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Abstract

Purpose: We developed and validated two parsimonious algorithms to predict the time of 

diagnosis of any stage of acute kidney injury (any-AKI) or moderate-to-severe AKI in clinically 

actionable prediction windows.

Materials and Methods: In this retrospective single-center cohort of adult ICU admissions, we 

trained two gradient-boosting models: 1) any-AKI model, predicting the risk of any-AKI at least 6 

hours before diagnosis (50,342 admissions), and 2) moderate-to-severe AKI model, predicting 

the risk of moderate-to-severe AKI at least 12 hours before diagnosis (39,087 admissions). 

Performance was assessed before disease diagnosis and validated prospectively.

Results: The models achieved an area under the receiver operating characteristic curve (AUROC) 

of 0.756 at six hours (any-AKI) and 0.721 at 12 hours (moderate-to-severe AKI) prior. 

Prospectively, both models had high positive predictive values (0.796 and 0.546 for any-AKI 

and moderate-to-severe AKI models, respectively) and triggered more in patients who developed 

AKI vs. those who did not (median of 1.82 [IQR 0-4.71] vs. 0 [IQR 0-0.73] and 2.35 [IQR 

0.14-4.96] vs. 0 [IQR 0-0.8] triggers per 8 hours for any-AKI and moderate-to-severe AKI models, 

respectively).
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Conclusions: The two AKI prediction models have good discriminative performance using 

common features, which can aid in accurately and informatively monitoring AKI risk in ICU 

patients.
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Introduction

Acute kidney injury (AKI) affects up to 20% of hospitalized patients and is associated 

with a myriad of short- and long-term adverse outcomes [1, 2]. Hospitalized patients with 

AKI experience longer lengths of stay, higher mortality, and increased costs [3-6]. After 

discharge, the comorbidity burden for AKI survivors increases, including chronic kidney 

disease [7] and cardiovascular disease [8]. Alongside these complications is a significant 

decline in the patients' quality of life [3, 9, 10]. Thus, there is an urgent need to develop 

strategies to limit the incidence and severity of AKI to minimize these deleterious effects.

Enhanced modeling of individualized risk has been proposed to address the burden of AKI 

in hospitalized patients. Early identification of high-risk patients, either based on clinical 

or laboratory features, could lead to the deployment of bundled interventions designed to 

limit the incidence, severity, and complications of the syndrome [11-14]. Risk prediction 

models developed for AKI have ranged from relatively simple (a select group of static 

comorbidities) [15, 16] to very complex (artificial intelligence-based with hundreds of 

features) [17-21]. While the simple models may be operationally more attractive, they 

fail to leverage the robust data obtained from contemporary electronic health records 

[22]. For instance, in the scenario where an otherwise stable patient underwent major 

thoracic surgery and experienced acute blood loss anemia with hemodynamic instability 

intraoperatively, the preoperative risk based on age, sex, or comorbid conditions would 

indicate minimal postoperative AKI risk. However, intraoperative data, including blood 

product, fluid, vasopressor use, laboratory parameters, or vital signs, would yield a higher 

postoperative risk than would otherwise have been expected [20].

Several artificial intelligence/machine learning models have been developed for AKI 

prediction [22]. These models vary in their enrolled population (ICU vs. ward vs. all 

hospitalized patients, key disease states like surgery or burns), choice of endpoint (any 

stage AKI, stages 2/3 AKI, need for kidney replacement therapy), the time horizon 

for prediction (e.g., 6-, 12-, 24-, 48-, 72-h), and level of complexity. The objective of 

this study was to develop an easily deployable machine learning model to predict AKI 

development or progression with clinically relevant lead times, ensuring enough time to 

institute meaningful clinical actions. To achieve this objective, we included two distinct aims 

for model development, including 1) predicting the risk of developing any stage of AKI 6 

hours before its occurrence, which could be used for screening purposes, and 2) predicting 

the risk of developing moderate-to-severe AKI, 12 hours before its occurrence, to allow 

appropriate time for implementation of more preventive measures. In addition to these more 
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mathematically complex models, we developed simpler linear regression approximations to 

ensure their generalizability, interpretation, and implementation.

Materials and Methods

Study population

We screened all intensive care unit (ICU) admissions to the Mayo Clinic Hospital 

(Rochester, MN) from January 1, 2005, to December 31, 2017. All adult, non-pregnant 

subjects who provided research authorization were included. Multiple admissions for each 

patient <10 hours apart were combined into a single encounter. We excluded encounters 

with 1) baseline creatinine > 5 mg/dL, 2) no recorded urine output or creatinine, 3) ICU 

admissions shorter than 24 hours, or 4) AKI stage 3 defined based solely on the need for 

renal replacement therapy (Appendix A, Supplementary Figure 1). AKI electronic alerts 

identified patients who met the AKI definition criteria[23]. For those who presented with 

AKI or developed AKI within the prediction windows, we used electronic alerts to exclude 

them as a prediction of AKI for those with AKI or individuals on the verge of AKI 

development was not the target of our study. For those who developed AKI during their ICU 

admission, AKI electronic alerts were used to adjudicate AKI as the outcome of interest 

for the models. Data from electronic health records (EHR), patient monitors, and patient 

outcomes were extracted for the cohort of interest.

This study was reviewed and approved by the Mayo Clinic institutional review board (IRB# 

07-001380). The need for informed consent was waived due to the retrospectative nature and 

minimal-risk of this study.

Data Extraction and Definitions

We extracted expert-identified predictor features (vital signs, laboratory measurements, 

medications, and clinical interventions) and outcome variables (hourly urine outputs, 

serum creatinine, and continuous weight measurements) from the above described dataset 

(Appendix B). Variables were filtered for plausible values (Supplementary Table 1) and 

carried forward if missing (Supplementary Figure 2). Only 90 variables with prevalences of 

>5% in both modeling cohorts were used in the final analysis (Supplementary Table 2).

AKI stages throughout ICU stay were calculated using an existing electronic implementation 

of the KDIGO criteria [23]. The diagnosis time of AKI was defined as the first time 

the urine-output- or creatinine-based AKI criteria for any (stages 1, 2, or 3) or moderate-

to-severe (stages 2 or 3) AKI were met. Encounters not meeting the AKI criteria were 

considered the control group (i.e., no AKI for any-AKI cohort and no AKI or AKI stage 1 

for moderate-to-severe AKI cohort).

Model Training

Two models were trained to predict two distinct AKI outcomes: an any-AKI model to 

predict any-AKI (stage ≥1); and a separate moderate-to-severe AKI model to predict 

moderate-to-severe AKI (stage > 1). The models were trained at a specific time window 

in advance (the training time): six hours for any-AKI model and twelve hours for the 
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moderate-to-severe AKI model. AKI diagnosis times for the control groups were randomly 

generated (Appendix C).

To ensure adequate input data for model training, we included encounters with an AKI 

diagnosis time greater than one hour after the prediction window, i.e., 6 and 12 hours for 

our two models. Thus, all encounters whose AKI diagnosis time was less than 7 hours 

from ICU admission were excluded from the any-AKI model. In addition, all encounters 

with moderate-to-severe AKI diagnosis times less than 13 hours from ICU admission were 

excluded from the moderate-to-severe AKI model. Finally, encounters with possible AKI at 

admission were also excluded from both models (Supplementary Figure 1).

The data for each model were split randomly into training (63%), testing (27%), and 

validation (10%), stratified by the maximum AKI stage. Both models were trained using 

gradient boosting (python package xgboost version 1.2.0) and used the same initial feature 

set of 90 features. A maximum tree depth of 3, 50 estimators, and a learning rate of 0.1 were 

used for both models, chosen using 5-fold cross-validation (Appendix D, Supplementary 

Figure 3). Boruta feature selection [24] was used to determine parsimonious feature sets for 

the final training of the models.

Model evaluation

Thresholds for each model were chosen to achieve a specificity of 90% at the training time.

Model performance was assessed with two time-frames: relative to AKI diagnosis and 

relative to ICU admission (Supplementary Figure 4). Performance relative to AKI diagnosis 

was quantified using the areas under the receiver operating characteristic (AUROC) and 

precision-recall (AUPRC) curves, and false/true positive/negative rates (Appendix E.1). 

Prospective performance (relative to ICU admission) was assessed using false/true positive/

negative rates calculated based on timely model triggers (scores above the threshold) and 

model triggering rates over time from ICU admission until AKI diagnosis (Appendix E.2).

Feature importance was evaluated using SHAP (SHapley Additive exPlanations) values [25], 

calculated using the python package shap, version 0.30.0.

Simplified Models

For each outcome, a linear regression was fit to scaled gradient-boosting scores using only 

the top 10 features as input (Appendix F).

Results

Cohort Characteristics

A total of 50,342 encounters were included in the any-AKI cohort (58.3% prevalence of 

AKI), and 39,087 in the moderate-to-severe cohort (31.5% prevalence of moderate-to-severe 

AKI) (Appendix A). The two cohorts had broadly similar demographics and outcomes 

(Table 1). The intensity and stage of AKI were progressively associated with poorer 

outcomes. In any-AKI model cohort, ICU mortality rates in patients without AKI and 

patients with AKI stage 3 were 1.6% and 13.9%, respectively. In the same cohort, the ICU 
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length of stay increased from a median of 43 hours (IQR 40 hours) among patients with 

no AKI to 127 hours (IQR 237 hours) among patients with AKI stage 3. The results for 

ICU mortality and length of stay for the moderate-to-severe AKI model cohort were similar. 

Patients with AKI stage 3 tended to have AKI diagnosis later in their stay: in any-AKI 

model cohort, patients with stage 3 first experience AKI an average of 47.78 hours after 

admission [SD 71.41 hours] versus an average 33.79 hours after admission [SD 42.75 hours] 

for patients with AKI stage 1.

Performance Relative to AKI Diagnosis

At the training time of six hours before any-AKI, the any-AKI model had AUCs of 0.743 

and 0.756 in the test and validation cohorts, respectively (Table 2). The AUPRC values were 

also good (0.796 in the test and 0.807 in the validation cohorts). At 90% specificity, the 

any-AKI model detected 38% of cases (sensitivity) in the testing and validation cohorts. The 

high specificity allowed for high positive predictive values: over 84% of the patients flagged 

by the model (having scores above the threshold 6 hours before AKI) developed AKI.

At the training time of twelve hours before moderate-to-severe AKI, the moderate-to-severe 

AKI model had AUC values of 0.715 and 0.721 in the test and validation sets, respectively. 

The lower prevalence of moderate-to-severe AKI (31% vs. 58% in any-AKI) resulted in 

lower AUPRC values, 0.564 and 0.557, in the testing and validation sets, respectively. As 

with the any-AKI model, the required high specificity resulted in low sensitivity of 34% 

in both the testing and validation sets. However, positive predictive values (PPV) remained 

higher than the prevalence (31% prevalence vs. 61% PPV) in the testing and validation sets.

Figure 1 demonstrates the models' performances over time before AKI diagnosis. As 

expected, the closer to the event, the better the model performance. The moderate-to-severe 

AKI model demonstrated more consistent performance up to six hours before disease 

diagnosis than the any-AKI model, which displays a linear increase over time. Additionally, 

at each time point except one hour before AKI, the moderate-to-severe AKI model has a 

higher AUC. However, the moderate-to-severe model has lower AUPRC values than the 

any-AKI model due to the lower prevalence of the outcome, as also observed at the training 

window (Table 2).

Prospective model performance

In practice, the time of AKI diagnosis is unknown in advance, so we also examined how 

the models might perform at identifying AKI patients when run prospectively from ICU 

admission. We calculated scores for each model every hour after ICU admission. Patients 

were classified as true/false positive/negative based on how many times the model was 

triggered (had a score above the threshold) before AKI diagnosis (Supplementary Table 3). 

Thus, the performance of the prospective model was evaluated: how likely the models are to 

identify AKI patients in practice (Table 3).

Compared to performance at the training times (Table 2), both models demonstrated higher 

sensitivity, detecting a higher percentage of patients who developed AKI (38% vs. 60% 

for the any-AKI model; 34% vs. 68% for the moderate-to-severe AKI model). There was 
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a corresponding decrease in the positive predictive value, from 85.1% to 79.6% and from 

61.3% to 54.6% for the any-AKI model and moderate-to-severe AKI model, respectively.

The models demonstrated good discrimination regarding the number of triggers among cases 

and controls (Figure 2). In both the test and validation datasets, AKI cases had a median 

of about two triggers every eight hours (any-AKI model 1.71 [IQR 0-4.8] in the test cohort 

and 1.82 [IQR 0-4.71] in the validation cohort; moderate-to-severe AKI model 2.18 [IQR 

0.11-5.11] in the test cohort and 2.35 [IQR 0.14-4.96] in the validation cohort, while the 

control group had a median of zero triggers (any-AKI 0 [IQR 0-0.75] in the test cohort and 

0 [IQR 0-0.73] in the validation cohort; moderate-to-severe AKI 0 [IQR 0-0.76] in the test 

cohort and 0 [IQR 0-0.8] in the validation cohort).

Feature Importance

The feature importance ranking using SHaP values for both models is shown in Figure 3. 

While the two models share several critical elements, they also use some unique features. 

Urine output and measured serum creatinine values from six or 12 hours before AKI 

diagnosis were highly predictive for both models. Fluid balance, the need for invasive 

mechanical ventilation, and the most recent weight measure were also in the top five features 

for both models. The duration of invasive mechanical ventilation and average respiratory rate 

in the previous 24 hours were predictive for any-AKI and moderate-to-severe AKI. While 

the duration of invasive mechanical ventilation was more important for predicting any-AKI, 

the average respiratory rate was a more important feature in predicting moderate-to-severe 

AKI.

There were also some distinctions in the predictive features. Physiological scores such as 

the Glasgow Coma scale and SOFA score were critical features for any-AKI but not for 

moderate-to-severe AKI. The use of IV diuretics in the previous 72 hours was an essential 

feature for any-AKI but not moderate-to-severe AKI. Conversely, vital signs such as heart 

rate, blood pressure, and respiratory rate were more important for predicting moderate-to-

severe AKI.

Simplified model performance

The simplified any-AKI model performance was lower than the gradient boosting model 

measured by AUC and AUPRC (Supplementary Table 4). Unlike the gradient boosting 

model, with its more-sophisticated modeling framework, the simplified model assigned a 

positive weight to urine output rather than a negative one (Supplementary Table 5). Further, 

although the range of values for urine output is higher than for creatinine, the weight for 

creatinine assigned by the model was much higher than that for urine output (785 vs. 1).

The simplified moderate-to-severe AKI model (see Methods) had only a slight decrease 

in performance relative to the gradient boosting model as measured by AUC and 

AUPRC (Supplementary Table 4). The simplified moderate-to-severe model had a negative 

association with urine output, but a higher weight was assigned to creatinine despite the 

lower range of values (Supplementary Table 5).
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Discussion and Conclusions

As the value of early recognition and prevention of AKI is progressively recognized, the 

interest in developing and validating AKI predictive models has grown over the past two 

decades [26-28]. While some models are designed to be calculated at or within the first 48 

hours of ICU admission to evaluate AKI risk once (static models), other models can change 

their prediction based on incoming data (dynamic models). Most static predictions employ 

regression models using mostly baseline characteristics and some exposure data, including 

the reason for admission, laboratory information, and initial vital signs. However, dynamic 

models primarily rely on machine learning techniques and use features that change over 

time, like continuous vital signs and laboratory information [29]. In a systematic review 

of the static and dynamic hospital-acquired AKI prediction models, the AUROC range 

was reported as 0.66-0.80 in the internal validation cohorts and 0.65-0.71 in the external 

validation cohorts [26].

In this large-scale retrospective study, we developed and validated two dynamic models 

that use ICU data to predict any AKI stage within 6 hours before its diagnosis and moderate-

to-severe AKI within 12 hours before it begins using data from the original cohort of 

131,873 admissions. In addition, we demonstrated that the models' performance continually 

improves, starting from an AUC of 0.74 at 6 hours before 0.83 at 1 hour before diagnosis for 

any-AKI model and an AUC of 0.72 at 12 hours before 0.82 at 1 hour before diagnosis for 

moderate-to-severe AKI.

Our models have several significant strengths. First, we use a large heterogenous dataset, 

including more than 50,000 and 30,000 patients from multiple ICUs, to develop the any-AKI 

or moderate-to-severe AKI models. The cohort contains a good mix of medical and surgical 

ICU patients. Most models use small retrospective datasets with fewer than ten events per 

predictor, limiting the optimal performance of machine learning tools and potentially leading 

to over- or under-fitting [26]. Secondly, we used serum creatinine and urine output criteria 

to identify patients with AKI, capturing both presentations of AKI and thereby increasing 

the sensitivity of our alerts. Thirdly, we developed two models with different thresholds of 

AKI intensity: any-AKI stage vs. moderate-to-severe AKI, allowing clinicians to choose the 

appropriate AKI threshold for risk score calculation based on their clinical application and 

resource availability. Furthermore, our models start calculating risk scores immediately after 

ICU admission, enhancing their utility and lowering the incidence of missing opportunities 

to prevent AKI. Finally, the features we chose for our models are clinically relevant and 

physiologically associated with AKI.

The top five features were the same in both models, even though their orders differed. Both 

models ranked urine output, fluid balance, and weight as important, with urine output being 

the most important feature in both models. This finding reflects the high prevalence of AKI 

due to low urine output in the population. High creatinine values were associated with a 

higher risk of AKI. For the any-AKI model, the SOFA score indicative of the severity of 

illness and the number of diuretics administered in the previous 72 hours were important 

predictors. Patients on the mechanical ventilator, duration of ventilation, the fraction of 

inspired oxygen, and respiratory rate were also included in the top 10 features for both 
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models. These features are typically measured frequently in ICU patients and are readily 

available in most EHRs.

Currently, available models are often very complex. They include many features to calculate 

the risk score, requiring advanced computations. This often limits their utility at the bedside 

unless their outputs are automatically calculated and incorporated within the medical records 

[26]. Therefore, in feature selection for inclusion in the final models, we limited the number 

of features to generate parsimonious models with minimal impact on their performance. 

While this strategy does not eliminate the need to compute the risk scores, it alleviates 

the risk of missing values. Further, we provided simple linear approximations that can be 

used in place of the gradient-boosting models when all ten inputs are available. Due to 

the more straightforward utility of the simplified models at the bedside, despite their lower 

performance, we suggest priority be given to the simplified moderate-to-severe AKI model 

for initial screening purposes. After identifying higher-risk patients using simplified models, 

full gradient-boosting models could be used for further details. This approach is particularly 

very practical for the model predicting moderate-to-severe AKI.

Many available dynamic models recalculate AKI risks in time blocks of 4-6 hours [17]. As 

the golden hours for AKI prevention and management are limited, the time lag between 

calculations could impact their potential benefits. Our models can handle missing data and 

show a risk score at ICU admission when minimal data becomes available. Moreover, our 

models are designed to recalculate the risk scores as soon as any additional information 

becomes available to patients' medical records, minimizing the risk of missing golden hours. 

In addition, the models are trained to predict patient risk 6 hours before any-AKI stage and 

12 hours before moderate-to-severe AKI, which are clinically relevant time windows. The 

models' first triggers happened at a median of 15 (Any-AKI) and 25 (moderate-to-severe 

AKI) hours before disease diagnosis (Supplementary Table 8, Supplementary Figure 5).

Most currently available models are designed to alert clinicians of any change in AKI risk, 

leading to provider fatigue. We chose an alert cutoff with higher specificity to mitigate 

the risk of alarm fatigue, increase providers' trust in the risk prediction model, and assist 

with resource allocation to higher-risk patients in the case of limited resource availability. 

This choice was at the expense of achieving lower sensitivity in both models. Nevertheless, 

this is not unprecedented in the literature, as the model by Tomasev and colleagues had 

lower sensitivity of about 56% [17]. The models have a sensitivity of 38% (at 6 hours 

before any AKI) and 34% (at 12 hours before moderate-to-severe AKI) for a specificity 

of 90%. This indicates that the models will have very few false positives. Since this is 

a continuously running algorithm, it generates multiple alerts over time. Therefore, we 

defined a more realistic definition of timely alerts as the number of AKI alerts in 2 to 10 

hours preceding the AKI stage change and moderate-to-severe AKI alerts in 2 to 18 hours 

preceding. This definition gave a higher sensitivity at the expense of lower specificity and 

positive predictive values (Table 3). Therefore, in a real-time deployment, the models can 

identify more patients while they have more false positives. We also evaluated the models by 

decreasing the targeted specificity, which resulted in higher sensitivity but lowered positive 

predictive values for both models (Supplementary Tables 6 and 7).
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The two models can be used together to identify and manage AKI effectively. We propose 

selecting a high-sensitivity threshold for the any-AKI model. This will result in the model 

identifying most of the potential AKI cases. These patients can be put on an advanced 

monitoring protocol. The moderate-to-severe AKI model can be run on patients identified 

by any-AKI model and have a threshold optimized for high specificity. This will identify 

patients most likely to develop moderate-to-severe AKI with a low chance of false positives. 

These patients can be more intensively managed.

Few models are validated externally [26]. Furthermore, as curated retrospective datasets are 

used for model development and validation, performance often declines when applied to 

other datasets. Our models also validated performance internally. However, considering the 

inclusion of readily available features in most ICU data sets, we believe the impact of this 

limitation is alleviated to the greatest possible extent.

Current models are primarily based on retrospective datasets and are rarely validated 

prospectively. In a recent study, the authors used a prospective simulated strategy to validate 

the results of models based on deep learning techniques and showed poor performance in 

predicting acute events among hospitalized patients [30]. This may indicate a dire need for 

prospective validation of the models that have been developed. In our study, we simulated 

the models' prospective behavior, which did not result in a decline in performance.

A potential limitation to applying this model to all ICU patients comes from the cohort 

selection criteria. During the model training phase, we excluded patients who started RRT 

for reasons other than AKI; therefore, the models do not apply to that cohort. In addition, we 

also excluded patients who presented with community-acquired AKI or developed AKI soon 

after ICU admission from the model training. While our models can still calculate the risk of 

AKI development in these patients, their clinical applications remain uncertain.

AKI as a syndrome is an umbrella term for many etiologies, limiting the performance of 

these models in identifying the primary reason for each AKI episode. Like many other 

predictive models, our models cannot differentiate particular etiology resulting in AKI.

While the progress in the field has been palpable, the models have not been implemented 

in clinical practice for several reasons, including lack of external validation [26], lack of 

prospective or clinical validation, small training datasets, lack of cause determination, model 

complexity, burdensome alerting frameworks, and infrequent assessment of risk. We have 

taken steps to alleviate these limitations as much as possible. However, these drawbacks 

remain due to the lack of external data and prospective testing.

In conclusion, we developed and internally validated machine learning predictors of any 

moderate-to-severe AKI in a large cohort of adult ICU patients that provides high specificity 

with clinically relevant lead time to implement individualized preventive measures for 

patients at higher risk of AKI. The subsequent steps in evolving these models include 

the external and real-time prospective validations of their performance and assessing their 

impacts on the patients' clinical outcomes in large-scale multicenter clinical trials.
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Highlights

• We developed and evaluated separate models for any stage of acute kidney 

injury (any-AKI or stage ≥ 1) and moderate-to-severe AKI (stage > 1)

• The models are parsimonious, use commonly-available features, employ 

clinically-actionable lead times, and handle missing inputs

• The models identified 80% of any-AKI patients and 55% of moderate-to-

severe AKI patients between admission and KDIGO- based diagnosis.
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Figure 1: Performance over time relative to AKI onset.
The area under the receiver operating characteristic curve (top panel) and the area under 

the precision-recall curve (bottom panel) over time relative to AKI onset. 'AKI onset' is the 

first time the stage is > 0 for the any-AKI model and the first time the stage is > 1 for the 

moderate-to-severe AKI model. Time zero represents AKI onset, hour 01, 1 hour before AKI 

onset, etc. Red indicates the performance of any-AKI model, and blue performance of the 

moderate-to-severe AKI model. Performance is shown in the test dataset.
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Figure 2: Number of triggers before AKI onset.
The distribution of the number of times the any-AKI model (left) and moderate-to-severe 

AKI model (right) trigger before AKI onset among cases (red) and controls (blue). Results 

are shown in the test (bottom) and validation (top) samples. AKI onset times for control 

patients are randomly generated.
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Figure 3: Features important in model prediction.
The top 10 features contributed to predictions for the any-AKI model (A) or moderate-to-

severe AKI model (B).
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Table 1:

Demographic and outcome information for encounters used in model training, testing, or validation

Any AKI model Mod/severe AKI model

Max AKI stage No AKI 1.0 2.0 3.0 No AKI 1.0 2.0 3.0

# Encounters 21,026 17,785 5,548 5,983 15,566 11,211 5,983 6,327

Female* 8,998 
(42.8%)

7,269 
(40.9%)

2,472 
(44.6%)

2,452 
(41.0%)

6,661 
(42.8%)

4,524 
(40.4%)

2,633 
(44.0%)

2,586 
(40.9%)

Black* 248 (1.2%) 191 (1.1%) 66 (1.2%) 116 (1.9%) 177 (1.1%) 124 (1.1%) 73 (1.2%) 122 (1.9%)

BMI at 
admission

28.11 
(6.84)

29.99 
(7.44)

33.44 (9.34) 29.3 (8.44) 28.04 
(6.84)

29.75 
(7.59)

33.46 (9.34) 29.34 (8.39)

Death in ICU* 328 (1.6%) 697 (3.9%) 448 (8.1%) 831 (13.9%) 263 (1.7%) 483 (4.3%) 524 (8.8%) 928 (14.7%)

Death in 
Hospital*

765 (3.6%) 1,254 
(7.1%)

701 (12.6%) 1,101 
(18.4%)

595 (3.8%) 887 (7.9%) 815 
(13.6%)

1,223 
(19.3%)

ICU LOS 

(hours)
#

43.0 (40.0) 63.0 (70.0) 80.0 (104.0) 127.0 
(237.0)

46.0 (43.0) 72.0 (82.0) 81.0 (106.0) 132.0 
(239.0)

Hospital LOS 

(hours)
#

149.0 
(151.0)

197.0 
(206.0)

240.0 
(273.25)

263.0 
(428.0)

153.0 
(164.0)

225.0 
(251.0)

248.0 
(289.0)

277.0 
(455.0)

Hours to first 
stage > 0

NaN 33.79 
(42.75)

23.46 
(29.72)

47.78 
(71.41)

NaN 30.33 
(93.62)

20.97 
(30.26)

44.31 
(70.99)

Hours to first 
stage > 1

NaN NaN 46.86 (64.9) 88.07 
(130.14)

NaN NaN 47.28 
(65.98)

87.95 
(129.26)

Some encounters are used in both models. Variables marked with * are summarized as # (%); variables marked with # are summarized with median 
(IQR); all other variables are summarized with means (sd).
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Table 2:

Model performance at the training windows

Model Cohort AUC AUPRC Se (Sp=90%) Sp (Sp=90%) PPV (Sp=90%)

Any AKI Training 0.754 0.807 0.388 0.904 0.849

Testing 0.743 0.796 0.381 0.900 0.843

Validation 0.756 0.807 0.385 0.905 0.851

Moderate/severe AKI Training 0.732 0.584 0.357 0.904 0.631

Testing 0.715 0.564 0.342 0.900 0.614

Validation 0.721 0.559 0.341 0.903 0.613

Overall model performance at training window (6 hours for any AKI, 12 hours for moderate/severe AKI). Results for each model are shown for 
the training, testing, and validation sets. The thresholds for both models were chosen to yield a specificity of 90% in the test set. AUC=area under 
the receiver operating characteristic curve; AUPRC=area under the precision-recall curve; Se=sensitivity; Sp=specificity; PPV=positive predictive 
value.
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Table 3:

Prospective model performance

Model Cohort Se Sp PPV

Any AKI Training 0.610 0.775 0.790

Testing 0.605 0.776 0.791

Validation 0.619 0.777 0.796

Moderate/severe AKI Training 0.689 0.734 0.543

Testing 0.687 0.733 0.544

Validation 0.694 0.739 0.546

The model performance when evaluated prospectively. Encounters are counted as 'positive' if the model triggers in a 'timely' manner before onset 
(see Methods) and negative if not. Results for each model are shown for the training, testing, and validation sets. Se=sensitivity; Sp=specificity; 
PPV=positive predictive value.
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