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Abstract

MicroRNAs (miRNAs) are epigenetic regulators that can target and inhibit translation of multiple 

mRNAs within a given cell type. As such, a number of different pathways and networks may 

be modulated as a result. In fact, miRNAs are known to regulate many cellular processes 

including differentiation, proliferation, inflammation and metabolism. This review focuses on the 

miR-181 family and provides information from the published literature on the role of miR-181 

homologs in regulating a range of activities in different cell types and tissues. Of note, we have 

not included details on miR-181 expression and function in the context of cancer since this is 

a broad topic area requiring independent review. Instead, we have focused on describing the 

function and mechanism of miR-181 family members on differentiation toward a number of 

cell lineages in various non-neoplastic conditions (e.g. immune/hematopoietic cells, osteoblasts, 

osteoclasts, chondrocytes, adipocytes). We have also provided information on how modulation 

of miR-181 homologs can have positive effects on disease states such as cardiac abnormalities, 

pulmonary arterial hypertension, thrombosis, osteoarthritis and vascular inflammation. In this 

context, we have used some examples of FDA-approved drugs that modulate miR-181 expression. 

We conclude by discussing some common mechanisms by which miR-181 homologs appear 

to regulate a number of different cellular processes and how targeting specific miR-181 family 

members may lead to attractive therapeutic approaches to treat a number of human disease or 

repair conditions, including those associated with the aging process.
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1. MicroRNAs

Non-coding microRNAs (miRNAs) are epigenetic regulators that function at the post-

transcriptional level to suppress protein production. One of the earliest reports on the 

existence of miRNAs was the identification of let-7 in the nematode Caenorhabditis elegans 
(Lee, 1993). Since then, a PubMed search for “miRNA” shows over 140,000 publications 

to date, thus highlighting how much the field has grown exponentially over the years. 

An excellent tool for the miRNA community is miRBase, a public repository and online 

resource for miRNA sequences and annotations (http://mirbase.org). The latest release of 

miRBase (v22.1) contains miRNA sequences from 271 organisms: 48,860 mature miRNA 

sequences and 38,589 precursor miRNA hairpin sequences (Kozomara, 2019). Unlike long 

non-coding RNAs, many miRNAs are phylogenetically conserved (Ibáñez-Ventoso, 2008), 

thus permitting studies in a number of different organisms as a means to understand the role 

of human miRNAs in tissue development, homeostasis and disease.

Many miRNA genes are transcribed as independent transcriptional units (i.e. intergenic 

localization), having their own promoter and other regulatory elements. Alternatively, genes 

encoding miRNAs can also be found within introns of protein coding genes (i.e. intragenic). 

In this case, miRNA expression may be regulated by the host gene promoter or via its 

own independent promoter within the transcriptional unit (Pepe, 2017; Veronese, 2011). 

In addition, genes encoding miRNAs can also exist in clusters, meaning a set of two or 

more miRNAs that are transcribed from physically adjacent miRNA genes. Three additional 

criteria are required to properly define a miRNA cluster: miRNAs should be transcribed 

in the same orientation, and are not separated by a transcriptional unit or a miRNA in the 

opposite direction. With respect to distance limits within a miRNA cluster, miRBase has set 

10 kilobases (kb) as the default parameter. As will be described further, miR-181 family 

homologs exist in clusters.

With respect to biosynthesis and function (Figure 1), miRNA genes are generally transcribed 

by RNA polymerase II as large primary miRNA (pri-miRNAs) transcripts ranging in length 

from several hundred to thousands of nucleotides (nt) in length. In the case of clustered 

miRNAs, a large primary polycistronic transcript is formed. These pri-miRNA transcripts 

are then processed in the nucleus by a Drosha-containing complex to form precursor (pre) 

miRNAs (~60–150 nt in length) which are then shuttled to the cytoplasm via the RNA 

binding protein, Exportin 5. Further processing of these hairpin pre-miRNAs takes place 

in the cytosol by the endonuclease, Dicer, forming mature miRNA duplexes ranging from 

~19–24 nt. Following separation of the duplex by helicases, one of the RNA strands (the 

functional 5p or 3p strand) will commonly enter the RNA induced silencing complex 

(RISC) and interact with an Ago protein as well as bind, via its seed sequence, to a 

complementary sequence within the 3’-untranslated sequence (UTR) of a target mRNA. As 

a result, degradation of the target mRNA, or inhibition of translation commonly occurs. In 
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rare cases, miRNAs have been shown to enhance target gene expression via non-canonical 

mechanisms (Zhang, 2014). A recent study involving metabolic labelling of hundreds of 

functional miRNAs in murine cells revealed a median half-life ranging from 11 h to 34 

h, which is longer than the typical half-life of mRNAs (Kingston, 2019). Half-lives for 

individual miRNAs were also found to vary between cell types, suggesting that cell-specific 

factors play a role in regulating miRNA stability. Although miRNAs account for only 1–

5% of the human genome (Berezikov, 2005), up to 60% of protein-coding genes can be 

regulated by miRNAs (Friedman, 2009).

Levels of protein suppression induced by miRNAs are generally modest compared to 

siRNAs. However, unlike siRNAs, miRNAs have the potential to target tens to hundreds 

of mRNAs within a given cell type resulting in modulation of many cellular pathways 

and networks. This feature, in addition to their small size and high conservation between 

species, renders miRNAs as attractive therapeutic targets (Diener, 2022). A Phase 2 clinical 

trial was recently completed to test the effects of a miR-29 mimic drug (MRG-201; 

remlarsen) keloid prevention (Gallant-Behm, 2019). In addition, Phase 1 and 1b clinical 

trials have been carried out to test the effects of a miR-92a antagomir (MRG-110) in 

wound healing (Abplanalp, 2020) and a miR-21 antagomir (CDR132L) to treat the effects 

of heart failure (Täubel, 2021). Ongoing trials feature anti-miR-21 (RG-012; lademirsen) for 

Alport syndrome (Phase II) (Rubel, 2022) and an artificial engineered miR (AMT-130) for 

Huntington’s Disease (Phase I/II) (Rodrigues, 2020). In addition, a vast number of active 

and recruiting studies on http://clinicaltrials.gov/ include outcome measures for a range 

of miRNAs in various human diseases. Clinical studies for additional miRNAs, such as 

anti-miR-122 drug miravirsen and miR-34 mimic drug MRX34, have recently been halted 

due to limited efficacy and immune-related patient deaths, respectively. Findings from these 

clinical studies may lead to identification of new miRNA therapeutic targets and disease 

biomarkers. As will be discussed more in the following sections, members of the miR-181 

family have been shown to regulate many cellular processes including cell differentiation, 

metabolism and growth factor signaling. As such, targeting miR-181 homologs could be an 

attractive therapeutic strategy to treat specific disease states. Of note, this review will not 

cover miR-181 expression and function in cancer since this is a broad area of research and 

there have been some recent review articles on this topic (Braicu, 2019; Feng, 2018; Gu, 

2018; Indrieri, 2020; Yang, 2022).

2. The miR-181 family

Advances in understanding miRNA biology in addition to the increasing availability of 

diverse sequenced genomes have revealed that miRNAs were present at the dawn of 

metazoan evolution (Grimson, 2008; Wheeler, 2009). A number of reports have proposed 

that the expansion of miRNA genes in higher organisms is an important causal factor 

regulating increased vertebrate complexity (Berezikov, 2005; Simkin, 2020; Wheeler, 2009). 

A miRNA family is a group of miRNAs that are derived from a common ancestor. Normally, 

members of a miRNA family are functionally similar but are not necessarily conserved in 

primary sequence of secondary structure.
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The miR-181 gene family is an ancient one that originated in the invertebrate urochordata 

species (Yang, 2014). Phylogenetic analysis of the vertebrate miR-181 family suggests 

that expansion of this gene family formed through gene duplications, including whole 

genome duplications and segmental duplications of the common ancestor gene (Yang, 

2014). There are six mature miRNAs expressed in the vertebrate miR-181 family – 

miR-181a-1, miR-181a-2, miR-181b-1, miR-181b-2, miR-181c and miR-181d (Figure 2). 

They are encoded for by three independent paralog sequences located on three separate 

chromosomes (Ji, 2009). All four sets of mature miRNAs (miR-181a, miR-181b, miR-181c 

and miR-181d) share the same “seed” sequence “ACAUUCA”. In humans, three paralog 

precursor transcripts are found on Chromosome (Chr)-1 (miR-181a-1 and miR-181b-1), 

on Chr-9 (miR-181a-2 and miR-181b-2), and on Chr-19 (miR-181c and miR-181d). 

However, in mouse, the three paralogs are on Chr-1 (miR-181a-1 and miR-181b-1), on 

Chr-2 (miR-181a-2 and miR-181b-2), and Chr-8 (miR-181c and miR-181d). The human 

and mouse miR-181-a/b-1 cluster is found in an intron of a non-coding RNA host gene 

(MIR181A1-HG), while the miR-181-a/b-2 cluster is found in an intron of the NR6A1 

gene, and the miR-181-c/d cluster is found in an uncharacterized sequence on either Chr-19 

(human/rat/monkey) or Chr-8 (mouse) (Das, 2017a).

Mice lacking genes encoding each of the miR-181 clusters have been generated (Fragoso, 

2012; Henao-Mejia, 2013). Interestingly, a striking dose-dependent reduction in size, body 

weight and viability was observed in mice lacking multiple miR-181 alleles (Williams, 

2013). Triple knockout mice lacking all miR-181 clusters have never been obtained due to 

embryonic lethality. These mouse genetic studies points to a critical role for miR-181 family 

members in regulating processes controlling growth and/or development. The following 

sections will focus on reported roles of miR-181 homologs in regulating cell fate and 

function in a range of different biological systems.

3. Modulation of hematopoiesis by miR-181 homologs

One of the earliest published reports on miR-181 was by Bartel’s group who investigated 

miRNA expression in murine hematopoietic cells, an approach that likely detected all 

miR-181 homologs (Chen, 2004). This study showed very high expression of miR-181 

in the thymus that contains mainly T lymphocytes. High expression was also found in 

the brain and lung with lower levels detected in bone marrow, muscle and spleen. Within 

mouse bone marrow, miR-181 was detectable in undifferentiated progenitor (Lin−) cells 

and specifically upregulated in differentiated B lymphocytes. Ectopic over-expression of 

miR-181 in progenitor murine bone marrow cells in vivo supported in vitro findings 

whereby a doubling of B lymphoid lineage cells (CD19+) was found in addition to a 

substantial decrease in CD8+ T cells. Overall, these studies highlighted that miR-181 

homologs play a role in regulating normal hematopoietic lineage differentiation.

The study by Liu et al reported that the activities of pre-mir-181a-1 and pre-mir-181c 

differ in the regulation of early T cell development (Liu, 2008). They showed that ectopic 

expression of pre-mir-181a-1 in thymic progenitor cells promoted CD4+ and CD8+ double 

positive T cell development. However, over-expression of pre-mir-181c did not have such 

enhancing effects. Of note, the previously mentioned study by Chen et al (Chen, 2004) 
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found that over-expression of the mir-181 gene (amplified from chromosome 1, hence the 

mir-181a-1 homolog) promoted B cell production and decreased CD8+ T cell numbers in 

murine bone marrow. The differences in functionality reported for miR-181a-1 are likely due 

to the different cell types / tissue location where the miRNA was ectopically over-expressed 

(i.e. thymic progenitors versus bone marrow cells). Different subsets of target mRNAs will 

undoubtedly be expressed in thymic progenitors when compared to bone marrow cells, 

thereby resulting in varying functional outcomes. Also of interest in this study by Liu et al 
was the finding that nucleotides within the stem loop of pre-mir-181a-1 and pre-mir-181c 

appeared to explain why only the former could enhance T cell differentiation in vitro 

while the latter could not. One would expect similar functions given that both homologs 

share the same seed sequence. It was subsequently proposed in this paper that differences 

in the stem loop nucleotide sequence may influence a number of factors such as pri-and 

pre-miRNA processing as well as transport/subcellular localization of pre-miRNAs. Reports 

in other systems also suggest that the sequence of pre-miRNAs can influence loading of 

mature miRNAs in specific RISCs which would subsequently result in different efficiencies 

of gene silencing as well as different subsets of target mRNAs prone to miRNA-mediated 

suppression (Förstemann, 2007; Steiner, 2007).

An additional role for the miR-181a/b cluster in regulating human natural killer (NK) cell 

development was reported by Cichocki et al (Cichocki, 2011). It is not clear if pre-miRNAs 

from the 181a/b-1 or 181a/b-2 cluster were over-expressed in CD34+ hematopoietic stem 

cells or if only the mature miR-181a/b miRNAs were ectopically expressed. Regardless, 

they reported that miR-181a/b promoted NK cell development in vitro, in part, by 

targeting nemo-like kinase (NLK), thereby enhancing Notch signaling. Further evidence 

suggesting a role for the miR-181 family in regulating hematopoietic cell differentiation was 

reported by Su et al who showed that miR-181a inhibited granulocyte and macrophage-like 

differentiation of CD34+ hematopoietic progenitor cells by targeting and downregulating 

expression of PRKCD, CTDSPL and CAMKK1 (Su, 2015). Another study reported that 

miR-181a over-expression in CD34+ hematopoietic progenitors, promoted megakaryocyte 

(MK) differentiation (Li, 2012b). The major mechanism by which miR-181a induced these 

effects was due to targeting and suppressing the RNA binding protein, Lin28, thereby 

disturbing the Lin28 / let-7 reciprocal regulatory loop. As discussed by the authors, this 

regulatory loop may likely be important in the context of controlling cell differentiation in 

general.

Further evidence to support a role for miR-181a/b in immune cell fate was demonstrated by 

Henao-Mejia et al showing a complete absence of NKT cells in the thymus and periphery 

of mice lacking the miR-181a/b-1 cluster (Henao-Mejia, 2013). This is a rare example of 

how the absence of a single miRNA cluster can result in the loss of an entire cell lineage. 

In addition, these mice also displayed defects in T cell development and early B cell 

development. The major mechanism driving these immune cell defects was found to be due 

to increased levels of the miR-181a/b target gene, phosphatase and tensin homolog (PTEN), 

that primarily functions to inhibit the PI3K/AKT pathway. Subsequently, miR-181a/b-1 null 

mice have reduced PI3K/AKT signaling which led to dysregulation of thousands of genes 

most likely because the PI3K/AKT pathway regulates many important processes in the cell 

including metabolism, proliferation, differentiation and autophagy. Specifically, it was found 
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that significant metabolic reprogramming due to loss of miR-181a/b-1 was a major factor 

causing the defects in immune cell function and differentiation. It is also interesting that 

these immune cell defects were not found in mice devoid of miR-181a/b-2 or miR-181c/d, 

even though the mature miRNAs from each family member contain the same seed sequence. 

This suggests that distinct processes may regulate transcriptional activation of each of the 

miR-181 gene clusters and/or that other non-seed sequence nucleotides are important in 

mRNA targeting. For more detailed information on miR-181-mediated effects on T cell 

function and differentiation, the reader is referred to recent review articles (Grewers, 2020; 

Kim, 2021).

4. Expression and function in skeletal cell differentiation

As mentioned in Section 2, transgenic mice devoid of each miR-181 cluster have been 

generated and a dose-dependent reduction in body size was shown following deletion of 

multiple miR-181 alleles (Henao-Mejia, 2013). This suggests a potential role for miR-181 

family members in regulating skeletal development and homeostasis. Cartilage and bone 

tissue are the principal elements of the skeleton. Chondrocytes are the cells present in 

growth plate and articular cartilage that generate a type II collagen and proteoglycan-rich 

extracellular matrix (ECM). Osteoblasts are bone-forming cells that synthesize an ECM rich 

in mineral and type I collagen while osteoclasts function to resorb bone. The activity of 

the bone anabolic osteoblasts and bone resorbing osteoclasts regulate bone turnover and 

maintain a healthy homeostasis.

Two studies by Bakhshandeh et al reported miRNA signatures associated with in 
vitro chondrogenesis (Bakhshandeh, 2012b) or osteogenesis (Bakhshandeh, 2012a) of 

unrestricted somatic stem cells (USSCs) from human placental cord blood. In both studies, 

miR-181a (the a1 homolog derived from chromosome 1) expression increased at day 21 of 

chondrocyte and osteoblast differentiation. An increase in miR-181 paralog expression was 

also found during osteogenic differentiation of a murine cell line as well during development 

of murine tibia and calvaria (Bhushan, 2013). Studies from the McAlinden group reported 

miRNA expression patterns in chondrocytes from distinct regions of human embryonic 

growth plate cartilage at a time point prior to endochondral bone formation (McAlinden, 

2013). Of the miRNAs that were found to be differentially-expressed between regions 

containing progenitor, differentiated or hypertrophic chondrocytes, levels of miR-181a-1 

and miR-181a-2 showed higher expression in the hypertrophic chondrocyte zone. Gabler 

et al (Gabler, 2015) and Lv et al (Lv, 2020b) described increases in miR-181 expression 

at days 14, 21, and 42 of bone marrow-derived MSC chondrogenesis and an association 

with enhanced hypertrophic cartilage formation, supporting findings from the McAlinden 

group. Two studies reported increased levels of miR-181a during bone marrow MSC 

chondrogenesis although a correlation with enhancing hypertrophy was not discussed 

(Barter, 2015; Vail, 2022). More recently, Melnik et al identified R-Spondin 2 (RSPO2) 

as a key target for miR-181a in regulating MSC hypertrophy (Melnik, 2021).

The study by Bhushan et al showed that over-expression of miR-181a via mimic transfection 

of a murine osteo-progenitor cell line or primary calvarial osteoblasts promoted osteogenic 

differentiation (Bhushan, 2013). They showed that one of the mechanisms by which 
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miR-181a increased osteogenesis was by inhibiting TGF-β signaling via targeting Tgfβi 
(Tgf-beta induced) and TβR-I/Alk5 (TGFβ-type I receptor). More recently, studies in the 

McAlinden group showed that both miR-181a and miR-181b expression increased during 

osteogenic induction of human skeletal progenitor cells and that over-expression of the 

miR-181a/b-1 cluster enhanced osteogenic differentiation (Zheng, 2019). Mechanistically, 

this study revealed that miR-181a/b-1 over-expression resulted in suppression of the target 

mRNA, PTEN, a subsequent increase in the PI3K/AKT signaling cascade and enhanced 

mitochondrial respiration. A similar mechanism was reported in studies from an independent 

group (Lv, 2020a). More recently, another study reported a pro-osteoblast function for 

miR-181a/b-1 (Qi, 2021) while over-expression of miR-181a alone was found to promote 

osteogenesis by targeting PBX1 (Liu, 2020). Additionally, it was reported that miR-181c 

can enhance murine osteoblast differentiation and its expression was inversely correlated 

with human postmenopausal bone disease (Ma, 2020). There are limited and contradictory 

findings on the function of miR-181d on osteogenesis: one study demonstrated an inhibitory 

effect on osteogenic induction of human bone marrow-derived MSCs (BMSCs), in part, by 

targeting SMAD3 (Xie, 2018), while another group showed osteogenic enhancing function 

in BMSCs (Liu, 2021).

With regards to osteoclasts, miR-181a mimic treatment was found to inhibit 

osteoclastogenesis in vitro (Fu, 2021). However, a contradictory result was published 

whereby miR-181a over-expression resulted in enhancement of osteoclastogenesis in vitro, 

in part, by targeting DUSP6 (Zhang, 2021). In other studies, anti-osteoclastogenic function 

was reported following over-expression of miR-181b (Han, 2020) and miR-181c (Yu, 

2021). For miR-181d, one report described mimic-induced enhancement of osteoclast 

differentiation via targeting and suppression of OPG (Sun, 2019).

Taken together, while the majority of reports point to a role for miR-181 homologs in 

enhancing chondrocyte and osteoblast differentiation, further studies are needed to resolve 

some of the contradictory functions reported on the role of specific family members on 

osteogenesis and osteoclast development.

5. Regulation of skeletal tissue homeostasis

With respect to post-natal cartilage tissue, published reports point to an anti-anabolic role 

for miR-181 in mature articular chondrocytes by either suppression of pro-anabolic factors 

(Sumiyoshi, 2013) or promotion of apoptosis and pro-catabolic factors, in part, by targeting 

PTEN (Wu, 2017). Song et al reported higher levels of miR-181b in mouse articular 

cartilage following induction of osteoarthritis (OA) by joint destabilization surgery (Song, 

2013). They subsequently showed that intra-articular injection of antagomir-181b attenuated 

the effects of OA. Similarly, Nakamura et al found higher levels of miR-181a in OA 

facet joint cartilage compared to control specimens and showed that injection of miR-181a 

mimics into the facet joints of rats induced cartilage degradation (Nakamura, 2016). Follow 

up studies by this group revealed that antagomir-181a attenuated OA symptoms induced 

within the facet joints of rats or knee joints of mice (Nakamura, 2019). More recently, 

antagomir-181a antisense oligonucleotides were shown to dampen cartilage breakdown in a 

Bell-Hensley et al. Page 7

J Cell Physiol. Author manuscript; available in PMC 2023 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mouse model of temporomandibular joint OA due, in part, to increased levels of its target 

gene Sirt1 (Qi, 2022).

In human chondrocytes, de Palma et al identified that miR-181a is upregulated in 

osteoarthritic cartilage chondrocytes but decreased when loaded with hydrostatic pressure 

(De Palma, 2018). Min et al identified the SBP2 (Selenocysteine Insertion Sequence Binding 

Protein 2) as a key target of miR-181a in the regulation of cartilage homeostasis (Min, 

2018). Xue et al showed that miR-181a upregulation in osteoarthritic cartilage was localized 

to chondrocytes in damaged cartilage when compared to chondrocytes from smooth regions 

of the same tissue (Xue, 2018). They also showed that miR-181a can alter the chondrocyte 

response to oxidative stress, rendering these cells more susceptible to the damaging effects 

of reactive oxygen species (Xue, 2018). In addition, Cheleschi et al identified miR-181a as 

a mediator of apoptosis and oxidative stress in OA chondrocytes via regulating the NF-kB 

pathway (Cheleschi, 2019). Zeng et al showed that miR-181a over-expression enhanced 

apoptosis in human OA chondrocytes and that it could directly target OPN (Zeng, 2022) 
while another study found that miR-181c could also target OPN and reduce synoviocyte 

proliferation and catabolic gene expression, which would be advantageous in the context 

of OA (Wang, 2017). Interestingly, a recent study revealed that miR-181c, via targeting 

SMAD7, could enhance chondrogenesis as well as ectopic cartilage production in mice. The 

authors conclude that miR-181c enhanced cartilage repair, yet the ex vivo mouse model used 

in their study does not represent a cartilage injury model (Zhang, 2022). It remains to be 

determined how miR-181c functions in the context of regulating cartilage repair or OA.

On the subject of bone repair / homeostasis, levels of miR-181a were found to be 

significantly upregulated in fracture callus repair tissue 14 days post-fracture in rats 

(Waki, 2016) while serum levels of miR-181a were found to be decreased in patients 

with delayed tibial fracture healing compared to control patients with normal healing 

(Guo, 2022). Circulating levels of miR-181c were reported to be downregulated in the 

serum of postmenopausal women with osteopenia or osteoporosis, yet increased in patients 

treated with bisphosphonates (Ma, 2020). This study also showed that miR-181c could 

promote differentiation and mineralization of osteoblasts in vitro. Another study suggested 

that miR-181a may induce bone loss, although this was not tested directly in an in vivo 
model (Zhang, 2021). Other studies have demonstrated that one mechanism by which 

estrogen preserves bone mass is by decreasing miR-181 in BMMSCs to control osteoclast 

differentiation (Shao, 2018; Shao, 2015). While in vitro analyses of miR-181 function in 

regulating bone cell differentiation are informative, the effects of these miRNA homologs on 

regulating bone turnover and repair is more complex given the multiple cell types involved 

in these processes

6. Regulation of myogenesis and adipogenesis

The published literature informs us that miR-181 family members can also regulate 

differentiation of other cell types as well. There have been many reports on effects of 

miRNAs on skeletal muscle cell differentiation and, among these, miR-181 homologs 

have been shown to increase during myogenesis and promote differentiation (Wang, 

2018). Specifically, one study showed that miR-181, by targeting the homeobox protein 
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(Hox-A11; a repressor of the differentiation process), functions in establishing the muscle 

cell phenotype (Naguibneva, 2006). It has also been reported that miR-181a has positive 

synergistic effects on myogenic differentiation, in part, by targeting a glucose-regulated 

protein (GRP78/BIP) to activate ER stress-mediated apoptosis (Wei, 2016). A pro-myogenic 

function for miR-181a was reported in chicken myoblasts (Yuan, 2022) as well as sheep 

skeletal muscle satellite cells, in part by targeting YAP1 (He, 2022). Even in fish, miR-181b 

was demonstrated to enhance muscle growth partly due to potential targeting of myostatin 

b (Zhao, 2019). To add another level of complexity, Wang et al reported that the long 

non-coding RNA (lncRNA), lncDLEU2, functions as a miR-181a sponge to inhibit muscle 

differentiation. By inhibiting miR-181a activity, levels of the miR-181a target, SEPP1, were 

found to increase which further explained how myogenic differentiation was suppressed by 

this lncRNA (Wang, 2020).

With respect to adipogenesis, transcriptomic analysis revealed that expression levels 

of miR-181a and miR-181c functional strands significantly increased during in vitro 

adipogenic differentiation (Hou, 2018). In other studies, miR-181a over-expression has been 

reported to enhance adipogenesis, in part, via targeting TNF-α (Li, 2013) or by targeting 

and suppressing Smad7 and Tcf7l2 (Ouyang, 2016). Porcine pre-adipocyte differentiation 

was found to be enhanced by miR-181a over-expression and TGFBR1 was identified as a 

target gene in this study (Zhang, 2019). A more recent study demonstrated that miR-181a 

enhanced adipogenesis of immortalized bone marrow-derived stromal cells (iBMSCs) via 

directly targeting period circadian regulator 3 (PER3) which subsequently increased baseline 

expression of the pro-adipogenic transcription factor, PPARγ (Knarr, 2019). Another study 

identified the matrix associated metalloproteinase (Adamts1) as a negative regulator of the 

adipocyte lineage as well as a target of miR-181d, thereby suggesting a pro-adipogenic 

function for this miR-181 family member as well (Chen, 2016a). However, contrary to these 

findings, one report has shown that over-expression of miR-181b suppressed adipogenesis 

and that IRS2 was a potential target gene regulating this function (Chen, 2016b).

7. Functional roles in the context of obesity

While not directly related to adipocyte differentiation, multiple miRNAs have been validated 

to regulate fatty acid metabolism, insulin sensitivity and dysregulate metabolic homeostasis 

that contribute to the development of obesity (Dávalos, 2011; Trajkovski, 2011). High-fat 

fed mice shows an activation of miR-181 in adipocytes, mainly in white adipose tissue 

(WAT), that ultimately leads to adipocyte proliferation (Virtue, 2019). The authors further 

investigate that in response to the high-fat diet, the gut microbiota produces tryptophan-

derived metabolites that activate miR-181 transcription in adipocytes. In fact, in obese 

human children the miR-181 expression in WAT and the elevated circulating tryptophan-

derived metabolites confirmed the role of miR-181 for the development of obesity, insulin 

resistance and WAT inflammation (Virtue, 2019). Another study reported that miR-181a, 

via targeting the TCA cycle metabolic enzyme, isocitrate dehydrogenase I (IDH1), inhibited 

lipid accumulation while transgenic mice engineered to over-express miR-181a exhibited 

decreased body weight under high fat diet conditions compared to control littermates (Chu, 

2015). However, this study did not reveal if the primary, precursor or mature miR-181a 

was cloned into the targeting vector for generation of these miR-181a transgenic mice. 
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Also, data demonstrating successful over-expression of miR-181a in various tissues of these 

animals was not shown. In hepatocytes, miR-181c regulates lipid biosynthesis by targeting 

IDH1. In vivo, using an adeno-associated virus (serotype 8; AAV-8) over-expression of 

miR-181c shown to offer beneficial effect against diet-induced obesity by inhibiting WAT 

synthesis (Akiyoshi, 2021). In another study, lipid accumulation was found to stimulate 

miR-181c transcription in cardiomyocytes (Roman, 2020). The authors demonstrated that 

over-expression of miR-181c due to high-fat diet can lead to cardiac dysfunction during 

obesity by translocating into the mitochondrial compartment. Implementing knock down 

approach using antagomir-181c or using miR-181c knock-out mice, the cardioprotective 

effect during obesity has been documented (Roman, 2020). Hence, miR-181 may consider 

a potential future therapeutic option against obesity and obesity related human health 

condition.

8. Modulation of cardiac function

Apart from miR-181d (Belkaya, 2014; Das, 2012), all other miR-181 family members 

are expressed in the heart. RNA sequencing data from human cardiac cells shows that, 

of the miR-181 family, miR-181a is the most abundant in heart tissue. Therefore, most 

of the literature on cardiac function is focused on miR-181a and/or its clustered miRNA, 

miR-181b. It has been estimated that in the mouse heart, 60% of miR-181a/b is from Chr 

1 (miR-181a/b-1 cluster), while the rest is derived from Chr 2 (miR-181a/b-2 cluster) (Das, 

2017a). In studying both miR-181a/b-1 and miR-181c/d knock-out mouse models, it has 

been documented that over-expression of miR-181a/b plays a cardioprotective role; whereas, 

over-expression of miR-181c can cause cardiac damage (Das, 2017a). Several studies 

have elucidated that the downregulation of mRNA targets, such as Akt3 (Yuan, 2019), 

PI3KR3 (Yuan, 2019), GLP-1 (Sassoon, 2016), Hox-A11 (Li, 2009), PTEN (Das, 2017a), 

acts as a possible mechanism by which miR-181a/b can protect the myocardium from 

ischemia/reperfusion (I/R) injury. Another important role of the miR-181 family has been 

studied in chronic heart failure (CHF) patients. It has been shown that there is significant 

downregulation of miR-181 in the peripheral blood with aging. This study also correlated 

the number of B-cells with miR-181 expression. This study concluded that miR-181 may 

play an important role in immunosenescence in aged CHF patients (Seeger, 2013).

In contrast, it has been demonstrated that miR-181c is encoded for in the nucleus, matures in 

the cytoplasm and finally translocates into the mitochondrial fraction of cardiomyocytes 

(Das, 2014; Das, 2012; Das, 2017a). This unique functional mechanism categorized 

miR-181c as a “mitomiR” (i.e. a miRNA found localized to the mitochondria). Some 

mitomiRs have been found to translocate into the mitochondrial fraction and bind to the 

3’-end of a mitochondrial gene or 3’-UTR of a nuclear mRNA present in the mitochondria 

(Baradan, 2017; Das, 2017b). There are several unanswered questions regarding why and 

how miR-181c translocates into the mitochondria in cardiomyocytes. Why does miR-181c 

translocate to the mitochondria only in cardiomyocytes? The “seed” sequence of miR-181c 

is homologous to miR-181a/b, and so why does miR-181c not bind to the same target 

mRNAs as miR-181a/b in the cytoplasm? Is there a hexanucleotide element at the 3’-end 

(Hwang, 2007) of miR-181c which directs it towards the mitochondrial compartment in 

cardiomyocytes? Even though there are several theories of how mitochondrial translocation 
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of a miRNA occurs (Macgregor-Das, 2018), the mechanism by which miR-181c translocates 

into the mitochondrial compartment in cardiomyocytes remains unknown. A recent study 

showed that miR-181c acts as an anterograde signal and alters mitochondrial function in 

the heart, which further regulates mitochondrial retrograde signals through inactivation of 

a transcription factor, Sp1. Sp1 inactivation transcriptionally inhibits the MICU1 gene that 

is responsible for mitochondrial Ca2+ import. In summary, miR-181c over-expression can 

cause cardiac damage through mitochondrial Ca2+ overload (Banavath, 2019).

9. Preserving the vascular function

Large artery stiffness, which occurs with aging and pathophysiological conditions, is a 

major and independent risk factor for a wide range of cardiovascular diseases. This includes 

isolated systolic hypertension, “an endemic condition responsible for a large proportion of 

the global burden of cardiovascular morbidity and mortality” (Chirinos, 2019). MicroRNAs 

have emerged as important modifiers of vascular structure and function (Nanoudis, 2017). 

Hori et. al. (Hori, 2017) was the first to describe the significant down-regulation of 

miR-181b in the aorta of aging mice. Furthermore, deletion of the miR-181a/b-1 locus 

results in increased vascular stiffness and associated extracellular matrix remodeling by 

collagen deposition. Several studies have utilized bioinformatic approaches to identify 

mRNA targets of miR-181b in the aorta. These include caspase recruitment domain family 

member 10 (Card10) (Lin, 2016) and importin-α3 (Sun, 2014; Sun, 2012). Endothelial 

cell activation and dysfunction have been linked to the pathophysiology of several arterial 

inflammatory diseases. The circulating miR-181b level is significantly lower in patients 

with sepsis compared with control intensive care unit patients (Sun, 2012). It has been 

shown that both in vitro and in vivo over-expression of miR-181b can protect against aortic 

inflammation by targeting importin-α3 and thereby modulating NF-κB-responsive genes 

such as adhesion molecules VCAM-1, E-selectin and tissue factor (Sun, 2014; Sun, 2012).

Tissue Factor (TF) is the primary initiator of the extrinsic clotting cascade which, if 

dysregulated, can lead to cardiovascular complications. It has been shown that miR-181 

over-expression can cause lower levels of TF mRNA levels in THP1 cells. In vivo, using 

miR-181 knock-out mice, it has been observed that there is higher TF expression in the 

heart and aortic tissue. Therefore, it has been proposed that downregulation of miR-181 

may contribute to increased thrombogenicity in diabetic patients, and may identify patients 

at risk for thrombosis (Witkowski, 2020). In another study, the anti-inflammatory role 

of miR-181b has been demonstrated by its ability to target Card10 mRNA in arterial 

endothelial cells. Card10 downregulation could alter TNF-α-induced NF-κB activation. 

Furthermore, systemic delivery of miR-181b has been shown to offer protection against 

arterial thrombosis (Lin, 2016).

Downregulation of miR-181a has been observed in patients with coronary artery disease 

(Su, 2019). In animal studies using apoE knock-out mice, it has been found that both 

strands of miR-181a-5p and miR-181a-3p are downregulated in aortic plaques as well 

as in the circulation. Moreover, the authors have demonstrated that loss of miR-181a-5p 

and miR-181a-3p decreases pro-inflammatory gene expression and the infiltration of 

macrophages and T cells into the mouse aortic lesions. In this study, it has been proposed 
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that miR-181a-5p and miR-181a-3p prevent endothelial cell activation through blockade of 

NF-κB signaling by binding to the 3’-UTR of TAB2 and NEMO, respectively (Su, 2019). 

Endothelial-mesenchymal transition is a very common symptom of endothelial dysfunction, 

which is involved in the pathogenesis of pulmonary arterial hypertension. In monocrotaline-

induced pulmonary arterial hypertension, miR-181b plays an inhibitory role in endothelial-

mesenchymal transition by targeting endocan and TGF-βR1 mRNAs (Zhao, 2020).

Vascular smooth muscle cells (VSMCs) play a pivotal role in the pathophysiology of 

multiple vascular diseases, such as vascular stiffness. Small RNA sequencing study revealed 

that miR-181a/b-1 cluster expression is one of the top five highly abundant miRNAs in 

VSMCs (Tuday, 2019). It has been shown that downregulation of miR-181b can cause 

severe vascular stiffness by activating TGF-β signaling (Hori, 2017). Recently, it has been 

shown that a novel miRNA-degrading enzyme, the translin/trax (TN/TX) complex, targets 

a small subpopulation of miRNAs and can degrade pre-miR-181b in VSMCs. Blocking 

degradation of miR-181b might be a fruitful approach to prevent or reverse vascular 

stiffness, and Tuday et al. (Tuday, 2019) found that TN knock-out mice, which lack this 

miRNA-degrading enzyme, exhibit selective elevation of miR-181b levels in the aorta. 

Strikingly, these mice do not develop increased aortic stiffness following chronic exposure 

to high-salt water (HSW; 4% NaCl in drinking water for three weeks) (Tuday, 2019). 

Based on the functional role of miR-181b both in endothelial cells and VSMCs in the 

aorta, miR-181b over-expression or inhibition of miR-181b degradation is now considered a 

potential treatment for preserving vascular function.

10. Conclusions and Perspectives

This review has highlighted the wide-ranging effects of miR-181 family members on 

regulating both differentiation and function of a number of distinct cell types. For example, 

many studies that over-expressed or inhibited miR-181 homologs have revealed, with 

a few exceptions, a pro-differentiation role toward a number of cell lineages including 

osteoblasts, hypertrophic chondrocytes, adipocytes, myoblasts, B cells, NK/NKT cells 

and megakaryocytes (Figure 3; Table 1). However, there are some examples of miR-181 

members having an inhibitory function on differentiation of other cell types such as 

osteoclasts (Figure 3). This is most likely due to specific cell types expressing distinct 

populations of mRNAs that can be targeted by miR-181 homologs, thereby inducing 

different effects.

Many miR-181 target mRNAs have been identified in the context of regulating cell 

differentiation (Table 1). Of these, PTEN appears to be a common target of miR-181a/b 

in promoting differentiation of B cells, T cells, NKT cells and osteoblasts. By suppressing 

PTEN, PI3K/AKT signaling will be enhanced which can lead to altered cellular metabolism 

thus likely driving differentiation. In the context of miR-181a/b induction of osteoblast as 

well as adipocyte differentiation, suppression of TGF-β signaling has been identified as a 

common mechanism (Table 1). It will be interesting to manipulate (over-express) levels of 

miR-181a/b in vivo as a means to promote bone formation in the context of bone fracture 

healing. In fact, a positive role for miR-181a has been implicated in fracture healing from a 

recent study on the effects of a long non-coding RNA that can regulate this miRNA (Guo, 
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2022). On the other hand, inhibiting miR-181a/b could be a strategy to suppress formation 

of abnormal heterotopic bone. Local delivery of miR-181a/b in pre-clinical mouse models 

of endochondral bone fracture or heterotopic ossification is currently being investigated in 

the McAlinden group. Given the pro-adipogenesis function of miR-181a/b reported in vitro, 

the levels of adipocytes should be monitored in the context of bone repair as it would not be 

desirable to induce increased levels of these cells in this scenario.

With respect to other disease states, the therapeutic benefit of over-expressing specific 

miR-181 homologs has been reported in the context of suppressing arterial thrombosis, 

atherosclerosis, heart failure, pulmonary arterial hypertension as well as vascular 

inflammation and stiffness (Table 2). In some of these studies, suppression of PTEN, TGF-

β signaling and inflammation are common mechanisms induced by miR-181 homologs, 

similar to their mechanism in controlling cell differentiation (Table 1). In addition, a 

positive therapeutic effect of cardiosphere-derived cell (CDC) injections as a treatment for 

Duchenne muscular dystrophy (DMD) was recently reported in Phase 2 of the HOPE-2 

clinical trial (McDonald, 2022). It was suggested that the therapeutic action of CDCs 

may be due to the contents of their exosomes, including the anti-inflammatory actions 

of miR-181b and miR-146a. Future studies will be required to examine the potential 

therapeutic effects of miR-181b over-expression as a treatment for DMD. Interestingly, 

miR-181c appears to have opposing roles to miR-181a/b homologs in the context of chronic 

heart failure due to the observation that miR-181c can translocate into the mitochondria and 

regulate mitochondrial function (Table 2) (Roman, 2020). Another interesting pathological 

feature about miR-181c is that, in hepatocytes, over-expression of miR-181c prevents diet-

induced obesity (Akiyoshi, 2021). However, over-expression of miR-181c leads to cardiac 

dysfunction through the mitochondrial pathway (Roman, 2020). Therefore, it is imperative 

to consider off-target effect of a miRNA delivery strategy. Organ/cell-specific delivery of 

miRNA will be ideal to perform miRNA therapeutics, such as AAV8-miR-181c complex 

that shows promising results as a liver-specific delivery approach (Akiyoshi, 2021). Even 

though miR-181 family members share the same seed sequence, it is clear that they may 

induce different functions depending on the cell type where they are expressed, baseline 

expression levels as well as their location within the cell.

Finally, there are a number of studies reporting decreased levels of miR-181 family members 

in the context of aging. For example, levels of specific miR-181 homologs were found to 

be lower in serum from older individuals (Noren Hooten, 2013), human naïve CD4+ T 

cells (Li, 2012a), murine NK cells (Lu, 2021), aged muscle (Mercken, 2013) and aged, 

calorie-restricted brain tissue (Khanna, 2011). It will be interesting in future studies to 

explore the therapeutic potential of targeting miR-181 homologs as a means to regulate 

immune cell responses, muscle function, chronic inflammation, bone repair, or other cellular 

processes that are known to be suppressed with increased age.
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Figure 1. Synthesis and function of microRNAs.
Left panel shows RNA polymerase II-mediated transcription of a clustered microRNA gene 

in the nucleus resulting in formation of primary (pri) miRNAs which are then processed 

to precursor (pre) miRNAs and transported to the cytoplasm. Right panel shows processing 

of pre-miRNAs in the cytoplasm by a Dicer-containing enzyme complex and interaction 

of the functional (5p) mature miRNA strand, via its seed sequence, with a complementary 

sequence on the 3’UTR of a target mRNA. This interaction is mediated by the RNA-induced 

silencing complex (RISC) containing Ago2 protein. The result of this interaction is either 

mRNA degradation or suppression of mRNA translation.
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Figure 2. The human miR-181 family.
The human (homo sapiens; hsa) miR-181 family is encoded for by 6 genes shown by 

the grey boxes located on chromosome (chr) 1, 9 and 19. The blue and orange-boxed 

areas represent the mature 5p and 3p strand, respectively, within each miR-181 gene. Each 

chromosome contains two clustered miRNA genes: miR-181a/b-1 (Chr 1), miR-181a/b-2 

(Chr 9) and miR-181c/d (Chr 19). The number of nucleotides (nt) separating these clustered 

miRNA genes is shown. Right panel show the sequence of each mature miR-181 strand. 

The seed sequence (red font) is conserved between each family member. Underlined regions 

indicate regions that are not conserved between the family members.
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Figure 3. miR-181 regulates differentiation of many cell types.
The published literature informs us that miR-181 homologs can either enhance (+) or 

suppress (−) differentiation toward various cell lineages. There are also mixed reports 

(+/−) on whether a specific miR-181 homolog has positive or negative effects on 

differentiation. Some studies also report no effect (x) of a miR-181 family member on cell 

differentiation. See Table 1 for information about miR-181 targets in each differentiation 

lineage. References: [1] (Li, 2013) [2] (Ouyang, 2016) [3] (Zhang, 2019) [4] (Knarr, 

2019) [5] (Chen, 2016b) [6] (Chen, 2016a) [7] (Henao-Mejia, 2013) [8] (Chen, 2004) 
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[9] (Gabler, 2015) [10] (Lv, 2020b) [11] (Barter, 2015) [12] (Vail, 2022) [13] (Melnik, 

2021) [14] (Bakhshandeh, 2012b) [15] (Zhang, 2022) [16] (Su, 2015) [17] (Li, 2012b) 

[18] (Naguibneva, 2006) [19] (Wei, 2016) [20] (Yuan, 2022) [21] (He, 2022) [22] (Wang, 

2020) [23] (Zhao, 2019) [24] (Cichocki, 2011) [25] (Bhushan, 2013) [26] (Liu, 2020) [27] 

(Bakhshandeh, 2012a) [28] (Zheng, 2019) [29] (Qi, 2021) [30] (Lv, 2020a) [31] (Ma, 2020) 

[32] (Liu, 2021) [33] (Xie, 2018) [34] (Zhang, 2021) [35] (Shao, 2015) [36] (Shao, 2018) 

[37] (Fu, 2021) [38] (Han, 2020) [39] (Yu, 2021) [40] (Sun, 2019) [41] (Liu, 2008)
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