Skip to main content
. 2023 Apr 3;9(4):e15163. doi: 10.1016/j.heliyon.2023.e15163

Table 8.

Classification performance evaluation of feature selection with different top k features selected.

Model k Accuracy Precision F1 Score TPR TNR auROC auPR MCC
SVM 20 89.56 88.79 0.8895 0.72 0.92 0.88 0.694 0.5675
15 89.78 89.03 0.8918 0.72 0.92 0.877 0.701 0.5699
10 89.51 88.76 0.8895 0.71 0.92 0.85 0.663 0.5619



RF 20 89.1 88.11 0.8787 0.75 0.91 0.932 0.743 0.5898
15 89.13 88.14 0.8814 0.73 0.91 0.928 0.736 0.6025
10 89.51 89.09 0.8926 0.68 0.93 0.923 0.707 0.5802



MLP 20 88.97 88.37 0.8859 0.67 0.92 0.902 0.669 0.5516
15 88.4 87.44 0.877 0.67 0.91 0.898 0.622 0.5113
10 88.23 87.73 0.8786 0.62 0.92 0.861 0.587 0.5291



DT 20 90.54 89.9 0.8998 0.76 0.93 0.923 0.731 0.6049
15 90.54 89.9 0.8998 0.76 0.93 0.923 0.731 0.6049
10 89.89 89.64 0.8975 0.68 0.94 0.926 0.7014 0.6037



XGBoost 20 90.65 90.01 0.898 0.801 0.96 0.937 0.749 0.5992
15 90.19 89.45 0.8928 0.7804 0.92 0.936 0.742 0.5775
10 89.83 89.01 0.8889 0.76 0.91 0.935 0.731 0.5611