99 mm3 

voxel spacing and 512 × 512 × 93 dimensions. The pCT is rigid registered to CBCT 

through Velocity (Varian Inc., Palo Alto, USA). Therefore the rigid-registered pCT has 

the same voxel spacing and dimensions as CBCT. Synthetic CT (sCT) images with less 

artifacts and CT-like Hounsfield units were generated from CBCT using an in-house DL 

model developed previously33. In this paper, sCT replaced CBCT in all the following DIR 

experiments since better image quality would lead to more accurate DIR. The dimensions 

of pCT and sCT volumes were both down-sampled to 256 × 256 × 93 from 512 × 512 × 

93, and then cropped to 224 × 224 × 64. We randomly picked 39 out of 239 patients for 

testing. We selected 17 structures that either are critical OARs or have large anatomical 

changes during radiotherapy courses. They are left brachial plexus (L_BP), right brachial 

plexus (R_BP), brainstem, oral cavity, constrictor, esophagus, nodal gross tumor volume 

(nGTV), larynx, mandible, left masseter (L_Masseter), right masseter (R_Masseter), inferior 

pharyngeal constrictor (PACS), left parotid gland (L_PG), right parotid gland (R_PG), left 
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submandibular gland (L_SMG), right submandibular gland (R_SMG), spinal cord. The 

contours of these 17 structures were first propagated from pCT to CBCT of fraction 21 using 

rigid and deformable image registration in Velocity, and then modified and approved by an 

radiation oncology expert as ground truth contours on CBCT of fraction 21 for test.

2.4. Experiments design

We did extensive experiments to answer the following questions: does the TTO method have 

any advantage over typical training strategy and how to use TTO in an efficient way for 

CBCT-based online ART? The experiment design is shown in Figure 3.

In experiment 1 shown in Figure 3(a), population model was trained on pCT and CBCT 

fraction 21 pairs from 200 training patients and then tested on pCT and CBCT fraction 21 

pairs from the 39 test patients. Individualized models are obtained by applying inter-patient 

TTO to the 39 test patients starting from the trained population model. TTO process stops 

when the loss curve converges. In this and all the following experiments, an absolute change 

of less than 0.005 in the loss function is counted as no decrease and the loss function stops to 

decrease in 50 iterations is defined as convergence. We compared the segmentation accuracy 

of individualized TTO models and population model with different DL networks from 

very simple one to the-state-of-art neural networks including CNN, FIAM15, Voxelmorph14, 

5-cascaded Voxelmorph, VTN17, and 10-cascaded VTN16. CNN is a simple network that 

only has 10 convolutional layers without any downsampling or upsampling layer. Each 

convolutional layer has 16 filters and are followed by LeakyReLU activation layer. We 

added CNN architecture to our experiments to illustrate the generalizability of TTO to 

different types of architectures. Traditional methods including Elastix, 3DSlicer B-spline 

deformable registration, and 3DSlicer demon deformable registration were also performed 

for comparison. Since sCT and CT are considered as the same image modality and used as 

fixed and moving images in our experiments, the loss function of all the algorithms in this 

study are based on intensity based similarity metrics. We add regularization terms weighted 

by λ in the loss function for stabilization purpose. Weighting factor λ in the loss function 

are set to the default values used in the originally published papers. Adam optimization with 

learning rate of 0.0002 and batch size of 1 was used for all the TTO and population models.

Since individualized models can also be obtained by TTO starting from a randomized 

DL model on a new patient data directly (one shot learning), time efficiency was studied 

between inter-patient TTO starting from population model versus starting from scratch in 

experiment 2, shown in Figure 3(b). The 39 test patients with pCT and CBCT fraction 21 

pairs were used in this experiment. TTO process stops when the loss curve converges for 

each case during optimization. We picked the best two DL architectures for this experiment: 

5-cascaded Voxelmorph and 10-casccaded VTN, since only these two can compete with 

traditional DIR methods.

In the last experiment, performance of intra-patient TTO application was studied. An 

individualized model was obtained by applying TTO to pCT and CBCT fraction 20 of a 

test patient starting from the population model. Then a fractional model was obtained by 

applying TTO to pCT and CBCT fraction 21 of the same test patient starting from the 

individualized model. We repeat this process for the 39 test patients. Similar to the previous 
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experiment, the performance gain and the optimization time for intra-patient TTO models 

to converge for the test patients were studied. The best two DL architectures including 

5-cascaded Voxelmorph and 10-casccaded VTN were selected for this experiment.

2.4. Evaluation metrics

To quantitatively evaluate segmentation accuracy, dice similarity coefficient (DSC) and 95% 

Hausdorff distantace (HD95) were calculated between predicted and manual segmentations. 

DSC is intended to gauge the similarity of the prediction and ground truth by measuring 

volumetric overlap between them. It is defined as

DSC = 2 X ∩ Y
X + Y (17)

where X is the prediction, and Y is the ground truth.

HD is the maximum distance from a set to the nearest point in another set. It can be defined 

as

HD X, Y = max dXY , dY X = max maxx ∈ Xminy ∈ Yd x, y , maxy ∈ Yminx ∈ Xd x, y . (18)

HD95 is based on the 95th percentile of the distances between boundary points in X and Y. 

The purpose of this metric is to avoid the impact of a small subset of the outliers.

3. Results

3.1. Population vs. inter-patient TTO

We compared the segmentation accuracy of individualized models and population model for 

different architectures from very simple one like CNN to the-state-of-art architecture like 

Voxelmorph and cascaded VTN. The individualized model is obtained by applying inter-

patient TTO from a population model. The average dice coefficients and HD95 of the 17 

selected organs and target from 39 test patients using population models and individualized 

models with different architectures including CNN, FAIM, Voxelmorph, VTN, 5-cascaded 

Voxelmorph, and 10-cascaded VTN are shown in Table 1. The performance of each 17 

structures compared between population models and individualized models with all the 

tested architectures are shown in Supplementary figures 1–6. From Table 1, we can see 

that individualized models all have improvement from the corresponding population models 

for all the architecture tested in dice coefficient and HD95. The absolute improvement 

from the population models to the individualized models are 0.03, 0.03,0.03,0.04, 0.01, 

and 0.02 in dice coefficient, and 0.35 mm, 0.27 mm, 0.98 mm, 0.32 mm, 0.07 mm, 

and 0.06 mm in HD95 for CNN, FAIM, Voxelmorph, VTN, 5-cascaded Voxelmorph, and 

10-cascaded VTN respectively. For visual comparison, examples of autosegmentation by 10-

cascaded population model and individualized model were plotted in Figure 4. Overall, the 

architectures which have bad population model performance tend to have large performance 

gain through TTO method. On the contrary, architectures with good population model 

performance tend to have small performance gain through TTO method.
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When comparing the performance of individualized models among all the tested 

architectures shown in Supplementary figure 7, CNN individualized model has the worst 

performance among all, even though it has big improvement gain from population model. 

While 5-cascaded Voxelmorph and 10-cascaded VTN individualized models only have little 

improvement from population models, but they still have the best performance among all the 

individualized models. We can see from Supplementary figure 7 that a better architecture has 

better performance not only in typical training strategy, but also in TTO mode. Apparently 

the performance of individualized model is architecture related, and better architecture will 

surely lead to better performance with TTO method.

For the state-of-the-art architectures, like 5-cascaded Voxelmorph and 10-cascaded VTN, 

even though the improvement from population models by TTO are small when averaged 

over all the testing patients, significant performance gain can be observed for outlier patients 

where population models failed. From figure 5, we can see that there is 1 patient having 

0.12 DSC gain for 5-cascaded Voxelmorph and 0.11 DSC gain for 10-cascaded VTN 

by TTO method. The number of patients which have at least 0.05 DSC improvement 

or 2 mm HD95 improvement by inter-patient TTO for CNN, FAIM, Voxelmorph, VTN, 

5-cascaded Voxelmorph, and 10-cascaded VTN architectures are 5, 6, 10, 9, 2 and 2 out of 

39 test patients, respectively. Thus models generated by TTO method are less vulnerable to 

generalizability problem.

We also compared individualized models to traditional DIR methods including 3DSlicer 

B-spline deformable registration, 3DSlicer Demon deformable registration, and Elastix, 

shown in Table 2. We only picked the best 2 architectures for comparison: 5-cascaded 

Voxelmorph and 10-casscaded VTN, since only these two architectures can compete with 

traditional methods. 5-cascaded Voxelmorph individualized model and 10-cascaded VTN 

individualized model have higher average dice coefficients and lower HD95 values than 

traditional DIR methods over all 17 structures from 39 test patients. Since Elastix has 

the best performance among traditional methods, only Elastix is plotted in Supplementary 

figure 7 for comparison with individualized models in each structure. The autosegmentation 

generated by Elastix and 10-cascaded VTN individualized models from some test patients 

are shown in Figure 4 for visual evaluation. It is clear to see that the discrepancy between 

contours generated by individualized models and ground truth contours are much less 

than the discrepancy between contours generated by Elastix and ground truth. Overall, 

5-cascaded Voxelmorph and 10-cascaded VTN using our proposed TTO method can 

outperform traditional methods.

3.2. Inter-patient TTO: starting from population model vs. starting from randomized 
model

In inter-patient TTO application, we refine a population model to a new patient instead of 

starting TTO from scratch for efficiency gain. The time cost for inter-patient TTO starting 

from a randomized model and a population model is plotted in Figure 6. The average time 

cost for inter-patient TTO starting from a randomized model is 10.25 hours for 5-cascaded 

Voxelmorph and 9.44 hours for 10-cascaded VTN. However, the convergence time are 

dramatically decreased to 3.78 minutes and 3.60 minutes respectively by starting from a 
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population model. Majority test patients can have personalized model ready in 4 minutes, 

and the maximum time cost is no more than 10 minutes. Figure 7 shows an example of 

how the autosegmentation improves with time during inter-patient TTO. Sharp improvement 

happened at approximately 3 minutes, while after that, the improvement starts to slow down 

and finally becomes visually unobvious. Therefore the time needed by inter-patient TTO for 

model performance gain is clinically acceptable.

3.3 Intra-patient TTO

In intra-patient TTO application, the time cost for intra-patient TTO model to converge 

starting from an individualized model is plotted in Figure 8. The average intra-patient TTO 

time for 39 test patients is 1.06 minutes for 5-cascaded Voxelmorph architecture and 1.24 

minutes for 10-cascaded VTN architecture. Majority test patients can have personalized 

model ready in 1 minute, and the maximum time cost is no more than 6 minutes. The 

segmentation performance gain through intra-patient TTO is not obvious, shown in Table 

3. Figure 9 shows an example of how the autosegmentation improves with time during 

intra-patient TTO. Sharp improvement happened at approximately 1.5 minutes, while after 

that, the improvement is negligible. The individualized model that has been optimized on a 

pair of images from only one fraction from a specific patient can work pretty well on another 

pair of images from the next fraction. That means very few number or no iterations may be 

needed between fraction and fraction within a patient.

4. Discussion and Conclusion

We conducted extensive experiments by applying the proposed TTO method to different DL 

architectures from simple ones to the-state-of-art ones. We also compared the TTO method 

to some traditional methods. We found that the TTO method can improve performance of 

the population models for all the architectures tested. Worse performance of the population 

model, more improvement we can observe by the TTO method. The performance of 

the TTO method is DL architecture related. A better DL architecture will have better 

performance through the TTO method. A good DL architecture using the TTO method can 

outperform the traditional DIR methods in terms of accuracy and robustness.

The efficiency of the TTO method was also studied in inter-patient and intra-patient 

applications, taking CBCT-based ART as an example. It takes about 3 minutes for a model 

to converge starting from a pre-trained population model in the inter-patient application, and 

about 1 minute for a model to converge starting from a pre-trained individualized model in 

intra-patient application. Compared to one shot DIR learning, which starts to train a model 

from scratch using only a pair of moving and fixed image, TTO can dramatically decrease 

the time cost and make it feasible for online applications such as CBCT-based online ART.

One advantage of the TTO method is its flexibility. It can be applied to any unsupervised 

DIR neural networks. The TTO optimization process is also very easy. The hyper-parameters 

used in the deep neural networks can be fixed for all the cases. So it avoids the parameter 

tuning process in traditional DIR methods.
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Another main advantage of the TTO method is its ability to improve model generalizability. 

A population model can be adapted to each individual patient by TTO rather than a same 

population model applied to all patients. Each individualized model can further be adapted 

from fraction to fraction through the ART course. In the case when population model 

fails, TTO adapted models can boost model performance significantly. We showed a patient 

case in Supplementary Figure 8(d) and (e) where the population model totally failed in 

delineating constrictor and larynx at the border slices, whereas the TTO model can avoid 

these failure. In the other figures in Supplementary Figure 8, TTO model significantly 

improves segmentation accuracy compared to population model.

All experiments in this work were done by one NVIDIA V100 GPU with 32 GB RAM. 

The time cost per iteration during TTO was around 3 seconds for 5-cascaded Voxelmorph 

and 10-cascaded VTN architecture. Since the number of iterations needed for a population 

model to converge on a specific patient data to get individualized model is so low, inter-

patient TTO can be completed online. The anatomy difference between two consecutive 

fractions for the same patient is so small, intra-patient TTO can be accomplished in real 

time.

In conclusion, we designed a novel TTO strategy to achieve patient and treatment fraction 

specific models for image registration and structure propagation to facilitate CBCT-based 

online ART workflow.
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Figure 1. 
Step 1 shows a classical training architecture of unsupervised DL-based DIR algorithms. 

During training, the transformation model is optimized by backpropagating the gradients of 

loss function. Step 2 shows the inference phase, where predicted DVF can be used to warp 

pTV contours through STN to obtain contours on CBCT.
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Figure 2. Concept of the population model, individualized model (inter-patient TTO), and 
fraction model (intra-patient TTO).
Population model is obtained by typical training strategy, which trains a DL model on a 

large dataset. Inter-patient TTO: an individualized model for a new patient can be obtained 

by adapting the population model to the new patient’s data. Intra-patient TTO: a fractional 

model for the same patient can be obtained by adapting the individualized model to the new 

fraction’s data.
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Figure 3. 
Experiment design. (a) Experiment 1: we compare the population model and the 

individualized model in terms of segmentation accuracy. (b) Experiment 2: we compare 

the individualized model refined from the population model with the individualized model 

refined from the randomized model in terms of efficiency. (c) Experiment 3: intra-patient 

TTO was applied to refine the first individualized model to a later fraction for performance 

evaluation.
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Figure 4. Contours of test patients from axial view.
The images from left to right are CBCT with manual ground truth contours on it, 

the discrepancy between Elastix contours and ground truth contours, the discrepancy 

between 10-cascaded VTN population model contours and ground truth contours, and the 

discrepancy between 10-cascaded VTN individualized model contours and ground truth 

contours respectively.

Liang et al. Page 17

Med Phys. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Distribution of DSC and HD95 change from a population model to an individualized 
model for 39 test patient.
X axis and Y axis are the average HD95 difference and average DSC difference of 17 

structures between a population model and an individualized model for a patient.
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Figure 6. The time cost for inter-patient TTO.
Two architectures were tested: (a) 5-cascaded Voxelmorph and (b) 10-cascaded VTN.
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Figure 7. One example of autosegmentation performance change with inter-patient TTO starting 
from a population moel.
The architecture used here is 10-cascaded VTN. Background image is CBCT and the 

structure contoured is nGTV. Red is the ground truth contour and green is the TTO contour.
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Figure 8. The time cost for intra-patient TTO starting from an individualized model.
Two architectures were tested: (a) 5-cascaded Voxelmorph and (b) 10-cascaded VTN.
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Figure 9. One example of auto-segmentation performance change with intra-patient TTO.
The architecture used here is 10-cascaded VTN. Background image is CBCT and the 

structure contoured is nGTV. Red is the ground truth contour and green is the TTO contour.
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Table 1.
The average DSC and HD95 of the 13 selected structures from the 39 test patients for 
different DL architectures with population models and individualized models.

Individualized models are obtained by applying inter-patient TTO from a population model. The green 

numbers are the absolute improvements from the population model to the individualized model.

DL Architecture

DSC HD95 (mm)

Population 
model

Individualized 
model Improvement Population 

model
Individualized 

model Improvement

CNN 0.78 0.81 +0.03 3.18 2.83 −0.35

FAIM 0.80 0.83 +0.03 2.88 2.61 −0.27

Voxelmorph 0.79 0.82 +0.03 3.87 2.89 −0.98

VTN 0.81 0.85 +0.04 2.82 2.50 −0.32

5-cascaded 
Voxelmorph 0.83 0.84 +0.01 2.53 2.46 −0.07

10-cascaded VTN 0.83 0.85 +0.02 2.39 2.33 −0.06
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Table 2.
Comparison between traditional DIR methods and individualized models with state-of-
the-art DL architectures.

Numbers in this table were calculated by the average DSC and HD95 of the 13 selected structures from the 39 

test patients.

3DSlicer Demon 3DSlicer B-spline Elastix 5-cascaded Voxelmorph 
individualized model

10-cascaded VTN individualized 
model

DSC 0.78 0.82 0.83 0.84 0.85

HD95 (mm) 3.55 2.82 2.83 2.46 2.33
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Table 3.

Average DSC of 39 test patients with 13 selected structures before and after intra-patient TTO

Before intra-patient TTO After intra-patient TTO

5-cascaded Voxelmorph 0.839 0.842

10-cascaded VTN 0.841 0.842
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