Table 8.
Classification performance evaluation of feature selection with different top k features selected.
| Model | k | Accuracy | Precision | F1 Score | TPR | TNR | auROC | auPR | MCC |
|---|---|---|---|---|---|---|---|---|---|
| SVM | 20 | 89.56 | 88.79 | 0.8895 | 0.72 | 0.92 | 0.88 | 0.694 | 0.5675 |
| 15 | 89.78 | 89.03 | 0.8918 | 0.72 | 0.92 | 0.877 | 0.701 | 0.5699 | |
| 10 | 89.51 | 88.76 | 0.8895 | 0.71 | 0.92 | 0.85 | 0.663 | 0.5619 | |
| RF | 20 | 89.1 | 88.11 | 0.8787 | 0.75 | 0.91 | 0.932 | 0.743 | 0.5898 |
| 15 | 89.13 | 88.14 | 0.8814 | 0.73 | 0.91 | 0.928 | 0.736 | 0.6025 | |
| 10 | 89.51 | 89.09 | 0.8926 | 0.68 | 0.93 | 0.923 | 0.707 | 0.5802 | |
| MLP | 20 | 88.97 | 88.37 | 0.8859 | 0.67 | 0.92 | 0.902 | 0.669 | 0.5516 |
| 15 | 88.4 | 87.44 | 0.877 | 0.67 | 0.91 | 0.898 | 0.622 | 0.5113 | |
| 10 | 88.23 | 87.73 | 0.8786 | 0.62 | 0.92 | 0.861 | 0.587 | 0.5291 | |
| DT | 20 | 90.54 | 89.9 | 0.8998 | 0.76 | 0.93 | 0.923 | 0.731 | 0.6049 |
| 15 | 90.54 | 89.9 | 0.8998 | 0.76 | 0.93 | 0.923 | 0.731 | 0.6049 | |
| 10 | 89.89 | 89.64 | 0.8975 | 0.68 | 0.94 | 0.926 | 0.7014 | 0.6037 | |
| XGBoost | 20 | 90.65 | 90.01 | 0.898 | 0.801 | 0.96 | 0.937 | 0.749 | 0.5992 |
| 15 | 90.19 | 89.45 | 0.8928 | 0.7804 | 0.92 | 0.936 | 0.742 | 0.5775 | |
| 10 | 89.83 | 89.01 | 0.8889 | 0.76 | 0.91 | 0.935 | 0.731 | 0.5611 | |