Table 9.
Classification Report of Feature Selection with different k values and Oversampling.
Model | k | Accuracy | Precision | F1 Score | TPR | TNR | auROC | auPR | MCC |
---|---|---|---|---|---|---|---|---|---|
SVM | 20 | 88.86 | 88.75 | 0.888 | 0.64 | 0.93 | 0.877 | 0.665 | 0.5747 |
15 | 88.61 | 89.07 | 0.8882 | 0.61 | 0.94 | 0.869 | 0.67 | 0.5769 | |
10 | 88.21 | 88.88 | 0.885 | 0.6 | 0.94 | 0.854 | 0.641 | 0.5756 | |
RF | 20 | 89.48 | 89.72 | 0.8959 | 0.65 | 0.94 | 0.933 | 0.737 | 0.6069 |
15 | 89.13 | 89.67 | 0.8936 | 0.63 | 0.94 | 0.93 | 0.722 | 0.6072 | |
10 | 88.51 | 89.31 | 0.8884 | 0.61 | 0.94 | 0.923 | 0.701 | 0.6069 | |
MLP | 20 | 87.92 | 88.28 | 0.8808 | 0.6 | 0.93 | 0.881 | 0.611 | 0.5347 |
15 | 86.32 | 88.68 | 0.8715 | 0.54 | 0.95 | 0.892 | 0.624 | 0.5542 | |
10 | 87.32 | 88.27 | 0.8766 | 0.47 | 0.94 | 0.863 | 0.647 | 0.576 | |
DT | 20 | 87.29 | 90.15 | 0.882 | 0.56 | 0.96 | 0.919 | 0.705 | 0.6009 |
15 | 88.38 | 89.68 | 0.8887 | 0.6 | 0.95 | 0.921 | 0.699 | 0.6059 | |
10 | 89.16 | 90.32 | 0.8959 | 0.62 | 0.95 | 0.922 | 0.693 | 0.6046 | |
XGBoost | 20 | 90.32 | 89.82 | 0.8998 | 0.72 | 0.93 | 0.937 | 0.754 | 0.6269 |
15 | 90.21 | 89.97 | 0.9008 | 0.7 | 0.94 | 0.935 | 0.754 | 0.6069 | |
10 | 89.86 | 89.72 | 0.8979 | 0.68 | 0.94 | 0.933 | 0.734 | 0.6029 |