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Abstract

Left ventricular hypertrophy is a leading risk factor for cardiovascular morbidity and mortality. 

Although reverse ventricular remodelling was long thought to be irreversible, evidence from the 

past three decades indicates that this process is possible with many existing heart disease therapies. 

The regression of pathological hypertrophy is associated with improved cardiac function, quality 

of life and long-term health outcomes. However, less than 50% of patients respond favourably 

to most therapies, and the reversibility of remodelling is influenced by many factors, including 

age, sex, BMI and disease aetiology. Cardiac hypertrophy also occurs in physiological settings, 

including pregnancy and exercise, although in these cases, hypertrophy is associated with normal 

or improved ventricular function and is completely reversible postpartum or with cessation of 

training. Studies over the past decade have identified the molecular features of hypertrophy 

regression in health and disease settings, which include modulation of protein synthesis, 

microRNAs, metabolism and protein degradation pathways. In this Review, we summarize the 

evidence for hypertrophy regression in patients with current first-line pharmacological and surgical 

interventions. We further discuss the molecular features of reverse remodelling identified in cell 

and animal models, highlighting remaining knowledge gaps and the essential questions for future 

investigation towards the goal of designing specific therapies to promote regression of pathological 

hypertrophy.

Introduction

Despite advances in treatment over the past 50 years, heart disease remains the leading 

cause of morbidity and mortality in the world1. Heart failure onset is typically preceded by 

cardiac hypertrophy, a compensatory thickening of the muscle in response to elevated left 
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ventricular (LV) wall stress. However, the response becomes maladaptive with time, and this 

pathological hypertrophy is an independent predictor of adverse cardiovascular outcomes 

including myocardial infarction, arrhythmia and heart failure2,3. Although pathological 

hypertrophy was long thought to be irreversible, partial regression is observed with many 

existing therapies in a subset of patients and is associated with improved long-term health 

outcomes4,5. Importantly, in almost all cases, the reversal of cardiac hypertrophy leads 

to improved ventricular function6. A similar adaptive response is observed with exercise, 

in which increased workload precipitates increased cardiac muscle mass7. However, this 

physiological hypertrophy is associated with normal or increased ventricular function and 

is completely reversible with cessation of training8. Physiological hypertrophy also occurs 

in pregnancy but is rapidly reversible in most cases postpartum9. These observations lend 

strong support for the development of therapies directed at hypertrophy reversal as a 

treatment for heart disease. Molecular studies over the past decade have begun to shed 

light on the complexity of hypertrophy and its regression at the level of the cardiomyocyte, 

and to identify new therapeutic targets for reversal of pathological remodelling.

In this Review, we present an integration of clinical studies and basic science discoveries on 

cardiac hypertrophy regression. We discuss evidence for the benefits of reverse remodelling 

from clinical studies with current heart failure therapies. We also examine the molecular 

features of pathological hypertrophy and regression identified in cell and animal models and 

human tissue studies, comparing where possible with physiological models. The objective of 

this Review is to highlight therapies and mechanisms involved in the regression of existing 

cardiac hypertrophy and, therefore, studies on the prevention of hypertrophy development, 

although important, are not the focus.

Overview of cardiac hypertrophy

Cardiac hypertrophy is defined as a LV mass increase arising from thickening of the LV 

wall and/or enlargement of chamber diameter10. The structural manifestation of hypertrophy 

is determined by the type of cardiac insult, broadly categorized as either pressure or 

volume overload. Examples of pressure overload are aortic stenosis and hypertension, in 

which increased afterload on the heart triggers ventricular muscle growth. Volume overload 

underlies hypertrophy in the case of mitral regurgitation and also in physiological growth 

settings, including postnatal life, exercise and pregnancy11. The organ-level structural 

changes are mediated by distinct responses to increased pressure or volume at the cellular 

level by cardiomyocytes, the predominant cardiac cell type12. Postnatal cardiomyocytes have 

limited proliferative capacity and consequently, to increase organ size, the individual cells 

grow larger13. An exception in which cardiomyocyte proliferation does have a minor role 

is in early postnatal development; however, in this setting, cardiomyocyte hypertrophy is 

also the predominant factor14. With sustained pressure, cardiomyocytes undergo concentric 

hypertrophy, becoming thicker by the parallel addition of sarcomeres — the contractile 

units of striated muscle cells. Serial addition of sarcomeres occurs with volume overload, 

extending cardiomyocyte length to drive eccentric growth and leading to increased chamber 

diameter.

Martin et al. Page 2

Nat Rev Cardiol. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Molecular mechanisms of cardiac hypertrophy

The cellular and molecular mechanisms of physiological and pathological hypertrophy 

are well established. Although both manifestations of hypertrophy are initially adaptive, 

pathological hypertrophy becomes maladaptive and can lead to heart failure. The stimuli 

and mechanisms that regulate these two types of growth are distinct and, in some cases, 

antagonistic15 (Fig. 1). In this section, we discuss the factors known to initiate each type of 

hypertrophy and the downstream cellular signalling cascades.

Physiological hypertrophy

During development, pregnancy or long-term exercise, cardiomyocytes undergo hypertrophy 

to meet increased volume demands. This adaptation leads to unchanged or improved 

cardiac function15,16. At the cellular level, circulating factors trigger signalling cascades that 

mediate survival and growth and thereby permit a fully adaptive response15. Several factors 

contribute to physiological hypertrophy and herein we focus primarily on hypertrophy-

promoting circulating factors and the organ-level changes and cellular signalling cascades 

they initiate.

Insulin and insulin-like growth factor 1 (IGF1) regulate a broad range of cellular functions, 

including growth, survival and metabolism. Their receptors are highly expressed in 

cardiomyocytes and have a prominent role in regulating cardiac function and mediating 

physiological growth17,18. Both hormones and their respective tyrosine kinase receptors are 

structurally similar and stimulate shared pathways, including the phosphoinositide 3-kinase 

(PI3K)–AKT and RAS–MAPK pathways15,19. Binding of insulin or IGF1 to their receptors 

activates the PI3K–AKT pathway by triggering the recruitment of insulin receptor substrate 

1 (IRS1) and IRS2 (refs.20,21). The p100α isoform of PI3K is the master regulator of 

exercise-induced hypertrophy and has a crucial protective role for cardiomyocytes in the 

context of pathological stimuli21,22. AKT activation downstream of PI3K leads to the 

inhibition of several negative regulators of hypertrophy, including glycogen synthase kinase 

3β (GSK3β), forkhead box protein O1 (FOXO1), FOXO3 and CCAAT/enhancer-binding 

protein-β (C/EBPβ)23–25. AKT also indirectly activates mechanistic target of rapamycin 

(mTOR), which contributes to hypertrophy by increasing protein synthesis and inhibiting 

autophagy26. Insulin and IGF1 also activate the RAS–MEK–MAPK pathway by recruiting 

the growth factor receptor-bound protein 2 (GRB2)18,21. When recruited, GRB2 activates 

RAS–RAF, which in turn activates MEK1 or MEK2 to trigger the MAPK cascade18. 

Stimulation of MEK1 or MEK2 is linked to physiological hypertrophy and cell survival 

through inhibition of apoptosis27.

The thyroid hormones triiodothyronine (T3) and thyroxine (T4) also mediate physiological 

growth28. These hormones are released after birth and inhibit the expression of fetal-related 

genes while activating the expression of genes that promote cardiomyocyte maturation15,28. 

T3 activates the PI3K–AKT pathway after binding to either of its receptors, thereby leading 

to physiological growth28,29. Additionally, in rat and mouse hearts, T3 and T4 stimulate 

the expression of Myh6 and Serca2a30,31, which encode proteins that are important for 

maintaining cardiomyocyte contractility. Several studies in animal models have shown that 

low thyroid hormone levels are associated with heart failure and impaired cardiac function, 

Martin et al. Page 3

Nat Rev Cardiol. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



but pathological hypertrophy is reversed with increased T3 levels, resulting in improved 

cardiac function32–34. Other circulating factors, including fatty acids, have also been shown 

to promote physiological hypertrophy. A study of hypertrophy in the infrequently feeding 

Burmese python identified three circulating fatty acids (myristic acid, palmitic acid and 

palmitoleic acid) that regulate hypertrophy in response to a meal35. Injection of these fatty 

acids into fasted pythons and mice led to the recapitulation of cardiac hypertrophy35.

Several non-coding RNAs (ncRNAs) also regulate physiological hypertrophy. 

MicroRNA-222 (miR-222) and miR-17–3p are each upregulated in exercise-induced 

hypertrophy in mice36,37. Both microRNAs activate pathways that promote cell 

proliferation, growth and survival36,37. The long ncRNA (lncRNA) cardiac physiological 

hypertrophy-associated regulator (CPhar) was shown in mice to be cardioprotective as 

well as necessary for exercise-induced hypertrophy in a C/EBPβ-dependent manner38. 

Conversely, the lncRNA lncExACT1 is downregulated in exercise-induced physiological 

hypertrophy and upregulated in pathological hypertrophy39. Furthermore, inhibition of 

lncExACT1 led to physiological hypertrophy and increased cardiomyocyte proliferation 

through regulation of miRNA-222 and the Hippo–Yap signalling pathway39. Additional 

involvement of ncRNAs in reverse remodelling has been extensively reviewed previously6.

One factor that distinguishes physiological hypertrophy from pathological hypertrophy is the 

degree of angiogenesis. The capacity of the heart to maintain vascularization and perfusion 

largely depends on increased capillary density mediated by vascular endothelial growth 

factor40. Increased cardiac angiogenesis allows proper supply of nutrients and oxygen, 

which contributes to the fully adaptive physiological growth41. Angiogenesis decreases 

in pathological hypertrophy, thereby resulting in hypoxia and insufficient nutrients40,42. 

Therefore, angiogenesis is a key process not only for promoting adaptive growth but also for 

preventing maladaptive responses.

Pathological hypertrophy

Maladaptive cardiac hypertrophy develops in pathological settings, including hypertension, 

obesity and certain genetic cardiomyopathies. Compared with physiological growth, the 

stimuli and signalling mechanisms that trigger this maladaptive response promote fibrosis, 

apoptosis, and other cellular and structural dysfunction, which can ultimately lead to heart 

failure15,43. Circulating factors including catecholamines, natriuretic peptides and peptide 

hormones contribute to pathological remodelling. In this section, we discuss these factors 

and the downstream signalling mechanisms (Fig. 1).

Catecholamines are neuroendocrine hormones that are released after activation of the 

adrenergic nervous system in response to stress44. These hormones bind to cardiomyocyte 

adrenergic receptors, G protein-coupled receptors that subsequently activate adenylyl 

cyclase44. After activation of adenylyl cyclase, cAMP levels increase, which in turn 

activates protein kinase A (PKA) and exchange protein directly activated by cAMP (EPAC). 

Activation of PKA stimulates the upregulation of the activity of calcium-handling proteins 

and increases basal cardiac contractility44. EPAC, which is independently activated by 

cAMP, stimulates the phosphatase calcineurin and its downstream effector nuclear factor 

of activated T cells (NFAT), which regulates pathological growth and gene expression45. 
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EPAC also activates calcium/calmodulin-dependent protein kinase II (CaMKII), which 

stimulates the transcription factor myocyte-specific enhancer factor 2A (MEF2A) to induce 

pathological hypertrophic gene expression46,47. The continual release of catecholamines 

eventually leads to adrenergic receptor desensitization and heart failure44,48. This process 

is mediated by G protein-coupled receptor kinase 2 (GRK2), GRK5 and β-arrestins49. 

GRK5 also positively regulates MEF2A in a histone deacetylase 5 (HDAC5)-dependent 

manner, as well as NFAT50–52. Additionally, catecholamines activate MAPK proteins and 

the downstream p38 and JNK pathways, which trigger pathological hypertrophic gene 

expression53,54.

The circulating levels of atrial natriuretic peptide (ANP) and B-type natriuretic peptide 

(BNP) are elevated in heart failure and are a common indicator of pathological 

hypertrophy55. In healthy physiology, ANP and BNP are antihypertrophic by preventing 

increases in intracellular calcium levels in cardiomyocytes56,57. Circulating ANP and 

BNP bind to natriuretic peptide receptors, which activate guanylyl cyclase and lead to 

increases in intracellular cGMP concentration57,58. cGMP activates PKG, which inhibits 

the prohypertrophic molecules calcineurin–NFAT, MEF2A and transient receptor potential 

canonical channel (TRPC)55,59. However, chronically elevated levels of circulating ANP 

and BNP in heart disease cause natriuretic peptide receptor desensitization, increased 

intracellular calcium levels in cardiomyocytes and pathological cardiac remodelling60,61. 

Additionally, in pathological hypertrophy, the expression and activity of phosphodiesterases 

(PDEs), which regulate cGMP homeostasis, are increased59,62. Inhibition of PDEs blocks 

prohypertrophic signalling pathways59,62,63.

The circulating levels of the peptide hormones angiotensin II and endothelin 1 are 

upregulated in heart failure64,65. These humoral factors are released in response to 

mechanical stress in the vascular system and promote cardiac structural and functional 

changes66–68. Binding of these hormones to their receptors on cardiomyocytes stimulates 

G proteins, which activate the phospholipase C–calcineurin–NFAT, MAPK and calmodulin–

CaMKII pathways, leading to maladaptive gene expression69–71. CaMKII phosphorylates 

class II HDACs, which repress cardiomyocyte hypertrophy by inhibiting MEF2A 

expression72. After phosphorylation, HDACs are exported from the nucleus, enabling 

the upregulated expression of prohypertrophic genes73. Angiotensin II also regulates 

hypertrophy through the Toll-like receptor 3 (TLR3)–TIR domain-containing adapter 

molecule 1 (TRIF) and TLR4–TRIF immune pathways, which are activated by inflammation 

caused by hypertension74.

Clinical relevance of hypertrophy regression

Before 1990, pathological hypertrophy was considered to be an irreversible condition. 

However, it has become clear that modest regression is possible in a subset of patients 

(Table 1), and this reverse remodelling is associated with improved cardiac function and 

long-term health75,76. In this section, we discuss the data supporting reverse remodelling 

with existing pharmacological and surgical therapies, as well as with implementation of 

exercise and dietary changes.
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Pharmacological therapies

RAAS blockade.—In heart disease, compromised haemodynamic function triggers 

sustained renin–angiotensin–aldosterone system (RAAS) activation, leading to fluid 

retention, high blood pressure and elevated LV preload and afterload77. Therefore, several 

compounds have been developed to antagonize the RAAS. Angiotensin-converting enzyme 

(ACE) inhibitors and angiotensin receptor blockers (ARBs) were among the first identified 

and remain the most effective monotherapies for reversing cardiac hypertrophy78–80. 

Patients receiving ACE inhibitors show progressive reductions in LV mass index (LVMI; 

where LVMI = LV mass (grams)/body surface area (square metres)) beginning 3 months 

after treatment81–83. ACE inhibition also prevents the development of LV dilatation, a 

feature of end-stage heart failure84. ARBs have similar effects to those of ACE inhibitors on 

regression of hypertrophy and the concurrent improvement in LV function and are effective 

in reversing both eccentric and concentric hypertrophy80,85–87.

Another approach targeting the RAAS is the use of mineralocorticoid receptor antagonists. 

Mineralocorticoid receptor antagonists reduce LVMI, restore ventricular compliance and 

reduce all-cause mortality88,89. Mineralocorticoid receptor antagonists are also effective in 

reducing cardiac hypertrophy and diastolic dysfunction in patients with heart failure with 

preserved ejection fraction90. A newer class of compounds targeting both the angiotensin 

receptor and the membrane metallopeptidase neprilysin (angiotensin receptor–neprilysin 

inhibitors (ARNIs)) is the most effective for reversing cardiac remodelling91,92 (Box 

1). More pronounced regression of cardiac hypertrophy with ARNIs is associated with 

reduction of plasma amino-terminal pro-BNP (NT-proBNP) levels93–96. In patients with 

heart failure with reduced ejection fraction, ARNI therapy increases LV ejection fraction by 

5% compared with ACE inhibitors or ARBs alone, suggesting that increased regression 

of hypertrophy is associated with further functional improvements97. Various factors 

affect the efficacy of RAAS blockade in inducing cardiac hypertrophy regression, and 

less regression is observed in patients with ischaemic heart disease, older age, longer 

duration of hypertension, greater degree of pathological remodelling or higher BMI87,98–100. 

Interestingly, reverse remodelling with RAAS blockade can occur even when hypertension 

is not rectified89,101,102. The mechanisms underlying pressure-independent hypertrophy 

regression are an important topic for future study.

β-Adrenergic receptor blockade.—Chronic sympathetic activity in heart disease leads 

to downregulation of cardiomyocyte β-adrenergic receptors and reduced contractility103. 

β-Adrenergic receptor antagonists increase receptor expression and membrane density, 

leading to restoration of cardiomyocyte contractility104. β-Blockers lower all-cause mortality 

and mildly reduce existing hypertrophy in patients with heart failure, while increasing LV 

ejection fraction in a dose-dependent manner105. Compared with other therapies, β-blockers 

are less effective in reversing hypertrophy, and several studies found no effect on reverse 

remodelling (Table 1). However, combination therapy with RAAS blockade has additive 

benefits for ventricular geometry and function106–108.

Calcium channel blockade.—Calcium channel blockers are antihypertensive 

medications that act on L-type calcium channels, inhibiting calcium uptake in the 
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vasculature and stimulating vasodilatation109. Several studies suggest that calcium channel 

blockers are the most effective pharmacological therapy for stimulating reverse remodelling 

in the short-term, consistently reducing LVMI by ≥10% after 3 months110–113. However, 

unlike RAAS-targeting therapies, calcium channel blockers reverse only concentric 

hypertrophy and have limited additional benefit on regression with longer duration of 

treatment112 (Table 1). As with other treatments, the benefits of calcium channel blockers 

for hypertrophy regression are limited to non-ischaemic heart disease114. Calcium channel 

blockade increases hypertrophy regression when used as an add-on treatment with RAAS 

antagonists or thiazide diuretics115,116. Calcium channel blockers also induce hypertrophy 

regression, without affecting blood pressure levels, in patients with LV hypertrophy and 

normal blood pressure117.

Other drug therapies.—Sodium–glucose cotransporter 2 (SGLT2) inhibitors, which 

prevent the reabsorption of glucose in the proximal renal tubules, were developed as a 

treatment for patients with type 2 diabetes mellitus118. However, SGLT2 inhibitors have 

since proven to be effective for improving outcomes in patients with heart failure regardless 

of diabetes presence119. The mechanisms underlying heart failure reduction with SGLT2 

inhibitors are unclear; however, studies have found that SGLT2 inhibition mildly reduces 

LV mass and ambulatory blood pressure120,121. Improved prognosis with SGLT2 inhibitors 

in patients with heart failure is associated with reverse remodelling and might be blood-

pressure independent120. In the MET-REMODEL trial122, another diabetes drug, metformin, 

reduced LVMI by 5% after 12 months compared with placebo in patients with coronary 

artery disease without diabetes. Another study found that adding the PDE5 inhibitor 

sildenafil to a traditional treatment regimen with RAAS inhibition and β-blockade increases 

hypertrophy regression123. Modest reverse remodelling has also been observed with cardiac 

myosin inhibitors and mTOR inhibitors124–126.

Surgery and device therapies

Aortic valve replacement.—Pressure overload from aortic valve stenosis or 

insufficiency leads to pathological hypertrophy. Aortic valve replacement (AVR) reduces 

ventricular outflow gradient pressure and triggers reverse remodelling127. The effects of 

AVR are immediate, beginning 7 days after surgery with a reduction in LV mass of 10% 

by 1 month128,129. This reduction in LV mass is driven by a decrease in cardiomyocyte 

volume in the early remodelling phase and later (6–12 months) by fibrosis reduction130,131. 

Greater regression with AVR is associated with lower serum NT-proBNP levels and 

rehospitalization rates128,130. Despite most patients experiencing structural improvements, 

<20% of patients show a regression to a normal LVMI in the first 18 months132. However, 

longer-term studies identified LVMI normalization in most patients 8–10 years after 

AVR4,129. Stented bioprostheses (compared with stentless bioprostheses), higher BMI and 

systemic hypertension are associated with less hypertrophy regression after AVR128,133–135.

Bariatric surgery.—Obesity causes diastolic dysfunction and is a leading risk factor 

for heart disease136. Bariatric surgery reduces long-term cardiovascular morbidity and 

concentric cardiac hypertrophy137. Beneficial cardiac structural remodelling and improved 

diastolic function are observed within 3 months after surgery, and normal LV geometry is 
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achieved in ~70% of patients by 3 years138–140. LV mass reduction after bariatric surgery 

occurs regardless of cardiovascular comorbidities or medications used141. However, patients 

receiving β-blockers have the most pronounced hypertrophy regression, compared with 

patients receiving other compounds141. The role of blood pressure reduction in hypertrophy 

regression after bariatric surgery is unclear139,141,142.

Cardiac resynchronization therapy.—Optimal ventricular function requires tightly 

coordinated electrical activation. In many patients with heart disease, dyssynchrony 

owing to ventricular pacing or left bundle branch block contributes to the pathology. 

Cardiac resynchronization therapy (CRT) was developed to resynchronize contraction, and 

multiple clinical trials have indicated its benefits for both long-term health and reverse 

remodelling143–145. Reduced LV dimensions and volume with CRT are associated with a 

small but significant increase in LV ejection fraction by 3 months that is independent of 

concurrent pharmacological therapy146. The structural effects of CRT peak at 2 years and 

are sustained until at least 5 years147–149. Early intervention is important given that patients 

with NYHA class IV heart failure have the least reverse remodelling with CRT150.

Left ventricular assist device therapy.—The number of patients with heart failure 

who require heart transplantation far exceeds donor heart availability. LV assist devices 

(LVADs) mechanically pump blood from the left ventricle to the aortic root and have 

been used as a bridge-to-transplantation for almost three decades in patients with end-

stage heart disease151. Numerous studies indicate that LVADs restore cardiac output and 

reverse hypertrophy in these patients152. The extent of hypertrophy regression is positively 

correlated with the duration of LVAD support, although the majority of remodelling occurs 

in the first 40 days153,154. Importantly, the effects of LVAD on hypertrophy are similar 

in ischaemic and non-ischaemic heart disease155. LVADs induce the most pronounced 

hypertrophy reduction of any existing therapy for heart failure (Table 1), highlighting the 

pressure-dependent aspect of hypertrophy regression. Interestingly, LVAD therapy does 

not reduce right ventricular hypertrophy, suggesting that reduced LV preload drives the 

hypertrophy regression156.

Lifestyle modifications

Aerobic exercise.—Regular exercise in healthy individuals is associated with 

physiological hypertrophy. Interestingly, reduced LV volumes and increased LV ejection 

fraction have been observed when patients with heart disease adopt an aerobic exercise 

routine157. Exercise-induced hypertrophy regression requires months of training, and 

strength training has no added effects158,159. The regression is most pronounced in 

patients with non-ischaemic heart failure, whereas for patients after myocardial infarction 

the benefits of exercise are greatest for those who start early and continue for more 

than 3 months160,161. Exercise leads to a reduction in circulating angiotensin II, 

noradrenaline, BNP and aldosterone levels158, which mitigates hypertension and might 

underlie hypertrophy regression in this patient population159. Notably, one study found that 

exercise-induced weight loss did not contribute to the reverse remodelling because BMI was 

unchanged whereas LV mass decreased by 12% after 4 months of low-intensity exercise159. 
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These studies suggest that the effect of exercise on reverse remodelling is similar to that of 

most drug therapies.

Calorie restriction.—Preclinical models suggest that calorie restriction and intermittent 

fasting paradigms might be effective for preventing and reversing adverse cardiac 

remodelling162,163. In rodent models of metabolic syndrome-induced and obesity-induced 

cardiomyopathy, calorie restriction attenuated cardiomyocyte hypertrophy, oxidative stress 

and fibrosis162,164. Starting alternate-day intermittent fasting in rats before or directly after 

a myocardial infarction reduced cardiomyocyte hypertrophy and LV dilatation 12 weeks 

after the myocardial infarction163. In another study, starting calorie restriction 4 weeks after 

myocardial infarction also ameliorated cardiac dysfunction, reduced heart mass and restored 

adrenergic sensitivity165. Using calorie restriction and naturally occurring compounds that 

mimic calorie restriction (such as curcumin and resveratrol) to treat heart failure is an 

appealing therapeutic strategy that requires further investigation166.

Determinants of reversibility in pathological hypertrophy

One feature that distinguishes pathological from physiological hypertrophy is that 

pathological hypertrophy is typically only partially reversible. The reasons for the often-

incomplete regression remain unclear. However, one possible explanation is the presence of 

extensive fibrotic remodelling driven by proliferation and activation of cardiac fibroblasts 

in pathological settings167. Indeed, for most therapies, patients with the lowest baseline 

levels of fibrosis experience greater regression of hypertrophy168. Interestingly, one of the 

factors thought to underlie the more rapid regression observed in female patients after 

AVR is that they develop less pressure-overload-associated fibrosis than male patients169. 

This observation might also explain why less regression is observed in ischaemic heart 

disease, which is associated with greater fibrosis than non-ischaemic heart failure98. 

However, longer-term studies of AVR found that fibrosis only slows the rate of reverse 

remodelling131,170, and long-term LVAD therapy has also been shown to reduce fibrosis 

and expression of collagen-encoding genes153. Inhibiting the progression of fibrosis with 

antifibrotic drugs has received interest in the past decade, and a clinical trial of the 

antifibrotic drug pirfenidone in patients with heart failure with preserved ejection fraction 

indicated that fibrosis reduction is possible in this patient population171. Future research on 

combination treatments of pirfenidone with existing first-line therapies for heart failure are 

needed to explore the potential for rapid and complete reversal of pathological hypertrophy.

Like fibroblasts, immune cells also uniquely contribute to the development of pathological 

cardiac hypertrophy and might have a role in the incomplete reversibility172. Although the 

role of immune cells in reverse remodelling remains to be fully investigated, preclinical 

studies indicate that modulation of these cells might be efficacious173,174. Treating mice 

with pressure-overload-induced cardiac hypertrophy with an antibody against CD20, which 

suppresses B cells, reversed hypertrophy and inhibited pathological transforming growth 

factor-β (TGFβ)–SMAD2/SMAD3 and ERK1/ERK2 signalling173. In other studies using 

the same mouse model, treatment with granulocyte colony-stimulating factor, which caused 

neutrophil infiltration and increased IL-1β expression, led to regression of fibrosis174. 
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Further study is required to clarify the involvement of the immune system in reverse 

remodelling.

Mechanisms of hypertrophy regression

Regression of physiological hypertrophy

Pregnancy.—Chronic volume overload in pregnancy leads to eccentric cardiac 

hypertrophy. This physiological growth, which is mediated by the IGF1–PI3K–AKT 

and ERK pathways175,176, is associated with normal cardiac function and is completely 

reversible postpartum. In humans, the timing of cardiac hypertrophy development and 

regression is temporally coupled to haemodynamic load177. Pregnancy-associated changes 

in contractility, valve area and LV mass are reversed over several months postpartum178,179. 

Similar results have been observed in rodents, but hypertrophy regression is evident after 

1–3 days postpartum and is complete at 2–3 weeks180–182. In addition to the reduction 

in heart weight, changes in LV pressure, contractility and angiogenesis are notable at 1 

week postpartum180,182. The regression might be mediated by the ubiquitin–proteasome 

system, given that proteasome activity and expression of Fbxo32, encoding an E3 ligase, 

are upregulated immediately postpartum in mice176. These findings are further supported 

by the observation in mice that protein polyubiquitination is reduced in late pregnancy and 

subsequently increases 1 day postpartum182. Micro-array analysis immediately postpartum 

also identified changes in the expression of genes related to chemokine, glucocorticoid 

receptor and cytochrome P450 pathways176. Non-fibrotic extracellular matrix remodelling is 

an important feature of hypertrophy regression after pregnancy, and increased expression of 

genes encoding extracellular matrix-related proteins (Adam15, Mmp2 and Timp1) has been 

identified in multiple studies176,180,183,184. Notably, hypertrophy regression does not occur 

in lactating rats because increased circulating blood volume sustains volume overload on the 

heart9,185. However, stopping lactation by separating newborn pups from the mother induces 

rapid hypertrophy regression9,186. Lactation is associated with increased phosphorylation 

of ERK1, ERK2, FOXO1 and FOXO3 at 1 week postpartum in mice186, which might 

contribute to the extended hypertrophy.

Exercise.—Exercise-induced cardiac hypertrophy is associated with normal or improved 

cardiac function and reverses rapidly when training is stopped. In one study, rats with 9 

weeks of swim training had substantial cardiac hypertrophy that had completely reversed 

2 weeks after training cessation187. In these rats, reduced heart weight was associated 

with diminished mRNA content, suggesting that reduced protein synthesis contributes to 

hypertrophy regression187. Given that the serum IGF1 level is known to increase with 

endurance exercise188, reduced protein synthesis in sedentary animals might be due to 

decreased growth pathway activity downstream of IGF1. However, this represents an 

important area for future research. In humans, complete hypertrophy regression is observed 

within 1 month of stopping activity and is mediated by a decrease in the intracellular 

compartment, suggesting reduction of myofibrils8. Interestingly, exercise preconditioning 

ingrains antihypertrophic memory to future pathological insults. In mice that underwent 

3 weeks of swim training, complete hypertrophy regression had occurred 1 week after 

training cessation and was associated with upregulation of lncRNA Mhrt779 expression189. 
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When these mice were later subjected to pathological stimuli, Mhrt779 conveyed anti-

hypertrophic effects through regulation of HDAC2 and the AKT–GSK3β pathway189. The 

calcium-binding proteins S100A8 and S100A9 are also upregulated with exercise and 

suppress calcineurin–NFAT signalling, which mitigates pressure-overload-induced cardiac 

hypertrophy190. Other mechanisms by which exercise is thought to reverse pathological 

cardiac hypertrophy include reduction of circulating catecholamines and blood pressure 

levels157,191.

Regression of pathological hypertrophy

LVAD mechanical unloading.—Owing to the number of studies using tissue samples 

obtained before and after LVAD therapy, the molecular mechanisms of cardiac hypertrophy 

regression after mechanical unloading are the best characterized (Fig. 2). The effects 

of LVADs are numerous and include changes to myocardial metabolism, contractility, 

protein synthesis, protein degradation and immune response152. The detrimental reversion 

to fetal-like metabolism, in which glucose is preferentially used over fatty acids, in 

heart failure is well established192. Mechanical unloading induces partial restoration of 

oxidative phosphorylation, upregulation of fatty acid metabolism, increased expression of 

genes encoding components of the mitochondrial respiratory chain complex and repression 

of fetal-like gene expression193–197. Additionally, the pentose phosphate pathway and 

one-carbon metabolism have been implicated in recovery after LVAD therapy, given 

that NADH — a key by-product of these pathways — is involved in the biosynthesis 

of other metabolites and helps protect against oxidative damage198. Several studies 

have identified an upregulation of calcium-handling proteins, including sarcoplasmic–

endoplasmic reticulum calcium ATPase 2A (SERCA2A), ryanodine receptor 2 and the 

sodium–calcium exchanger, after LVAD therapy, which is associated with increased 

cardiomyocyte developed force199,200. Furthermore, the β-adrenergic responsiveness that 

is lost in heart failure is restored after LVAD therapy, permitting increased contractility 

in response to inotropic stimulation201. LVADs are one of few therapies that substantially 

reduce existing fibrosis, which is reflected at the molecular level by reduced expression of 

genes encoding collagen and matrix metalloproteinases (MMPs)194,196,202. Individuals who 

respond favourably to LVAD therapy show a reduction in the expression of Il1B, NPPB and 

EPAC2 at the time of LVAD explantation compared with non-responders203.

Protein degradation pathways have been well characterized after mechanical unloading, with 

some seemingly conflicting results. The ubiquitin–proteasome system is upregulated after 

LVAD placement, as indicated by increased proteasome activity and upregulation of the 

expression of FBXO32 (encoding F-box only protein 32; also known as atrogin 1) and 

TRIM63 (encoding E3 ubiquitin protein ligase TRIM63; also known as MURF1)204–206. 

The involvement of atrogin 1 and TRIM63 in mechanical unloading-induced regression was 

corroborated in mouse studies showing that these proteins are required for regression of 

heart mass206,207. Expression and activity of the calcium-activated calpain proteases also 

increase following mechanical unloading in humans and rats208.

Data on the role of autophagy after mechanical unloading are less clear. One study of 

human tissue samples obtained after LVAD therapy found significant decreases in beclin 1, 
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autophagy-related gene 5 (ATG5), ATG12 and microtubule-associated protein light chain 

3II (LC3II), suggesting reduced autophagy, whereas levels of BNIP3 (an adaptor protein 

for mitophagy) increased205. However, in mouse and cell models of mechanical unloading, 

increased autophagic activity was required for cardiac hypertrophy regression downstream 

of FOXO1, which upregulated the expression of the autophagy genes Bnip3, Gabarapl1 
and Ulk2 (ref.209). FOXO1 and FOXO3A gene expression was also shown to increase after 

LVAD therapy in a study of human heart samples210. The apparent incongruence between 

the findings of these studies might be due to timing. In the mouse study, autophagy activity 

was assessed 1 week after mechanical unloading, whereas the mean duration of unloading 

in the initial LVAD study was 214 days. Therefore, autophagy might be upregulated in 

the acute phase of mechanical unloading and then deactivated later to prevent further 

hypertrophy regression. Another study of mechanical unloading in rats found that the 

transcriptional factor eyes absent homologue 2 (EYA2) was involved in cardiac hypertrophy 

regression211, indicating the importance of its downstream gene targets in this process.

Other surgical and device therapies.—Compared with LVAD, the molecular changes 

and potential mechanisms underlying cardiac hypertrophy regression with other surgical 

therapies are poorly characterized. One study in patients receiving CRT suggests that 

miR-30d is an important determinant of a positive patient response to CRT212. Elevated 

plasma miR-30d levels were associated with reduced myocardial necrosis, and an increase 

in cardiomyocyte miR-30d levels was protective against detrimental tumour necrosis factor 

(TNF) signalling212. In a dog model, CRT was found to increase mitochondrial ATPase 

activity through reduction of cysteine disulfide bonds and to upregulate the expression 

of redox enzymes, leading to improved cardiomyocyte metabolism213,214. CRT is also 

associated with reduced expression and activity of CaMKII, p38 and TNF, and reversal of 

calcium channel and potassium channel remodelling215. Patients who respond favourably to 

CRT have increased SERCA2A and MYH6 expression and reduced NPPB expression216.

Modest molecular-level data are available for AVR. In a study in patients, multiple 

microRNAs were dysregulated 1 week after AVR and increased circulating levels of 

miR-122–5p were associated with LV dysfunction at 7 days and 6 months after AVR217. 

This finding was recapitulated in a mouse model, in which miR-122–5p reduced the 

expression of BCL2 (encoding an anti-apoptotic protein) and decreased cardiomyocyte 

viability217. Therefore, in patients who respond poorly to AVR, targeting miR-122–5p might 

be of therapeutic value.

Pharmacological therapies.—Molecular-level studies with other models of pathological 

hypertrophy regression are scarce; however, similar pathways to those involved in 

mechanical unloading are implicated. In rats with hyperthyroidism-induced cardiac 

hypertrophy, ARNI therapy reduced the levels of cardiac inflammatory markers, increased 

autophagy and suppressed TGFβ–SMAD signalling compared with the control group218. 

Similar findings were noted for therapy with ARB alone; however, the effects were milder 

than for treatment with an ARNI218. One study used mice treated with angiotensin II 

or the β-agonist isoprenaline to induce cardiac hypertrophy followed by cessation of 

treatment (mimicking ARB and β-blocker therapy, respectively) and cardiac hypertrophy 
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regression was assessed over 1 week219. Regression in both cases was associated with 

increased autophagy, increased or no change in proteasome activity and reduced TGFβ–

SMAD signalling, with evident sex-related differences219, as discussed below. In another 

study, hypertensive rats treated with a thiazide diuretic had reverse remodelling and 

reduced fibrosis, which was associated with reduced expression of genes encoding collagens 

and TGFβ, reduced reactive oxygen species production and suppression of RHO kinase 

activity220. The mechanisms regulating hypertrophy regression with drug therapies remain 

very poorly defined and further investigation is warranted.

Hypertrophy regression in genetic cardiomyopathy

Monogenic variants are estimated to account for 25–50% of cases of dilated cardiomyopathy 

(DCM) and 30–60% of hypertrophic cardiomyopathy (HCM)221. In a cohort of patients with 

DCM, hypertrophy regression potential with standard drug therapies varied according to the 

causative gene variants, with pathogenic variants in genes encoding the sarcomere Z-disc 

components (DES, DMD and FLNC) inversely correlated with reverse remodelling222. 

Another study in patients with DCM found that reverse remodelling was less frequent in 

genotype-positive patients with DCM than in patients with idiopathic DCM (39.6% versus 

46.2%)223. TTN pathogenic variants (the leading genetic cause of DCM) are linked to 

improved reverse remodelling with therapy223–225, whereas regression is limited in patients 

with LMNA variants, the second leading genetic cause of DCM224,225.

HCM is predominantly caused by variants in MYH7 and MYBPC3 (ref.221). Exercise can 

help promote reverse remodelling in this patient population, as shown by a study in which 

4 months of modest exercise in a patient with genetic HCM led to a reduction in LV mass 

of 12% and improved quality of life226. However, the type of exercise is an important 

consideration, and it is generally agreed that patients with HCM should avoid intense 

exercise to reduce the risk of arrhythmia227. The benefits of exercise in patients with HCM 

are supported by findings from studies in rodents. Voluntary cage-wheel running in mice 

with an HCM-causing MYH variant reversed cardiac hypertrophy, improved cardiomyocyte 

array and reduced apoptosis228. Hypertrophy reversibility has also been observed in non-

sarcomeric genetic HCM, a less common aetiology of HCM. Cardiac remodelling associated 

with variants in PTPN11 — which cause Leopard syndrome, an autosomal dominant 

RASopathy — is completely reversible in animal models by treatment with rapamycin229.

These studies indicate an important contribution of genetics to reverse remodelling. 

However, the influence of the genetic background on hypertrophy regression remains poorly 

understood. Studies of hypertrophy development using the Hybrid Mouse Diversity Panel, 

a collection of 107 inbred mouse strains, identified key loci for heritability of cardiac 

mass230,231. Hypertrophy regression potential is likely to be similarly affected by genetic 

background, which represents a fertile area for future research.

Biological sex and hypertrophy regression

Sex has a role in regression of cardiac hypertrophy, with female individuals generally 

experiencing more favourable outcomes. This sex-related difference might be due to 
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sex hormones and/or genes encoded on the X and Y chromosomes. Oestrogens, for 

instance, have been linked to upregulation of genes encoding mitochondrial proteins and 

lipases, whereas testosterone controls glucose tolerance and reduces fatty acid oxidation232. 

Furthermore, hearts from female individuals have higher levels of AKT signalling, 

better function after pressure overload and less fibrosis development in response to 

pathological stimuli than hearts from male individuals, suggesting that these features elicit 

cardioprotective mechanisms and might aid in the more favourable regression outcomes 

observed in female patients233. Among patients receiving CRT, LVAD therapy or AVR, 

female patients had more pronounced LV volume reduction, improved LV ejection fraction 

and lower serum NT-proBNP levels compared with male patients169,234–237. However, in 

female patients undergoing AVR, hypertrophy regression is inversely correlated with serum 

levels of miR-29b, a microRNA that regulates pathological hypertrophy238.

Sex-related differences are also observed in hypertrophy regression mediated by 

pharmacological therapies. ARNI therapy is effective in both male and female patients; 

however, female sex is associated with more reverse remodelling, higher LV ejection 

fraction and lower serum NT-proBNP levels239–241. Other studies have yielded conflicting 

results. One study of antihypertensive medications found that the extent of cardiac 

hypertrophy regression was lower in women than in men99. Conversely, another study 

found that female patients treated with ARBs or β-blockers had more regression of 

cardiac hypertrophy than male patients242. A mechanistic study found that regression of 

pathological hypertrophy shows stimulus-specific and sex-specific regulation219. In mice 

treated with angiotensin II or isoprenaline, female mice had no cardiac hypertrophy 

regression 1 week after angiotensin II removal, whereas isoprenaline removal was 

associated with rapid regression219. Hearts from male mice showed hypertrophy regression 

with removal of either stimulus. Regression from isoprenaline-induced hypertrophy was 

associated with increased autophagy in both sexes219. However, only hearts from male 

mice had increased proteasome activity after stimulus removal. The sex-related difference in 

regression of angiotensin II-induced hypertrophy might be due to TGFβ–SMAD signalling, 

which increased during pathological cardiac hypertrophy in both sexes but was sustained 

after angiotensin II removal in female mice219. In a rat model of mechanical unloading, 

female rats had a greater reduction in fibrosis and fetal-like gene expression than male 

rats243. These studies highlight the importance of considering sex when choosing a 

treatment strategy for pathological hypertrophy regression.

Regression versus atrophy

The distinction between hypertrophy regression and cardiac atrophy — the latter of which 

occurs with cancer, starvation and spaceflight — remains poorly defined244–246. The 

simplest discrimination might be that atrophy is a progressive, active, muscle-wasting 

condition, whereas regression occurs only to a certain baseline level without continued 

cardiac mass loss. Additionally, hypertrophy regression is associated with improved 

structure and function. However, in cardiac atrophy, fibrosis, sarcomere structural disarray 

and reduced LV performance are observed245,247. At the molecular level, several features of 

cardiac atrophy overlap with hypertrophy regression (Fig. 3). Cancer-associated cachexia, a 

severe form of muscle wasting that occurs in 30–80% of patients with cancer, is associated 
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with cardiac dysfunction248,249. Mice with colon cancer-induced cachexia have a reduction 

in heart mass of ~20% compared with healthy controls, which was more pronounced 

in male mice and was associated with upregulation of gene expression and activity of 

autophagy proteins250. The involvement of FBXO32, TRIM63 and the proteasome in 

cancer-associated cachexia is unclear, with studies showing either increased activity or 

no change250,251. Other studies in mice with cancer-induced cachexia found inactivation 

of protein synthesis pathways downstream of AKT and mTOR252,253. Chemotherapies are 

also independent drivers of cardiac atrophy, and their use is associated with exacerbated 

muscle wasting in cancer-associated cachexia254. In mice, cardiac atrophy induced by the 

chemotherapy drug doxorubicin is dependent on Trim63 upregulation255. Less is known 

about the mechanisms of starvation-induced cardiac atrophy. However, a study in rabbits 

found reduced protein synthesis and myofibrillar protein half-life during starvation-induced 

cardiac atrophy, suggesting that similar mechanisms to those underlying cancer-associated 

cachexia are involved246.

Spaceflight causes cardiac atrophy owing to microgravity-induced mechanical unloading 

of the heart256. LVAD therapy also induces mechanical unloading but the acute effect 

on cardiac mass is more pronounced with spaceflight than with LVAD therapy, with a 

reduction in LV mass of 12% in astronauts after just 10 days in space257. An in vitro 

study of cardiomyocytes in microgravity found a bias towards mitochondrial protein 

synthesis at the expense of whole-cell protein production and no change in apoptosis 

or protein degradation258. In a mouse microgravity model, the levels of the proteolytic 

proteins calpain 1 and calpain 2 were upregulated compared with normal-weight-bearing 

controls, whereas cardiomyocyte-specific knockout of Capns1 prevented microgravity-

induced cardiac atrophy259. Increased expression and activity of ubiquitin–proteasome 

system components were observed in Drosophila flies reared on the International Space 

Station (microgravity) compared with flies reared on Earth (normal gravity)260. In mice, 

15 days of spaceflight altered the expression in the heart of genes related to oxidative 

stress, cell cycle and senescence, suggestive of rapid cardiac ageing261,262. Spaceflight 

is associated with increased cardiac stiffness and risk of arrhythmia245. By comparison, 

with LVAD-induced mechanical unloading, reduced protein synthesis, increased calpain 

and proteasome activity, and expression changes in genes related to mitochondria and 

metabolism are observed193,205,208,263. In this case, the mechanical unloading is generally 

beneficial and is associated with improved cardiomyocyte developed force and LV ejection 

fraction, albeit with an increased risk of arrhythmia199,264,265.

One commonality of all forms of cardiac atrophy is an increase in the levels of circulating 

factors that stimulate downstream atrophic remodelling, including myostatin, activin A and 

inflammatory cytokines266–269. Myostatin and activin A trigger signalling cascades that 

inhibit protein synthesis and activate atrophy-related gene expression270. Whereas atrophy 

is widely agreed to be an active process driven by these factors, whether regression of 

hypertrophy is an active process or a passive response to the removal or inhibition of a 

stimulus remains unclear. Further investigation is needed to address this question.
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Conclusions

Hundreds of clinical studies in the past almost 40 years indicate that regression of 

pathological cardiac hypertrophy is unequivocally linked to improved health outcomes. 

However, many factors have a role in determining whether and to what extent reverse 

remodelling occurs with existing therapies. These factors include hypertension duration, 

type of hypertrophy (concentric versus eccentric), age, BMI, sex, physical activity, genetic 

background, disease aetiology and concurrent medications. The result is that <50% of 

patients receiving heart failure therapies currently undergo hypertrophy regression, and 

those without hypertrophy regression have poor quality of life and increased mortality 

compared with patients who have reverse remodelling271,272. However, if regression of 

cardiac hypertrophy were considered a primary end point in the treatment of heart disease, 

as many studies suggest it should be, data-informed choice of therapy is possible thanks 

to the wealth of clinical literature. The use of computational approaches towards this goal 

might make it possible to predict whether a patient will respond to a given therapy with 

reverse remodelling and thereby inform clinician decision-making.

In the subset of patients who undergo regression of cardiac hypertrophy with existing 

therapies, full normalization of LV mass in most patients does not occur even after years 

of treatment87. Therefore, the development of new therapies informed by molecular studies 

to target LV hypertrophy specifically might prove more effective than current medications 

in restoring heart health in this patient population and in non-responding patients. However, 

despite the long-established functional and quality-of-life benefits of reverse remodelling, 

the molecular characterization of this process remains in its infancy. What is apparent from 

molecular studies is the involvement of protein degradation pathways (calpains, ubiquitin–

proteasome system and autophagy) in hypertrophy regression. This finding might not 

be surprising, given that regulation of cardiac mass can be fundamentally distilled to a 

balance between protein synthesis and degradation, in which inhibiting protein synthesis 

and/or activating protein degradation results in net protein loss and thus tissue mass 

regression. However, targeting these crucial pathways with broadly acting compounds will 

have off-target effects on other tissues, and without careful titration might be cardiotoxic. 

Development of therapies that target specific molecules in these pathways with tissue 

specificity should permit a wider dose range and limit adverse effects. However, the lead 

molecular candidates for drug development remain to be elucidated, and future study in this 

area is paramount to advancing the field. One particularly under-studied area in which such 

targets might be identified is in the regression from physiological cardiac hypertrophy, in 

which reverse remodelling is rapid and complete. We hope this Review stimulates discussion 

and investigation in these areas towards the goal of reducing morbidity and mortality in the 

millions of people living with heart disease worldwide.
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Box 1

Mechanism of action of ARNI therapy

Angiotensin receptor–neprilysin inhibitors (ARNIs) are a promising class of heart 

failure therapies that target both the renin–angiotensin–aldosterone system (RAAS) and 

natriuretic peptide system. Data suggest that ARNI therapy with sacubitril–valsartan 

(Entresto) is the most effective first-line therapy for patients with systolic heart 

failure92. Sacubitril promotes the activation of the antihypertrophic natriuretic peptide 

system, and valsartan antagonizes the prohypertrophic RAAS. The benefits of sacubitril–

valsartan include improved ventricular function, reduced risk of arrhythmia, mitigation of 

hypertension and stimulation of cardiac hypertrophy regression.

B-type natriuretic peptide (BNP) is synthesized in cardiomyocytes as an inactive pro-

hormone (proBNP), which is released into the bloodstream in response to high pressure 

or stretch300. In the circulation, the biologically active BNP is released from its precursor 

proBNP by the enzyme corin, which generates the inactive amino-terminal pro-BNP 

(NT-proBNP) as a by-product301 (see the figure). In healthy physiology, BNP acts on the 

natriuretic peptide receptors (NPR-A, NPR-B and NPR-C) expressed on cardiomyocytes 

and triggers antihypertrophic signalling through endothelial nitric oxide synthase (eNOS) 

and protein kinase G (PKG)55. However, increased activity of neprilysin in heart 

failure leads to reduced circulating levels of biologically active BNP, mitigating 

its antihypertrophic effects. Neprilysin is a membrane-spanning, proteolytic enzyme 

expressed predominantly in kidney cells that actively degrades BNP302. Neprilysin does 

not degrade NT-proBNP, which is why circulating levels of this inactive factor are 

used as a gold-standard biomarker in heart failure303. Sacubitril was the first-developed 

neprilysin inhibitor and successfully restores natriuresis and vasodilatation in patients 

with heart failure304. However, inhibiting neprilysin alone triggers a compensatory 

increase in RAAS activity, thereby necessitating dual treatment with an angiotensin 

receptor blocker304. Valsartan is an angiotensin II type 1 receptor (AT1R) antagonist 

and prevents binding of the receptor to circulating angiotensin II (Ang II), thereby 

blocking downstream pathways associated with pathological hypertrophy, including 

JUN N-terminal kinase (JNK), p38, ERK1 and ERK2 signalling. In the PARADIGM-

HF trial94, improved outcomes with sacubitril–valsartan were associated with reduced 

circulating NT-proBNP levels.

AC, adenylyl cyclase; GRBs, growth factor receptor-bound proteins; MEF2A, myocyte-

specific enhancer factor 2A; MEK, MAP/ERK kinase; NFAT, nuclear factor of activated 

T cells; NO, nitric oxide; PLC, phospholipase C; SHC, SHC-transforming protein; SOS, 

son-of-sevenless homologue; SRC, proto-oncogene tyrosine protein kinase SRC; TRPC, 

transient receptor potential canonical channel.
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Key points

• Pathological cardiac hypertrophy is a leading risk factor for cardiovascular 

morbidity and mortality and is associated with increased fibrosis and 

apoptosis that lead to ventricular stiffness, risk of arrhythmia and impaired 

cardiac function.

• Partial reversal of cardiac hypertrophy occurs with many existing heart failure 

therapies, including renin–angiotensin–aldosterone system, β-adrenergic 

receptor, calcium-channel and SGLT2 antagonists, but is achieved in only 

a subset of patients.

• The potential for reverse remodelling in heart disease is influenced by many 

factors, including biological sex, genetics, duration of hypertension, BMI, age 

and disease aetiology.

• Exercise-induced and pregnancy-induced physiological cardiac hypertrophy 

is driven by cellular mechanisms distinct from those in pathological 

hypertrophy, and is completely reversible, whereas moderate exercise in heart 

failure antagonizes pathological cellular pathways and promotes hypertrophy 

regression.

• At the molecular level, hypertrophy regression is associated with metabolic 

shifts, reduced protein synthesis, extracellular matrix remodelling and altered 

activity of proteolytic pathways.
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Fig. 1 |. Cellular signalling pathways of physiological and pathological hypertrophy.
a, Cellular pathways of physiological hypertrophy. Insulin or insulin-like growth factor 1 

(IGF1) bind to the insulin receptor or IGF1 receptor (IGF1R), respectively, and activate 

RAS–mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)–

AKT pathways, which promote cell survival and growth and protein synthesis. The thyroid 

hormones triiodothyronine (T3) or thyroxine (T4) also trigger the PI3K–AKT pathway and 

cause increased transcription of MHY6 and SERCA2A. The PI3K–AKT pathway inhibits 

CCAAT/enhancer-binding protein-β (C/EBPβ), glycogen synthase kinase 3β (GSK3β), 

forkhead box protein O1 (FOXO1) and FOXO3, all of which are negative regulators of 

hypertrophy. b, Cellular pathways of pathological hypertrophy. Catecholamines, angiotensin 

II (Ang II) and endothelin 1 (ET-1) trigger pathways that promote maladaptive gene 

expression and growth. Catecholamines and Ang II–ET-1 activate the downstream effectors 

calcineurin and calcium–calmodulin-dependent protein kinase II (CaMKII), which stimulate 

the transcription factors nuclear factor of activated T cells (NFAT) and myocyte-specific 

enhancer factor 2A (MEF2A), responsible for pathological growth. G protein-coupled 

receptor kinases (GRKs) mediate adrenergic receptor (AR) desensitization and promote 

pathological hypertrophy by inhibiting histone deacetylases (HDACs). Atrial natriuretic 

peptide (ANP) and B-type natriuretic peptide (BNP) typically inhibit NFAT, MEF2A and 

transient receptor potential canonical channel (TRPC) but in heart failure, their receptors 

become desensitized. Increased neprilysin activity in heart failure triggers degradation 

of circulating BNP levels, further repressing natriuresis. Additionally, phosphodiesterases 

(PDEs) inhibit cGMP production resulting in maladaptive gene expression. AC, adenylyl 

cyclase; AT1R, angiotensin II type 1 receptor; EPAC, exchange protein directly activated 

by cAMP; GC, guanylate cyclase; GRB2, growth factor receptor-bound protein 2; IRS, 

insulin receptor substrate; JNK, JUN N-terminal kinase; MEK, MAP/ERK kinase; mTOR, 

mechanistic target of rapamycin; NPR, natriuretic peptide receptor; PKA, protein kinase 

A; PKG, protein kinase G; PLC, phospholipase C; TLR, Toll-like receptor; TRIF, TIR 

domain-containing adapter molecule 1; TR, thyroid hormone receptor.
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Fig. 2 |. Molecular features of hypertrophy regression with mechanical unloading.
Mechanical unloading induced by left ventricular (LV) assist device (LVAD) therapy alters 

cardiomyocyte metabolism, protein turnover, gene expression and contractility as well 

as immune responses. Before LVAD therapy (red boxes), hypertrophic cardiomyocytes 

have immature phenotypes, such as increased glucose metabolism and a fetal gene 

expression pattern. Heart failure also causes desensitization of β-adrenergic receptors 

(β-AR) in cardiomyocytes. After LVAD therapy (blue boxes), β-AR responsiveness is 

restored, resulting in increased contractility and transcription of genes encoding calcium-

handling proteins. The pentose phosphate pathway (PPP), oxidative phosphorylation 

through the electron transport chain, and one-carbon metabolism increase with LVAD 

treatment, resulting in the generation of nicotinamide adenine dinucleotide (NADH), a 

by-product that participates in other metabolic pathways and protects against oxidative 

damage. The ubiquitin–proteasome system (UPS) as well as the calpain protein degradation 

pathways become upregulated after LVAD treatment; however, autophagy activation and 

gene expression have been observed either to increase or to decrease. Altogether, these 

molecular changes result in decreased fibrosis and LV mass and volume as well as increased 

ejection fraction and contractility. AC, adenylyl cyclase; G6P, glucose-6-phosphate; MMP, 

matrix metalloproteinase; PKA, protein kinase A; ROS, reactive oxygen species; TCA, 

tricarboxylic acid.
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Fig. 3 |. Molecular features of cardiac atrophy.
Atrophy can be initiated by an increase in the circulating levels of certain factors (such as 

myostatin, activin A and inflammatory cytokines) and/or increased cellular oxidative stress. 

Myostatin and activin A bind to the activin receptor type 2B (ACVR2B), which stimulates 

downstream SMAD2 and SMAD3 signalling. SMAD2 and SMAD3 inhibit pro-growth 

pathways (AKT and mechanistic target of rapamycin (mTOR) pathways) and activate FOXO 

transcription factors, which translocate to the nucleus and increase the expression of genes 

related to autophagy and the ubiquitin–proteasome system (UPS). Inflammatory cytokines 

(such as tumour necrosis factor) activate the p38 and JUN N-terminal kinase (JNK) MAP 

kinase pathways and nuclear factor-κB (NF-κB), which stimulate atrophic-related gene 

expression patterns and protein degradation. Increased intracellular levels of reactive oxygen 

species (ROS) act on similar pathways, while also causing the translocation of apoptosis 

regulator BAX and BH3-interacting domain death agonist (BID) to the mitochondria, 

leading to mitochondrial dysfunction and triggering apoptosis through apoptosis-inducing 

factor mitochondria associated 1 (AIFM1; also known as AIF) and cytochrome c–caspase 3 

signalling. ROS also inhibit growth pathways and promote FOXO-dependent degradation by 

activating the E3 ubiquitin protein ligase CBL-B, which mediates insulin receptor substrate 

1 (IRS1) degradation and thus represses downstream AKT signalling. Calpain activation 

owing to increased intracellular calcium levels in cardiac atrophy also triggers proteolysis, 

mitochondrial dysfunction and (in some instances; dashed line) apoptosis. ASK1, apoptosis 

signal-regulating kinase 1; GSK3β, glycogen synthase kinase 3β; IL-1R, IL-1 receptor; 

IκBα, NF-κB inhibitor-α; IKK, inhibitor of nuclear factor-κB kinase; TNFR, tumour 

necrosis factor receptor.
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