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Abstract

Purpose of review: Pediatric low-grade gliomas and glioneuronal tumors (pLGG) account 

for approximately 30% of pediatric CNS neoplasms, encompassing a heterogeneous group of 

tumors of primarily glial or mixed neuronal-glial histology. This article reviews the treatment of 

pLGG with emphasis on an individualized approach incorporating multidisciplinary input from 

surgery, radiation oncology, neuroradiology, neuropathology and pediatric oncology to carefully 

weigh the risks and benefits of specific interventions against tumor-related morbidity. Complete 

surgical resection can be curative for cerebellar and hemispheric lesions, while use of radiotherapy 

is restricted to older patients or those refractory to medical therapy. Chemotherapy remains the 

preferred first line therapy for adjuvant treatment of the majority of recurrent or progressive 

pLGG.

Recent findings: Technologic advances offer the potential to limit volume of normal brain 

exposed to low doses of radiation when treating pLGG with either conformal photon or proton 

RT. Recent neurosurgical techniques such as laser interstitial thermal therapy offer a ‘dual’ 

diagnostic and therapeutic treatment modality for pLGG in specific surgically inaccessible 

anatomical locations. The emergence of novel molecular diagnostic tools has enabled scientific 

discoveries elucidating driver alterations in mitogen activated protein kinase (MAPK) pathway 

components and enhanced our understanding of the natural history (oncogenic senescence). 

Molecular characterization strongly supplements the clinical risk stratification (age, extent of 

resection, histological grade) to improve diagnostic precision and accuracy, prognostication and 

can lead to the identification of patients who stand to benefit from precision medicine treatment 

approaches.

Summary: The success of molecular targeted therapy (BRAF inhibitors and/or MEK inhibitors) 

in the recurrent setting has led to a gradual and yet significant paradigm shift in the treatment of 

pLGG. Ongoing randomized trials comparing targeted therapy to standard of care chemotherapy 

are anticipated to further inform the approach to upfront management of pLGG patients.

*Corresponding authors: Sameer Farouk Sait and Matthias Karajannis, faroukss@mskcc.org and karajanm@mskcc.org, Phone: 
212-639-3449. 

HHS Public Access
Author manuscript
Curr Neurol Neurosci Rep. Author manuscript; available in PMC 2024 April 01.

Published in final edited form as:
Curr Neurol Neurosci Rep. 2023 April ; 23(4): 185–199. doi:10.1007/s11910-023-01257-3.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Pediatric low-grade gliomas; glioneuronal tumors; neurosurgery; chemotherapy; radiotherapy; 
molecular targeted therapy; MEK inhibitors; BRAF inhibitors

INTRODUCTION

Pediatric low-grade gliomas and glioneuronal tumors (subsequently referred to as pLGG) 

represent the most frequently encountered brain tumors accounting for nearly 30% of 

pediatric CNS neoplasms overall. pLGG are defined as grade 1 or 2 per the recent World 

Health Organization (WHO) 2021 classification (CNS5) and encompass a heterogeneous 

group of tumors of primarily glial histology, including astrocytic and/or oligodendroglial, as 

well as tumors of mixed neuronal-glial morphology (see Table 1) [1].

There are some important considerations which significantly impact the treatment approach 

to pLGG.

• First, overall survival (OS) is excellent for the majority of pLGG [2], with 

20-year overall survival rates up to 87% [3]. However, patients can experience 

significant morbidity including vision loss, epilepsy, endocrine dysfunction, 

motor disability, neurocognitive dysfunction, and decreased quality of life [3, 

4]. Therapy is indicated only in the event of sub-totally resected tumors 

with clinical progression or unequivocal non enhancing (T2/FLAIR MRI 

sequences) radiographic progression with likelihood of significant morbidity. 

Treatment goals should not only include long-term tumor control (i.e., 

radiographic responses), but also minimization of treatment-related morbidity 

and improvement in functional outcomes (such as visual acuity and motor 

abilities), quality of life, and neuro-psychological assessments.

• Devising an optimal clinical management plan is complex and requires 

multidisciplinary input from surgery, radiation oncology, neuroradiology and 

pediatric oncology and should carefully weigh the risks and benefits of tumor 

directed interventions against tumor related morbidity. Therefore, a one size fits 

all approach is unlikely to be effective.

• For some patients, the pLGG maybe represent the initial manifestation of an 

underlying tumor predisposition syndrome (neurofibromatosis type 1 [NF1], 

tuberous sclerosis [TS]) which carries important implications for genetic 

counseling, tumor surveillance and treatment choices.

• Extent of surgical resection, tumor location, histological grade/subtype and 

age at diagnosis were historically considered for clinical risk stratification 

and importantly, remain so to this day. However, it has long been recognized 

that differences in patient outcomes cannot be explained by clinical variables 

alone. The past two decades have witnessed the emergence of novel molecular 

diagnostic tools fueling seminal scientific discoveries which have shed light on 

the fundamental events contributing to gliomagenesis [5]. With few exceptions, 
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pLGG are exclusively driven by a diverse array of genetic alterations in mitogen 

activated protein kinase (MAPK) pathway components, resulting in constitutive 

activation of downstream effector signaling pathways including RAF/MEK/ERK 

and PI3K/AKT/mTOR [6, 7]. Molecular characterization is now an integral 

component of contemporary neuropathology and can strongly supplement the 

clinical risk stratification to improve diagnostic precision and accuracy [8, 9], 

prognostication (see Table 2) [10] and lead to the identification of patients who 

stand to benefit from precision medicine treatment approaches [11].

• Mutations in MAPK pathway component genes (RAS, RAF and NF1) can 

trigger cellular senescence. This phenomenon, termed oncogene induced 

senescence (OIS) likely accounts for the relatively benign behavior of pLGG and 

lack of transformation to higher-grade gliomas (with specific exceptions such as 

BRAFV600E) in the absence of additional cooperating mutations [12].

• For pLGG, a specific genetic alteration may either be disease defining (MYB-
QKI fusion in angiocentric glioma) or play only a supporting role in diagnosis 

because of its enrichment in specific tumor histologies (BRAFV600E mutation 

in PXA) (see Table 1).

• Despite the common theme of constitutively activated MAPK signaling, there 

exists substantial molecular heterogeneity. The specific underlying alteration 

may variably activate different MAPK downstream effector pathways (PI3K/

mTOR pathway in SEGA and the RAF/MEK/ERK pathway in BRAF/NF1 
altered pLGG). Even the mechanisms driving signaling via a common effector 

pathway (RAF/MEK/ERK) can be distinct based on -

a. the type of molecular alteration (BRAFV600E mutant pLGG signal as 

monomers while BRAF fusion pLGG signal as dimers) which carries 

important therapeutic implications (BRAF monomer inhibitors cause 

paradoxical activation and accelerate tumor growth in BRAF fused 

pLGG and should be avoided)

b. which specific nodes in the MAPK pathway are disrupted because of 

complex feedback loops that exist between these nodes and effector 

pathways

• While pLGG usually appear fairly circumscribed on imaging compared to 

pediatric high-grade gliomas (pHGGs), some lesions demonstrate a more diffuse 

growth pattern. These “pediatric-type” diffuse gliomas [1] constitute a new 

group including 4 entities with some histological overlap but distinct molecular 

features [1, 13]. They should be differentiated from “adult-type” diffuse gliomas 

which are more aggressive and require a different approach to diagnosis and 

management.

Keeping these principles in mind, a brief overview of the management options, including 

surgery, radiation therapy (RT), and chemotherapy, is discussed in this review. In addition, 

our growing understanding of the molecular underpinnings of pLGG is leading to the 

increasing utilization of novel targeted molecular agents mostly in the recurrent, and in 
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specific scenarios, in the upfront setting, signaling a gradual, yet significant paradigm 

shift [14, 15]. Therefore, we emphasize the relevant pathophysiology and genetics that 

significantly impact the clinical approach within the framework of the most frequently 

encountered pLGG.

Surgery

The surgical treatment of pLGG is complex and requires multi-disciplinary involvement 

to delineate the goals of surgery. Often, these lesions are discovered incidentally or in 

the setting of seizure or headache without significant neurological deficit present. In 

pLGG, maximal safe excision with an intent to cure is the preferred treatment approach 

and should always be considered. However, this is not always feasible due to location, 

infiltrative nature, or molecular phenotype of the lesion. Surgical objectives fall into the 

broad categories of total tumor extirpation, cytoreduction, or biopsy (stereotactic needle and 

endoscopic).

To address the questions of efficacy and specific type of surgical intervention, clinical, 

radiographic, diagnostic, and treatment factors must be considered. Currently, there is no 

validated diagnostic imaging or biomarker available that can predict the clinical grade 

of the lesion. In pLGG, goals of surgical intervention include symptom palliation and 

improvement of neurological condition, obtainment of tissue for molecular and histological 

diagnosis, and reduction in risk of continued tumor growth or malignant transformation.

[16] For symptomatic or asymptomatic non-infiltrative and surgically accessible lesions 

with confidence around a WHO grade 1 diagnosis for which resection is associated with 

acceptable risk, maximal safe surgical intervention with intent to cure is the preferred 

treatment approach. Gross total resection of pLGG is significantly associated with improved 

overall survival (OS), with 10-year OS rates approximating 90%, and is the main predictor 

of PFS [2, 17–20]. Notably, over 50% of children with residual tumor volume after 

resection have no disease progression at 5 years, and these patients have excellent long-term 

survival. Therefore, even though complete resection should be a goal, the benefit of possibly 

prolonging PFS should be carefully weighed with the risk of neurologic deficit caused by an 

aggressive resection. While the rates of malignant transformation of pLGG are estimated to 

be less than 10%, this can be a source of lifelong concern for the patient and their families, 

and require frequent and longitudinal monitoring.[21]

For lesions that are surgically inaccessible principally being defined by an infiltrative growth 

pattern on imaging, have known biological behavior that would not warrant resection, or for 

which resection would leave an unacceptable functional outcome (optic pathway gliomas), 

the surgical objectives narrow to tissue sampling for diagnosis and molecular classification 

and debulking in the setting of mass effect and hydrocephalus. Further research is needed 

to quantify the minimal amount of tissue that is required for histological and molecular 

analysis in order to better understand if stereotactic or endoscopic biopsies are sufficient for 

providing diagnostic tissue samples. Laser interstitial thermal therapy is another surgical tool 

to target focal, surgically inaccessible tumors, such as lesions in the dominant temporal lobe, 

medial to the internal capsule, or cerebral peduncle [22, 23].
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With molecular classification increasing in the role of therapeutic management, tissue 

sampling should be performed early in diagnosis. In general, the benefits of accurate 

molecular diagnosis far outweigh the risks of surgical intervention and can often act 

synergistically with other surgical goals of symptom palliation, restoration of neurological 

function, or decreasing risk of tumor growth or transformation. However, for certain slow 

growing pathologies with a well-understood natural history, exposing children to the risk 

of surgical intervention involving highly functional structures may not be necessary. A 

reappraisal of the need for surgical intervention in these cases is warranted. In the case of 

optic pathway and hypothalamic gliomas, surgical intervention is rarely indicated except 

when the treating team is requesting tissue for diagnosis prior to initiating treatment or 

to debulk the lesion due to significant mass effect. Given the risks involved with tissue 

sampling including vision loss, the field should investigate the role of upfront chemotherapy 

or molecular targeted therapy.[24, 25]

Radiation Therapy

Radiation therapy (RT) is an effective management strategy in both the upfront and salvage 

treatment settings for pLGG. Historically, RT was the preferred primary treatment for 

rapidly progressive or unresectable tumors, with 10-year progression-free (PFS) and overall 

survival (OS) rates of 70% and 80%, respectively.[26–29] RT has also been used in the 

adjuvant setting, particularly when surgery is limited to partial resection or biopsy for 

tumors located in the optic pathway, hypothalamus, deep midline structures, and brainstem.

[18, 19] Since PFS is significantly reduced after incomplete resections,[18, 30, 31] adjuvant 

RT is considered for this scenario; however, there is a lack of consensus for this use 

due in part to the absence of randomized prospective trials.[18, 20, 32] One randomized 

prospective phase 3 trial sought to evaluate neurosurgical and radiotherapeutic treatments of 

pLGG;[33] however, the trial was closed early due to practitioner bias in treatment selection. 

Our current understanding is therefore built upon conflicting retrospective studies, which 

have suggested that while adjuvant RT may improve PFS, this benefit does not necessarily 

translate into improved OS.[18, 31, 34] For instance, while one study demonstrated that 

adjuvant RT improved PFS when complete resection was not achieved (89% vs. 49%, 

P < 0.003), others showed no improvement in PFS with postoperative RT.[20, 32] This 

unclear PFS benefit suggests that RT could be delayed until the time of progression.[35] 

However, Tsang et al found initial RT improved event-free survival for optic pathway and 

hypothalamic gliomas, suggesting that delaying RT with chemotherapy may not be without 

consequence for certain high risk patients.[36] Therefore, in the adjuvant setting, RT is 

used for patients with symptomatic residual tumors or for those who have radiologic or 

symptomatic progression.[18]

RT is also favored as part of the management strategy in older children who have 

failed multiple lines of systemic agents. Historically, the rationale for delaying RT 

revolved around concern for RT-associated toxicities, namely cognitive decline,[37, 38] 

endocrine dysfunction,[39] secondary malignancies,[36] vascular damage,[36, 40] and 

growth abnormalities,[41] the severity of which is highly dependent on the location 

of the tumor and patient age (<10-years-old).[36–38] Much of the concern about RT-

associated toxicity is based on long-term toxicity data derived from trials performed in 
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the 1970s-1990s, which used 2-dimensional RT techniques that did not enable conformal 

radiation dose delivery. Major technological advancements have since been made to 

reduce the radiation dose delivered to normal structures surrounding the tumor: first with 

3-dimensional conformal external beam RT (3D-CRT) followed in the 2000s by intensity-

modulated RT (IMRT). Importantly, the introduction of proton therapy minimized radiation 

exit dose,[42, 43] largely contributing to its increasing role in pediatric patients. Some 

studies suggest that proton therapy may even improve both patient quality of life and cost 

effectiveness of treatment for pediatric brain tumors.[44, 45] Moreover, outcomes with 

proton therapy are excellent, with one institutional review over a median follow-up of 11 

years reporting 8-year PFS and OS rates of 83% and 100%, respectively.[46] In this study, 

neurocognitive function was not shown to decline overall; however, there was significant 

cognitive decline in young children (<7-years-old) and in patients who received significant 

dose to the left temporal lobe or hippocampus. Endocrine dysfunction was identified in 

those with higher doses to the hypothalamus or pituitary, and two patients developed moya 

moya disease. Second cancers are a rare, but feared, potential long-term toxicity after RT. 

In a large single-institutional study of 1,713 children treated with proton therapy (1,040 for 

central nervous system [CNS] tumors) over a median follow up of 3.3 years, 5- and 10-year 

cumulative incidences of second tumors were 0.8% and 3.1%, respectively.[47] Importantly, 

all but one patient who developed a second tumor were irradiated at age 5 years or younger, 

and there was a significant relationship between tumor predisposition syndromes and second 

tumor development. A recent report of 945 pediatric patients treated with proton therapy 

for CNS tumors reported a low 5-year cumulative incidence of secondary neoplasms of 

2.4%.[48] In a recently published prospective study of 174 pediatric patients with LGG 

treated with proton therapy, 5-year PFS and OS rates were 84% and 92%, respectively, at a 

median follow-up of 4.4 years.[49] Severe late toxicities (brainstem necrosis, symptomatic 

vasculopathy, radiation retinopathy, and fatal secondary malignancy) occurred in four 

patients. While radiation-related toxicity must be acknowledged, studies performed in the 

modern era have encouraging results and the long latency of toxicity must therefore be 

appreciated within the context of rapid advances in the field.[50]

In addition to radiation planning advances, improvements in neuroimaging (such as 

multiparametric magnetic resonance imaging) and patient immobilization have further 

contributed to accurate delivery of highly conformal radiation dose with smaller target 

margins. Specifically, planning margins can be safely limited to 10 mm or less to protect 

adjacent normal structures when delivering the typical dose of 54 Gray (Gy) in 30 fractions.

[38] Stereotactic RT is a technique that has demonstrated excellent local control for patients 

with small (<5 cm) tumors. Dana Farber Cancer Institute reported their 5-year results with 

this technique using a median dose of 52.5 Gy in 1.8 Gy fractions, demonstrating PFS 

and OS rates of 83% and 98%, respectively.[51] Importantly, in this study there were 

no marginal (“near miss”) disease recurrences, meaning that treatment margins can be 

minimized to reduce radiation-related toxicities without compromising local control.

In summary, technologic advances offer the potential to limit volume of normal brain 

exposed to low doses of radiation when treating pLGG with either conformal photon[52] or 

proton[49] RT. The severity of radiation-related toxicities is most often dependent on the age 

at the time of RT and the location of the tumor. Given the chronic nature of this disease and 
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long latency of treatment-related toxicities, long-term data are needed, but RT in the modern 

era offers a safe, effective strategy for local tumor control.

Chemotherapy

Over the past 3 decades multiple prospective clinical trials (single arm or randomized) 

in children with progressive LGGs were completed (see Table 3). Most patients had 

diencephalic tumors (optic nerves/chiasm/hypothalamus/optic tracks/optic radiations) with 

more recent studies including a higher proportion of non-diencephalic tumors including 

brainstem tumors. Inconsistencies in the inclusion criteria and imaging criteria for response 

assessment (enhancing versus non enhancing, central vs local review), lack of correlation 

between radiographic responses and PFS and the long duration of follow up resulting in 

delayed reporting of results hamper the ability to directly compare results across studies. 

Nonetheless, these studies demonstrate very similar 5-year PFS rates and better 5-year 

disease control in children with NF1 compared to those without.

Chemotherapy regimens in newly-diagnosed pLGG achieve 3-year PFS between 50–80% 

depending on the regimen. Frequently used chemotherapy regimens include i) carboplatin 

alone or in combination with vincristine (CV), ii) thioguanine, procarbazine, CCNU and 

vincristine (TPCV) and iii) vinblastine alone. Although carboplatin and vincristine may offer 

slightly inferior PFS compared to TPCV (not statistically significant) [53], the combination 

avoids the risks of secondary malignancy and infertility posed by the TPCV regimen and 

is therefore preferred given the indolent nature of pLGG to mitigate long term sequelae. 

Carboplatin monotherapy affords the advantage of monthly administration (as opposed to 

weekly administration with CV regimen) obviating the need for a central line and carries 

reduced risk of chemotherapy hypersensitivity reactions and infections.

Molecular genetics and targeted therapy

The most common alterations in pLGG are loss of neurofibromin in the context of patients 

with NF1, and in non-NF1-related pLGG, the fusion and tandem duplication of BRAF with 

KIAA1549 (class II BRAF alteration which signals as BRAF dimers) and the BRAFV600E 

mutation (class I BRAF alteration which signals as BRAF monomers), respectively [5, 

7, 54]. These seminal discoveries opened the door to precision oncology trials targeting 

the RAS-MAP kinase pathway with MEK inhibitors (MEKi) (which function downstream 

of RAF) and BRAF inhibitors (BRAFi) (first generation=BRAF monomer inhibitors and 

second generation=BRAF dimer inhibitors or pan-RAF inhibitors) [11, 55].

A) pLGG associated with tumor predisposition syndromes (TPS)

Neurofibromatosis type 1 (NF1)—NF1 is an autosomal dominant (AD) tumor 

predisposition syndrome and affected individuals develop a combination of dermatologic, 

skeletal, ophthalmic, and neurologic findings at typical ages of onset. Optic pathway 

gliomas (OPGs) and brainstem low-grade gliomas (LGGs) are the most common intracranial 

neoplasms found in NF1. Nearly a third of children with OPG have germline mutations 

in NF1. Conversely, OPGs are detectable in approximately 15% of NF1 patients, usually 

before the age of 7 years and bilateral OPGs are detected exclusively in NF1. Most of these 

tumors are WHO grade 1 pilocytic astrocytomas (PA), although most patients are diagnosed 
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based on imaging without a biopsy. Brainstem gliomas present in late childhood (mean age 

7 years), exhibit mass effect on T2 and increased signal on T1 weighted images (unlike 

UBOs), are more indolent than sporadic brainstem gliomas, and may regress spontaneously. 

Patients with NF1 also often exhibit multiple T2 hyperintense lesions, mainly in the basal 

ganglia and brainstem which are referred to as unidentified bright objects (UBOs) and 

undergo spontaneous regression.

The NF1 locus maps to chromosome 17q11.2 and encodes neurofibromin, a protein 

which harbors a GTPase–activating protein domain that functions to silence RAS in its 

activated form. Biallelic inactivation of the NF1 gene leads to deregulated RAS activity, 

which initiates downstream signaling by activating the RAF/MEK/ERK and the Akt/mTOR 

pathways.[56] A comprehensive molecular profiling study in NF1 patients using WES of 

tumor and matched blood germline DNA demonstrated that LGGs have a low mutational 

burden and primarily exhibit loss of heterozygosity (LOH) in the NF1 region along with 

alterations in genes (FGFR1, PIK3CA) encoding component of the MAPK pathway [57].

Treatment: Patients with asymptomatic OPG or LGG are managed conservatively, with 

imaging surveillance and close clinical/ophthalmological follow-up [58]. Surveillance 

neuroimaging in asymptomatic children with NF1 has not been shown to reduce the 

incidence of visual loss, with MRI recommended only for patients with ophthalmological 

findings suggestive of an OPG, such as proptosis, optic disc pallor or vision loss.[58] 

Only a third of patients with NF1-OPG require treatment, with the primary goal to 

preserve vision. Radiotherapy is generally avoided given the increased risk of secondary 

neoplasms [59] and moya moya disease [60], with carboplatin or vinblastine based regimens 

most commonly used. Recently, molecular targeted therapy with MEK inhibitors has 

demonstrated impressive anti-tumor effects and is increasingly being considered as second-

line therapy for NF1-associated LGGs.[11] The current COG (children’s oncology group) 

study ACNS1831 is a randomized phase 3 trial testing anti-tumor efficacy and visual 

outcomes during treatment with selumetinib (MEK inhibitor) compared with standard 

chemotherapy and may alter the current treatment paradigm for NF1-associated LGG 

(NCT03871257).

Tuberous sclerosis complex (TSC)—TSC is an autosomal dominant multisystem 

condition characterized by the triad of adenoma sebaceum, epilepsy and mental retardation 

[61–63]. CNS lesions are the major cause for TSC-related morbidity and mortality.[64] 

The vast majority of TSC patients develop cortical tubers before birth and subependymal 

nodules during the first years of life [64–66]. Cortical tubers are benign hamartomas 

resulting from abnormal neuronal migration and disordered differentiation and demonstrate 

dysplastic neurons along with giant eosinophilic cells of mixed glioneuronal lineage. 

Subependymal nodules are hamartomatous lesions growing indolently along the walls of 

the lateral ventricles. These are WHO grade 1 tumors of mixed glioneuronal lineage and 

may cause symptomatic obstructive hydrocephalus secondary to their oft occurrence at the 

Foramen of Monroe. Subependymal giant cell astrocytoma (SEGA) is the most common 

brain tumor in patients with TSC, observed in 5–15% of confirmed cases and usually occurs 

in the first 2 decades of life. Size >10 mm, location, growth on serial neuroimaging studies, 
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and development of hydrocephalus are helpful to distinguish SEGA from a subependymal 

nodule [66].

The genes responsible are TSC1, also known as Hamartin, located on chromosome 9q34 

and TSC2 or Tuberin on chromosome 16p13 [67] and de novo mutations account for 

approximately 80% of cases [68]. The AKT/mTOR pathway is a key driver of tumorigenesis 

in TS patients and an important therapeutic target [69, 70].

Treatment: In TS patients, surveillance neuroimaging should be obtained annually during 

childhood and adolescence, when the risk for SEGA development is greatest.[71] The 

two main approaches to treatment include surgical resection and targeted medical therapy 

with mTOR inhibitors such as everolimus. Indications for surgical resection of SEGAs 

include obstructive hydrocephalus, increased intracranial pressure, tumor progression, and 

the presence of focal neurologic deficits. Although potentially curative, gross total resection 

(GTR) is seldom feasible given their intra-ventricular location [72, 73]. TS represents a 

prototype disease in which biological discoveries have led to the successful development 

of effective targeted therapies, with profound consequences on clinical management. First-

generation mTOR inhibitors (termed rapamycin analogs or rapalogs, including rapamycin) 

are mTOR complex 1 (mTORC1) specific inhibitors, acting downstream of TSC 1 and 

2. Clinical trials using rapalogs have revealed striking tumor regression of virtually all 

SEGAs in treated TS patients [74–76], and some benefit for neurological symptoms 

including improved seizure control [77, 78]. Everolimus is FDA approved for pediatric and 

adult patients with TSC associated SEGAs deemed unresectable. Furthermore, prevention 

strategies and protocols for long-term therapy with rapalogs are currently being developed 

for these patients.[79]

B) BRAF fused pLGG

Nearly 30–40% of pLGG harbor focal gains at 7q34 due to a tandem duplication leading 

to the formation of a novel oncogenic fusion, KIAA1549-BRAF, which represents the most 

frequent molecular alteration encountered [5, 80, 81]. This rearrangement results in loss of 

the N-terminal regulatory domain of BRAF and constitutive activation of the RAS/MAPK 

signaling pathway [5, 81]. KIAA1549-BRAF is enriched in specific histologies (pilocytic 

astrocytomas which are highly circumscribed) and in tumors arising in the posterior fossa/

cerebellum (amenable to gross total resection) resulting in excellent PFS and OS [7, 82–

84]. BRAF rearrangements involving non canonical fusion partners including SRGAP [80], 

FAM131B [85], among others [54, 86, 87] are frequently observed in hemispheric and/or 

brainstem lesions and tend to arise in older children and adolescents. Given their rarity, 

impact on patient outcome is difficult to ascertain with some data suggesting lower PFS [7] 

but requires validation in larger cohorts.

Molecular targeted therapy—Several studies have been completed evaluating MEKi 

(selumetinib, binimetinib, trametinib) which have demonstrated impressive anti-tumor 

efficacy across multiple pLGG subtypes [11, 88–92]. Importantly, visual outcomes were 

reported and improved or stabilized in most patients [89]. Consequently, the COG launched 

a randomized clinical trial to compare the ORR and functional outcomes for newly 
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diagnosed pLGG treated upfront with either MEKi (Selumetinib) or standard of care (SOC) 

chemotherapy in non NF1 pLGG (NCT04166409).

Tovorafenib, a second generation BRAFi (blocks BRAF dimers and causes less paradoxical 

activation) demonstrated impressive ORR in recurrent/refractory BRAF fusion driven pLGG 

(FIREFLY-1, NCT04775485) and a global phase 3 randomized trial comparing Tovorafenib 

vs SOC chemotherapy for newly diagnosed BRAF fused pLGG is planned.

Another important question concerns the durability of the observed responses and whether 

acquired resistance developed off treatment. The PBTC conducted a re-treatment study 

(NCT01089101) evaluating selumetinib in patients who previously enrolled on PBTC-029 

(MEKi naïve patients) and maintained SD for ≥12 courses or had a sustained PR or CR 

during their first exposure to selumetinib but later progressed after coming off treatment 

[93]. Re-treatment with selumetinib (n=35) appeared to be effective with 80% of patients 

again achieving response or prolonged stable disease.

At present, MEKi or BRAFi (second generation) appear similarly efficacious in BRAF fused 

pLGG. The results of the above referenced randomized phase III studies may potentially 

alter the standard treatment paradigm for upfront management of non NF1/BRAF fused 

pLGG.

C) BRAF V600E

Mutations in BRAF resulting from a single amino acid substitution (valine is replaced 

with a glutamic acid at position 600 (p.V600E) or infrequently, alternate codon 600 

substitutions (V600K/R/D/L), located near the activation segment. These alterations act 

as a phosphomimetic resulting in constitutive activation of MAPK signaling [94, 95]. 

BRAF p.V600E mutations are histologically and spatially enriched in with pleomorphic 

xanthoastrocytoma (40–80%) [96, 97], diffuse astrocytoma (30– 40%) and ganglioglioma 

(25–45%) and supratentorial lesions demonstrating a high frequency of BRAF V600E 

alterations, respectively [96–98]. BRAF V600E mutant pLGG have worse PFS and OS 

compared to other pLGG [99, 100]. This is driven in part by the increased propensity for 

anaplastic/malignant transformation to HGG in specific histological entities (ganglioglioma 

and PXA) and may occur several years from initial diagnosis, especially when co-

occurring with CDKN2A deletions [101, 102]. These anaplastic GGs and “pleomorphic 

xanthoastrocytoma like” HGG fare better compared to other HGG but are still significantly 

worse when compared to pLGG [102, 103].

Molecular targeted therapy—Based on impressive results noted in the phase II ROAR 

trial [104] and NCI-MATCH ‘basket’ trials [105], the Dabrafenib (BRAFi) and Trametinib 

(MEKi) combination received tumor agnostic approval for adult and pediatric patients with 

solid tumors harboring a BRAFV600E mutation. For patients with BRAFV600E mutant 

pLGG, preliminary results of a randomized phase II study (Dabrafenib/Trametinib versus 

chemotherapy) support the use of combined BRAFi and MEKi molecular targeted therapy 

for front line treatment in lieu of chemotherapy [106]. The combination is associated with 

less dermatological toxicity than that seen with MEKi alone.
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Molecular targeted therapy versus chemotherapy—As is to be expected, 

BRAFi and MEKi offer distinct advantages to chemotherapy (oral administration, less 

myelosuppression) but harbor unique toxicity profiles which include rashes, skin and nail 

infections and rarely, but significantly, cardiac dysfunction and ocular retinal toxicity which 

require periodic monitoring, supportive care and drug interruption in severe cases. In 

addition, the importance of tailoring therapy for pLGG based on a thorough understanding 

of the distinct signaling mechanisms underlying different BRAF alterations cannot be 

overstated. First-generation BRAFi (vemurafenib, dabrafenib) which target the monomeric 

forms of BRAF should not be used for tumors with BRAF fusion which function as dimers 

given paradoxical ERK activation resulting in tumor progression as demonstrated in a prior 

study [107, 108].

Receptor tyrosine kinase (RTK) altered pLGG

Besides BRAF, additional fusion genes involving upstream receptor tyrosine kinases (RTKs) 

have been identified in pLGG including FGFR1/2/3 (fibroblast growth factor receptor), 

NTRK2 (neurotrophic tropomyosin-related kinase), ROS1 (protein tyrosine kinase encoded 

by the ROS1 gene), or ALK (anaplastic lymphoma kinase), RAF1, MET or PDGFRA 
(platelet derived growth factor alpha) [6, 87]. These kinase fusion positive tumors respond 

to targeted therapy clinically [109]. In pediatric glioma specifically, both entrectinib 

(ALK/ROS/TRK) and larotrectinib (TRK only) have shown potent anti-tumor effects 

(NCT02637687, NCT02576431) and the latter was recently approved in the treatment of 

pediatric and adult patients with TRK-altered cancers (NCT02122913).

FGFR altered pLGG

The molecular landscape of FGFR alterations in pLGG can be divided into 2 groups: 

1) Single structural variants (SNVs) or 2) rearrangements that result in the expression of 

a fusion protein. FGFR1 mutations represent the second most common point mutations 

in pLGG after BRAF V600 and are most frequently reported in DNETs, RGNTs and 

a subset of PAs which occur predominantly in extracerebellar, midline locations [6, 87, 

110]. These are hotspot alterations affecting p.N546 or p.K656 in the kinase domain and 

frequently co-occur with a second event in FGFR1 (“dual hit”) and NF1 alterations or 

additional mutations in components of RAS/MAPK/PI3K pathway [7, 111]. Rearrangement 

driven pLGG include fusions of FGFR genes with members of the TACC protein family 

(TACC1, TACC2, and TACC3) or other partners and internal tandem duplications (ITDs). 

FGFR3:TACC3 fusions are reported in pLGG [6, 112]. FGFR1-TACC1 fusions have been 

reported in extraventricular neurocytoma [EVN] while several fusions (FGFR2–KIAA1598, 

FGFR2–CTNNA3 and FGFR3–TACC3) have been observed in polymorphous low-grade 

neuroepithelial tumor of the young (PLNTY) [113]. Other novel mechanisms resulting 

in constitutive FGFR1 activation include duplication of the entire kinase domain (TKD) 

called ITD which is frequently demonstrated in DNET or tumors with oligodendroglial-like 

histology [6, 87, 114].

A small single center study reported the promising efficacy of FGFR targeted therapy in 

recurrent/refractory FGFR altered pediatric gliomas [115]. Interestingly, skeletal toxicities 

not encountered in adults were reported in skeletally immature patients including 
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acceleration of linear growth velocity and slipped capital femoral epiphyses, both of which 

represent on target effects given the critical role of FGFR3 in bone growth [115].

MYB altered pLGG

MYB alterations are histologically restricted to angiocentric (87%) and diffuse gliomas 

(41%). Angiocentric gliomas demonstrate characteristic MYB-QKI gene fusion [114, 

116] which function via a tripartite mechanism of MYB protein activation, MYB 

overexpression and the loss-of-function of QKI [116]. Within the same MYB gene family 

of transcriptional regulators is MYBL1 with similar structure and function [117, 118]. The 

category of “diffuse astrocytoma, MYB or MYBL1-altered” includes pLGG not bearing 

the characteristic histologic features of angiocentric glioma but demonstrating recurrent 

amplifications and structural variants of MYB and MYBL1 [6, 117], including fusions with 

various gene partners. These tumors arise in young children predominantly in the cerebral 

hemispheres, although infrequently they occurred in the diencephalon or brainstem [119–

121]. Reported 10-year OS and PFS are 90% and 95%, respectively, suggesting that these 

lesions are indolent [120].

Tectal gliomas

Tectal gliomas arising in the dorsal midbrain typically cause aqueductal obstruction with 

resultant hydrocephalus [122–124]. These tumors are usually indolent [125, 126] and 

biopsy is not indicated unless atypical features are present. When biopsied, the majority 

are WHO grade I PA and frequently harbor KRAS mutations and/or BRAF alterations [127], 

while histone H3 K27M mutations are absent [124]. Patients can be safely observed post 

CSF diversion (VP shunt or endoscopic third ventriculostomy) to relieve hydrocephalus 

and remain progression free without further therapy. Ten-year progression-free and overall 

survival were 49 and 84 percent, respectively [124, 126, 128].

Cystic pLGG

Some pLGG present with cystic components wherein their biologic behavior may be 

independent of the solid component of the tumor. These cysts can be symptomatic, 

necessitating drainage. Approaches to treatment of reaccumulated fluid include repeated 

drainage via intracavitary ommaya placement, cyst fenestration, bevacizumab or focal RT 

[129, 130].

Spinal cord pLGG

A recent study reported outcomes in a large cohort (n = 128) of pediatric spinal LGG 

patients and reported favorable 10-year OS (93 ± 2%) but low 10-year EFS (38 ± 5%), 

demonstrating a high rate of tumor recurrence and treatment related morbidities resulting in 

a significant neurological and orthopedic sequela, including kyphoscoliosis, motor disability, 

pain, and decreased quality of life [131]. An important observation was the excellent disease 

control rate for patients with localized disease when treated with first-line RT (5-year PFS 

of 92 ± 8%), whereas patients receiving first-line chemotherapy had 5-year PFS rates of 

62 ± 11% which suggest that RT merits serious consideration when adjuvant therapy is 

required, especially in older, skeletally mature children [131]. Whereas concerns of long-
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term neurocognitive and endocrine sequelae from RT are of great importance when choosing 

adjuvant therapy for intracranial LGGs, these are seemingly less relevant to patients with 

spinal cord tumors where proton irradiation may help limit exposure of unaffected tissues 

and subsequent morbidity.

CONCLUSIONS

It is important to individualize the timing and selection of tumor-directed interventions 

for each patient with pLGG based on clinical (age, extent of resection) and molecular 

characteristics, severity of clinical symptoms, and functional status at presentation. The low 

mortality but high morbidity rates highlight the need to focus on functional outcomes rather 

than survival alone. Accordingly, future clinical trials should include systematic evaluation 

of late toxicities (particularly with respect to molecular targeted therapies where such data 

is unavailable currently), while incorporating functional outcomes (such as motor abilities), 

quality of life, and neuro-psychological assessments. Moreover, several important questions 

remain unresolved, including the role, timing (front line versus relapse) and durability of 

responses with molecularly targeted agents. It is paramount that future prospective studies 

will build on the observations made, and ultimately lead to further improvements in both 

tumor control and functional outcomes for pLGG.
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Table 1.

WHO 2021 classification of pediatric low grade gliomas/glioneuronal tumors [1, 13, 54], tumor histologies 

and associated molecular alterations

WHO classification Molecular alteration

Pediatric-type diffuse low-grade gliomas
 Diffuse astrocytoma, MYB- or MYBL1-altered
 Angiocentric glioma
 Polymorphous low-grade neuroepithelial tumor of the young

 Diffuse low-grade glioma, MAPK pathway-altered

MYB- or MYBL1-altered
MYB-altered
FGFR2/3 Fusions (30-40%)
BRAF p.V600E (30-40%)
-

Circumscribed astrocytic gliomas
 Pilocytic astrocytoma

 High-grade astrocytoma with piloid features
 Pleomorphic xanthoastrocytoma
 Subependymal giant cell astrocytoma
 Chordoid glioma
 Astroblastoma, MN1-altered

KIAA1549-BRAF (70-80%)
FGFR1-TACC1 (3-5%)
FGFR1 SNV (3-5%)
BRAF p.V600E (3-5%)
Other BRAF Fusions (2-5%)
CRAF Fusions (2-5%)
PTPN11 SNV (2-5%)
KRAS/HRAS SNV (2-5%)

BRAF p.V600E
TSC1/2 SNV (85-95%)
PRKCA SNV (80-90%)
MN1

Glioneuronal and neuronal tumors
 Ganglioglioma

 Desmoplastic infantile ganglioglioma/astrocytoma

 Dysembryoplastic neuroepithelial tumor

 Diffuse glioneuronal tumor with oligodendroglioma-like features and nuclear 
clusters
 Papillary glioneuronal tumor

 Rosette-forming glioneuronal tumor

 Myxoid glioneuronal tumor
 Diffuse leptomeningeal glioneuronal tumor
 Gangliocytoma
 Multinodular and vacuolating neuronal tumor

 Dysplastic cerebellar gangliocytoma (Lhermitte-Duclos disease)
 Central neurocytoma
 Extraventricular neurocytoma
 Cerebellar liponeurocytoma

BRAF p.V600E (40-50%)
KIAA1549-BRAF (10-15%)
BRAF pV600E/D (40-60%)
FGFR1 SNV (5-10%)
KIAA1549-BRAF (2-5%)

FGFR1-TKD duplication (20-30%)
FGFR1 SNV (20-30%)
FGFR1-TACC1 (10-15%)
Other RTK SNV/Fusions (5-10%)
BRAF p.V600E (5-10)

SLC44A1-PRKCA (80-90%)
PIK3CA SNV (20-30%)
KIAA1549-BRAF (20-30%)
FGFR1 SNV (20-30%)

MAP2K1 SNV/Indel (50-60%)
BRAF p.V600E (5-10%)
Other BRAF SNV (5-10%)
FGFR2 Fusions (3-5%)
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Table 2.

Molecular-Based Risk Stratification of pLGG [7]

Risk group Alteration type Outcomes

Low Gene fusions (BRAF-KIAA1549, FGFR1-TACC1)
Germline NF1 mutations

10-year PFS of 67% and OS of 98%
20-year PFS and OS of 58% and 96%, respectively. [7]

Intermediate BRAF p.V600E without CDKN2A deletion, FGFR1 SNV or 
MET mutations
Co-occur with other alterations

10-year PFS and OS of 35% and 90%
20-year PFS of 27% and 20-year OS of 81%, respectively. [7]

High H3.3 p.K27M, or BRAF p.V600E with CDKN2A deletion 10-year PFS and OS of 0% and 35%
10-year PFS and OS of 0% and 60%, respectively. [7]
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Table 3.

Results of prospective clinical trials for newly diagnosed sporadic pLGG

Study Design Chemotherapy N EFS/PFS

Packer et al [132] Single arm, multicenter CV 63
NF1 (n=15)

2-y 79 ± 11%
2-y 79 ± 11%

POG [133] Single arm C 29
NF1 (n=21)

3-yr 51 ± 9%
5-y 61 ± 12%

SFOP [134] Single arm PCV/CARBO;
VP16/CPDD
VCR/CYTOX

62
NF1 (n=23)

3-yr 42 ± 12%
3-y 62 ± 13%

HIT-LGG-1996 [135] Single arm CV 161
NF1 (n=55)

5-yr 47%
5-y 68%

COG A9952 [53] Randomized multicenter TPCV
CV

137
137
NF1 – single arm – CV only 
(n=127)

5-yr 52% ± 5%
5-yr 39% ± 4% (ns)
5-yr 69 ± 4%

COG (ACNS0223) [136] Single arm CV + TMZ 66 5-yr 46 ± 13%

(SIOP European Brain Tumor 
Committee) [137]

Randomized
multicenter

CV
CV + VP-16

497 5-yr 46%
5-yr 45% (ns)

[138] Single arm Vinblastine 54
NF1 (n=15)

5-yr 42%
5-yr 85%
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