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Abstract
The microbiota-gut-brain axis has been shown to influence human health and diseases, including depression. The interac-
tions between drugs and intestinal microbiota are complex and highly relevant to treat diseases. Studies have shown an 
interaction between antidepressants and intestinal microbiota. Antidepressants may alter the abundance and composition 
of intestinal microbiota, which are closely related to the treatment outcomes of depression. Intestinal microbiota can influ-
ence the metabolism of antidepressants to change their availability (e.g., tryptophan can be metabolized to kynurenine by 
intestinal microbiota) and regulate their absorption by affecting intestinal permeability. In addition, the permeability of the 
blood–brain barrier can be altered by intestinal microbiota, influencing antidepressants to reach the central nervous system. 
Bioaccumulation is also a type of drug–microbiota interaction, which means bacteria accumulate drugs without biotransfor-
mation. These findings imply that it is important to consider intestinal microbiota when evaluating antidepressant therapy 
regimens and that intestinal microbiota can be a potential target for depression treatment.
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Introduction

Most bacteria in the human body are present in the intestine 
[1]. The microbiota-gut-brain axis is used to describe the 
bidirectional communication between the microbiota in the 
gut and brain [2]. This axis may function through mecha-
nisms such as microbial metabolites, vagus nerve, enteric 
nervous system, immune signaling, serotonin, tryptophan, 
and tryptamine metabolism [3, 4]. In the human body, some 
live microorganisms are beneficial to human health and are 
called probiotics [5, 6].

Several studies have revealed a close relationship 
between intestinal microbiota and human diseases, 

including metabolic diseases [7], cancers [8, 9], and autoim-
mune diseases [10]. Moreover, intestinal microbiota com-
position is also associated with psychiatric diseases, such 
as Alzheimer’s disease, Parkinson’s disease, autism, and 
post-traumatic stress disorder [11–14].

The relationship between major depressive disorder 
(MDD) and gut microbiota has recently received extensive 
attention. Huang et al. [15] concluded that increased abun-
dances of the phylum Actinobacteria, order Bacteroidales, 
family Enterobacteriaceae, genus Alistipes, and decreased 
abundances of the family Lachnospiraceae, genus Faecali-
bacterium, were associated with depression. The alterations 
in intestinal microbiota play an important role in the patho-
genesis and treatment of depression.

The most commonly used antidepressants worldwide 
include monoamine-oxidase inhibitors (MAOI), tricyclic 
antidepressants (TCAs), selective serotonin reuptake inhib-
itors (SSRIs), and serotonin and norepinephrine reuptake 
inhibitors (SNRIs). The antidepressant effects of MAOI are 
generally related to the inhibition of MAO in the central 
nervous system to decrease the degradation of monoamine 
transmitters [16]. TCAs block serotonin and norepinephrine 
reuptake and maintain their levels in the synaptic cleft [17, 
18]. SSRIs inhibit serotonin reuptake by the presynaptic 
membrane to maintain its levels in the synaptic cleft [19]. 
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In recent years, ketamine has been used as a rapid-acting 
antidepressant for treating depression. The antidepressant 
effects of ketamine are associated with its blockade of the 
N-methyl d-aspartate receptor (NMDAR), an ionotropic glu-
tamate receptor [20], and increased function of a-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors 
[21]. In addition to these primary mechanisms responsible 
for their antidepressant-like effects, some other potential 
mechanisms have also been investigated. For example, the 
anti-inflammatory effect may be one of the potential mecha-
nisms of action of the SSRIs, SNRIs, and ketamine [22, 23]. 
Interestingly, the intestinal microbiota may participate in the 
processes mentioned above. Getachew at el. [24] showed that 
ketamine administration decreased the abundance of Rumi-
nococcus and Mucispirillum in the stool samples of rats. 
Indeed, high levels of Ruminococcus may increase the sever-
ity of irritable bowel disease (IBD), while some species of 
Mucispirillum may lead to intestinal inflammation. Another 
study showed that ketamine could increase the levels of Lac-
tobacillus johnsonii in LPS-induced depressive mice, which 
may play a role in improving depressive-like behaviors via 
the hypothalamic–pituitary–adrenal axis. The antidepressant 
effects of ketamine and its metabolites could also be related 
to improving the abundance of SCFAs-producing microbiota 
including Butyricimonas, Turicibacter, and Clostridiales 
[25]. Indeed, (R)-ketamine and lanicemine are both NMDAR 
antagonists but the former shows obvious antidepressant 
effects on treatment-resistant depressed patients, while the 
latter does not present antidepressant effects in such patients 
[26]. (R)-ketamine significantly attenuated the reduced lev-
els of Mogibacteriaceae, Bacteroidales, and Clostridiales, 
as well as the increased levels of Ruminococcaceae and 
Clostridium in the chronic social defeat stress (CSDS) sus-
ceptible mice, while less potent effects of lanicemine on the 
intestinal microbiota were observed [26]. Taken together, the 
modulation of intestinal microbiota may partly mediate the 
antidepressant mechanism [27]. Notably, anxiety disorders 
often coexist with depression. Accumulating evidence indi-
cates that SSRIs, dual SNRIs, and many TCAs can be used 
in improving lots of anxiety disorders [28, 29], regardless of 
the severity of mental status. IBD can lead to comorbidities 
of anxiety and depression by inducing neuroinflammation 
[30]. Given the close relationship between intestinal micro-
biota, anxiety symptoms, and the severity of mental status, 
antidepressants may not only affect the depression-related 
microbiota but also exert more complicated effects.

Research has shown that intestinal microbiota and various 
drugs have reciprocal interactions; i.e., the drugs can influ-
ence the ecology of the gut microbiome [31], while intestinal 
microbiota can directly participate in the chemical transfor-
mation and bioaccumulation of drugs [32, 33], as shown in 
Fig. 1. When metabolizing medications, intestinal micro-
biota mainly conducts hydrolytic and reductive reactions. 

For instance, the cardiovascular drug digoxin can be inac-
tivated via biotransformation by intestinal microbiota, and 
the bacterial enzyme β-glucuronidase has been reported to 
be associated with the toxicity of the common colon cancer 
chemotherapeutic CPT-11 (also known as irinotecan) [34, 
35]. These examples indicate that intestinal microbiota can 
affect the activity and toxicity of drugs [36–38]. Further-
more, it has also been found that intestinal microbiota is a 
significant factor affecting the efficacy of antidepressants 
[39].

Although great progress has been made in treating 
depression, many issues remain unsolved. Despite adminis-
tering sufficient doses and maintenance treatment, 30–40% 
of patients do not respond to the treatment [40–42]. The side 
effects of antidepressants are among the factors affecting 
treatment outcomes [43]. Headache, nausea, and insomnia 
are the three most common side effects of antidepressants, 
with incidence rates exceeding 10% [44]. In addition, toler-
ability, acceptability, pharmacokinetics, pharmacodynamics, 
and drug-drug interactions also affect antidepressant treat-
ment outcomes [45]. Considering the possible role of intesti-
nal microbiota in the treatment outcomes of antidepressants, 
we provide here a review of the recent discoveries on the 
possible interaction between antidepressants and intestinal 
microbiota, especially how intestinal microbiota can affect 
antidepressants and their efficacy, which might have refer-
ence value for investigating new pathways and factors influ-
encing antidepressant effects. By describing the possible 
effects that the intestinal microbiota may have on antide-
pressants, we may provide a reference for better-applying 
antidepressants clinically considering intestinal microbiota. 
Moreover, this article also provides information about the 
possible therapeutic targets related to intestinal microbiota 
for the development of new antidepressants.

Effects of Intestinal Microbiota on Depression

Accumulating evidence demonstrates the role of the micro-
biota-gut-brain axis in psychiatric diseases, and more atten-
tion has been paid to the effect of intestinal microbiota on 
depression. Many studies have explored the relationship 
between intestinal microbiota and the changes in depressive 
phenotypes. In animal studies, fecal microbiota transplanta-
tion (FMT) of germ-free mice with “depression microbiota” 
derived from MDD patients, the absence of gut microbiota 
in germ-free mice, and antibiotic-induced microbiota pertur-
bation all led to depression-like behaviors [46–48]. Specifi-
cally, FMT from patients with rheumatoid arthritis caused 
depression-like behaviors in antibiotic-treated mice via 
abnormal T cell differentiation [49]. These findings indicate 
that microbiota may have an important role in the pathogen-
esis of depression. Additionally, probiotic supplementation 
alleviates depression-like behaviors [50–53]. Meanwhile, 
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another study showed that some probiotics improved cogni-
tive function in patients with major depression [54]. Thus, 
probiotics may play a role in the treatment of depression. 
In contrast, another study showed that microbiota variation 
is related to antidepressant treatment resistance in patients 
with MDD [55]. Intestinal microbiota can affect the structure 
of the brain and regulate brain-derived neurotrophic factors 
[56]. Oscillibacter may have protective modulatory func-
tions in the brain, thus increasing amygdala and hippocam-
pal volumes, closely related to depression [57]. Furthermore, 
intestinal microbiota can serve as molecular markers for 
diagnosing MDD and general anxiety disorders [58].

The vagus nerve plays a key role in the microbiota-gut-
brain axis. FMT from CSDS-susceptible mice and Chrna7 
knock-out (KO) mice exhibited anhedonia-like behaviors, 
inflammation, and downregulation of synaptic proteins in the 
prefrontal cortex in antibiotic-treated mice [59–61]. Studies 
showed that abnormal composition of intestinal microbiota 
including F. rodentium, L. intestinalis, L. reuteri, and 
systemic inflammation may be responsible for these changes 
via the vagus nerve [60–62]. Subdiaphragmatic vagotomy 
(SDV) blocked the development of depression-like behaviors 

in Chrna7 KO mice [62] and antibiotic-treated mice [59–61]. 
Moreover, plasma levels of microbe-derived metabolites 
like 1,5-anhydro-d-sorbitol, l-citrulline, and taurocholic 
acid in the KO + SDV mice were higher than those of 
KO + sham-operated mice, suggesting their important role 
in the antidepressant-like effects of SDV in Chrna7 KO mice 
[62]. LPS administration caused depression-like behaviors, 
inflammation, and downregulation of synaptic proteins in 
the prefrontal cortex in the sham-operated mice but not in 
the SDV-operated mice [63]. Moreover, LPS significantly 
decreased α-diversity and relative abundances of intestinal 
microbiota in mice, and SDV blocked this change [62]. L. 
rhamnosus (JB-1), the nonpathogenic bacteria, can mediate 
the GABAergic system in mice, and therefore, improve 
depression and anxiety behaviors. Vagotomy blocked the 
anxiolytic and antidepressant effects of L. rhamnosus (JB-1) 
and the changes in the GABAergic system in the amygdala 
and the hippocampus [64]. To conclude, the vagus nerve 
is an important factor in the pathogenesis of depression 
through the microbiota-gut-brain axis.

SCFAs are important gut microbiome-derived metab-
olites within the microbiota-gut-brain axis, which are 

Fig. 1   Complex interplay between drugs and intestinal microbiota. 
The interactions between drugs and intestinal microbiota include 
microbiota-mediated alterations to drug pharmacokinetics and drug-
mediated alterations to the function/composition of intestinal micro-
biota. “Drug–Microbiota Interactions”: drugs can have direct anti-
bacterial effects on intestinal microbiota (e.g., SSRIs) and can also 
indirectly alter the environment for microbial growth by their phar-
macodynamic effect on the host (e.g., proton pump inhibitor alters 
gastric acid production and pH, and non-steroidal anti-inflammatory 
drug changes mucosal integrity, illustrated by the curved-down line 
arrow). The interactions between the host and intestinal microbiota 

cause the enterohepatic recirculation of drugs, e.g., intestinal micro-
biota deconjugate the hepatic-glucuronidated irinotecan metabolite by 
β-glucuronidase enzymes. “Microbiota-Drug Interactions”: intestinal 
microbiota can directly metabolize drugs by bacterial enzymes (e.g., 
tryptophan), or bioaccumulate drugs (e.g., duloxetine). In addition, 
intestinal microbiota can alter hepatic enzymes/genes, which may 
influence the pharmacokinetic effect of the host on drugs, e.g., micro-
bial-derived metabolites (e.g., SCFAs and secondary bile acids) may 
be potential mediators of this effect (illustrated by the curved-up line 
arrow). PK, pharmacokinetic; PD, pharmacodynamic. This figure was 
obtained from reference [39] with slight modification. By Figdraw
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produced by bacteria fermenting dietary fiber in the 
gastrointestinal tract [65]. In the human body, acetate, 
propionate, and butyrate are the most abundant SCFAs 
[65]. Studies showed that SCFAs decreased significantly 
in depressed mice compared to control mice [66], while 
administration of SCFAs attenuated depression-like behav-
iors [67, 68]. Moreover, in depressed mice, some bacteria 
taxa showing low relative abundances significantly cor-
related with two major SCFAs with reduced levels (acetic 
acid and propionic acid) [66]. In a recent study focused 
on the depressive-like behaviors of high fructose-fed mice 
exposed to chronic stress, SCFA supplementation showed 
protective effects on hippocampal neurogenesis, ame-
liorated blood–brain barrier (BBB) damage, suppressed 
microglia activation, and neuroinflammation in these 
mice, which were related to antidepressant-like effects 
[69]. Lower butyrate levels may increase the gut barrier 
permeability, causing bacterial translocation into the sys-
temic circulation and systemic inflammation [70]. The 
mechanisms of butyrate and other SCFAs in improving 
depression-like behaviors may correlate with their anti-
inflammatory effects, inducing histone hyperacetylation 
and elevating BDNF levels [71]. These findings suggested 
that SCFAs may be essential mediators in depression.

Based on these findings, it is apparent that investigating 
the relationship between intestinal microbiota and depres-
sion is important, as shown in Fig. 2.

When drugs are consumed orally, they encounter a con-
siderable abundance of intestinal microbiota, which can 
affect the ability of the drugs to treat depression. Fontana 
et al. [55] conducted a study to determine differences in the 
compositions of intestinal microbiota between patients with 
MDD and healthy controls (HCs) and between patients with 
treatment-resistant depression (TRD) and those responsive 
(R) to antidepressants. Several bacteria (Thaumarchaeota, 
Yersinia, and its species Yersinia pseudotuberculosis, Pep-
tococcus, Fenollaria timonensis, Blautia spp. canine oral 
taxon 337, and Papillibacter cinnamivorans) were identified 
in the microbiota of TRD patients but not in that of the R 
patients. Compared to HC, Flavobacteriaceae, Hungatella, 
Yersinia, Citrobacter, Fenollaria, and Fenollaria timonen-
sis were identified exclusively in TRD patients, whereas 
Elusimicrobia, Flavobacteriaceae, Fenollaria, and Robin-
soniella sp. MCWD5 were found exclusively in treatment-
responsive patients with MDD. This result indicated that 
intestinal microbiota was related to the pathogenesis of 
MDD and patients’ response to antidepressants.

In another study focusing on chronic unpredictable 
mild stress (CUMS) mice treated with escitalopram, the 

Fig. 2   Role of the microbiota–gut–brain axis in depression. An 
unhealthy lifestyle, increased and sustained stress, infection, anti-
biotics, or other factors can cause gut microbiota dysbiosis. Abnor-
mal changes may occur in the body, which can be mediated by the 
microbiota–gut–brain axis via neural, immune, or chemical signals, 
thereby causing depression. Conversely, FMT, a healthy diet, psy-
chobiotics, and antidepressants (e.g., SSRIs, SNRIs, and arketamine) 

can restore gut microbiota dysbiosis, abnormal brain function, and 
depressive symptoms via the microbiota-gut-brain axis. γ-GABA, 
γ-aminobutyric acid; CNS, central nervous system; DC, dendritic 
cell; 5-HT, 5-hydroxytryptamine; IL-6, interleukin 6; IL-17, interleu-
kin 17; IL-1β, interleukin 1β; SCFA, short-chain fatty acid; TNF-α, 
tumor necrosis factor α. The figure is obtained from reference [72] 
with slight modification. By Figdraw
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composition of intestinal microbiota differed between the 
responder and non-responder groups. The relative abun-
dances of the genus Prevotellaceae_UCG-003 increased in 
the responder group, whereas the families Ruminococcaceae 
and Lactobacillaceae were depleted in the non-responder 
group [73].

Lee et al. [74] focused on the role of intestinal micro-
biota as a predictor of antidepressant treatment outcomes 
in geriatric depression. At the level of the individual taxa, 
a random forest classifier created using nine genera from 
the baseline microbiota accurately predicted remission. Of 
these, baseline enrichment of Faecalibacterium, Agathobac-
ter, and Roseburia relative to the reference frame was associ-
ated with remission upon treatment. Differential abundance 
analysis revealed significant genus-level changes from base-
line to post-treatment in remitters but not in non-remitters.

Dong et al. [75] found that among patients with MDD 
treated with antidepressants, intestinal microbiota composi-
tion at baseline differed significantly between responder and 
non-responder groups. The expression of 20 metabolites, 
mainly involved in lipid metabolism, differed significantly 
between the responder and non-responder groups. Therefore, 
alterations in intestinal microbiota and associated metabo-
lites may affect the antidepressant treatment outcomes.

The rat model of adrenocorticotrophic hormone (ACTH) 
treatment has been widely accepted for TR depression. 
Chronic administration of ACTH leads to resistance to imi-
pramine treatment in the forced swimming test, and resist-
ance to other antidepressants [76–78]. Research has shown 
that ACTH-induced depression disturbs the gut microbiota 
composition, like Oscillospira, Ruminococcus, Akkerman-
sia, Lactobacillus, and Klebsiella [79]. Changes in intestinal 
microbiota may be relevant to TR effects in ACTH-treated 
rats.

Based on the above studies, alterations in intestinal 
microbiota composition may be associated with the response 
to antidepressants and clinical treatment outcomes.

Antidepressants May Alter the Abundance 
and Composition of Intestinal Microbiota

Studies have shown that many intrinsic and extrinsic fac-
tors, such as diet, medication, smoking, lifestyle, host 
genetics, and diseases, affect intestinal microbiota in 
healthy individuals [80–82]. In recent years, numer-
ous studies have revealed that many antidepressants may 
alter the abundance and composition of intestinal micro-
biota and that their antidepressant-like effects may also 
be related to these changes. The SSRIs fluoxetine (Flu) 
and escitalopram were found to reduce the abundance of 
intestinal microbiota, especially that of Ruminococcus, 
Adlercreutzia, and an undefined Alphaproteobacteria; the 
same was verified for two SNRIs, namely, venlafaxine and 

duloxetine. A decrease in intestinal microbiota richness 
may result in possible side effects. Further investigation 
showed that introducing a single Ruminococcus species (R. 
flavefaciens) can attenuate the effects of an antidepressant 
by inducing changes in synaptic and mitochondrial gene 
expression and alterations in monoamine neurotransmitter 
levels. It is also beneficial for alleviating antidepressant-
induced constipation [83]. In addition, Zhang et al. [84] 
reported that the administrations of Flu and the tricyclic 
antidepressant amitriptyline (Ami) were associated with a 
low abundance of the phylum Firmicutes and a high abun-
dance of the phylum Bacteroidetes, while a reduced ratio 
of Firmicutes/Bacteroidetes appears to be associated with 
an improvement in neurological conditions. At the genus 
level, the relative abundances of Bacteroides, Parabacte-
roides, and Butyricimonas were significantly increased in 
the feces of Ami- and Flu-treated rats compared to those 
in rats exposed to CUMS, suggesting that these microbes 
and their metabolites are related to brain health. Moreover, 
Ami and Flu treatments may also affect potentially harm-
ful bacteria and intestinal microbiota metabolic functions, 
such as carbohydrate metabolism, membrane transport, and  
signal transduction. The mechanism of SSRIs’ antimicrobial  
action may be related to the inhibition of efflux pumps, as 
is observed in experiments, whereby SSRIs interact syn-
ergistically with antibiotics, thus decreasing the minimum 
inhibitory concentration for these antibiotics [85, 86]. TCAs 
present antiplasmid activity [87], possibly by targeting rep-
licating plasmid DNA and the DNA gyrase enzymes, both  
crucial for DNA structural conformation [88].

Ketamine, a glutamate NMDAR blocker, has a rapid yet 
sustained antidepressant effect [21]. A study using male 
Wistar rats showed that chronic administration of ketamine 
significantly increased the levels of low-abundance bacte-
rial genera (e.g., Lactobacillus, Turicibacter, and Sarcina) 
and significantly decreased opportunistic pathogens (e.g., 
Ruminococcus and Mucispirallum), which may partly con-
tribute to its antidepressant and anti-inflammatory effects 
[24, 89]. Ketamine is a racemic mixture comprising equal 
parts of (R)-ketamine and (S)-ketamine. The (R)-ketamine 
(or arketamine) has superior and longer-lasting antidepres-
sant effects and fewer side effects than (S)-ketamine in the 
animal models of depression. Study showed that (R)-keta-
mine changed the intestinal microbiota composition in the 
CSDS-susceptible mice [26]. However, because behavioral 
experiments using germ-free mice were not performed, these 
studies do not directly prove the effects of intestinal micro-
biota on the antidepressant actions of (R)-ketamine [26, 90].

Except for the former commonly used antidepressants, 
some potential novel antidepressants may have similar 
abilities to regulate intestinal microbiota. Inulin-type 
fructo-oligosaccharides purified from Morinda officinalis 
increased the abundance of Cyanobacteria in a rat stress 
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model, producing metabolites such as hydrogen sulfide that 
have antidepressant-like effects [91]. A neuroprotectant, 
the C-terminal domain of the heavy chain of the tetanus 
toxin, may also exhibit antidepressant effects, as it has 
been reported to boost the abundance of probiotic bacteria 
(e.g., Lactobacillus, Bifidobacterium, and Butyrivibrio) 
and suppress the levels of bacteria associated with 
inf lammation (e.g., Provettela and Mucispirallum) 
[92]. A dihydroquinoline analog of agomelatine, N-(2-
(7methoxy-3,4-dihydroisoquinolin-1-yl)ethyl)acetamide 
hydrochloride, was found to alter the composition of the 
gut microbiota, reverse the dysbiosis caused by chronic 
stress, and regulate neuroinflammatory marker levels, thus 
attenuating depression-related behaviors [93]. The aqueous 
extract of Gastrodia elata Blume may prevent depression by 
regulating monoaminergic neurotransmission and intestinal 
microbiota composition and function [94]. Chlorogenic acid 
pretreatment improves depression-like behavior, with its 
effect likely related to serum proinflammatory cytokines and 
monoamine neurotransmitters; this treatment can modulate 
gut bacteria with certain phylotypes in rats with ACTH-
induced depression [95].

In recent years, many studies have focused on traditional 
Chinese medicine for the treatment of depression, wherein 
some are used to treat depression or have potential antide-
pressant-like effects. These medicines include total iridoids 
of Valeriana jatamansi Jones (TIV), Semen Sojae Praepara-
tum, Puerarin, Xiaoyaosan, Jia Wei Xiao Yao San, Baihe 
Jizihuang Tang, Chaihu-Shugan-San, and Shugan Jieyu 
Capsule, and they can change the abundance and composi-
tion of intestinal microbiota [73, 96–102]. It is generally 
believed that the action of traditional Chinese medicine on 
intestinal microorganisms is an important mechanism for 
its antidepressant effects. Rosemary extracts, the crucial 
active constituents extracted from Rosmarinus officinalis, 
considerably alleviated depressive-like behaviors in mice 
subjected to chronic restraint stress by rebalancing intes-
tinal microbiota [103]. In our previous study, we explored 
the antidepressant properties of neferine (Nef) in a mouse 
model of chronic stress–induced depression. Nef displayed 
an antidepressant-like effect and increased the relative abun-
dance of Lactobacillus at the genus level. This result indi-
cates that Nef may improve depression by regulating Lacto-
bacillus levels, which can impact serotonin/norepinephrine/
dopamine triple reuptake. Nef also mitigated depression by 
reducing hippocampal pyramidal cell necrosis and alleviat-
ing hippocampal lesions [104]. Some antidepressants and 
their effects on intestinal microbiota are included in Table 1. 
Conventional antidepressants may sometimes be ineffective 
and cause a series of side effects; therefore, new strategies 
to treat depression should be introduced to overcome this 
deficiency. Research on intestinal microbiota can help in the 
development of medication regimens.

Mechanisms of Intestinal Microbiota Influencing 
the Efficacy of Antidepressants

Intestinal Microbiota Influence Drug Metabolism

Intestinal microbiota can not only directly but also indirectly 
affect drug metabolism. For example, intestinal microbiota 
can chemically transform drugs and modulate host xenobi-
otic metabolism, including drug metabolism pathways [36]. 
With an increasing number of studies focusing on factors 
influencing the efficacy of antidepressants, many researchers 
have found that intestinal microbiota plays an important role 
in the metabolism of antidepressants.

Paeoniflorin, the main component of the Chinese tradi-
tional medicine Xiaoyaosan, displays antidepressant-like 
effects in rats treated with chronic unpredictable stress 
(CUS) [105]. It is difficult to be absorbed and to cross the 
BBB [106]. After oral administration of paeoniflorin in a 
rat model of CUS, the bioavailability was only 2.32% [107]; 
low permeability and metabolism of paeoniflorin may be one 
of the reasons for this result [108]. A study showed that the 
major metabolite of paeoniflorin in vivo may be paeoniflo-
rgein [109]. Intestinal microbiota can convert paeoniflorin 
into benzoic acid using carboxylesterase [107]. Benzoic acid 
can cross the BBB and act as an inhibitor of D-amino acid 
oxidase in the brain, thus improving brain function and pre-
senting antidepressant activity [110]. Therefore, when anti-
biotics reduce the abundance of microbiota in the intestine, 
the metabolic conversion of paeoniflorin to benzoic acid is 
also reduced, leading to low bioavailability [107].

Tryptophan (Trp) is an amino acid that cannot be produced 
by animal cells; therefore, humans must obtain it from the 
outside environment, mostly through diet. Trp is considered 
a supplementation for the treatment of depression and may 
be effective by increasing the precursor for 5-hydroxyindole 
(5-HT) synthesis and normalizing its release to recover serotonin 
deficiency. However, the availability of Trp is reduced in the 
mental disorders [111]. In the gut, Trp can be metabolized to 
kynurenine (Kyn) and its derivatives by the rate-limiting enzyme 
indoleamine 2,3-dioxygenase (IDO) 1. Intestinal microbiota 
plays a key role in stimulating IDO1 activity. In addition, 
specific intestinal microbiota can directly transfer Trp to Kyn 
and its derivatives, as they encode enzymes homologous to those 
of the eukaryotic kynurenine pathway [112, 113]. Therefore, it 
can be inferred that if the Kyn pathway overacts, Trp will mainly 
be diverted to Kyn instead of entering the brain to display an 
antidepressant effect, thus affecting its bioavailability [114].

5-Hydroxytryptophan (5-HTP) is used in some therapeu-
tic regimens to treat depression [115]. It is converted to 5-HT 
via tryptophanase in various intestinal microbiome strains 
[116]. However, 5-HT cannot pass through the BBB [117]; 
therefore, 5-HTP must first cross the BBB, where it can be 
transformed to 5-HT, thus displaying an antidepressant-like 
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effect [118–122]. Therefore, the metabolism of 5-HTP by 
intestinal microbiota may be the reason why 5-HTP itself 
only slightly elevates the brain’s extracellular 5-HT [123]. 
Interestingly, M. officinalis oligosaccharides, which are 
used to treat depression in China, can accelerate 5-HTP 
production from tryptophan and at the same time reduce 
5-HT generation by alerting the activity of relevant enzymes 
in intestinal microbiota, thus accumulating 5-HTP. Then, 
5-HTP from intestinal microbiota can be transported through 
the blood and cross the BBB to improve 5-HT levels in the 
brain [124].

Some intestinal microbiota is capable of N-demethylation, 
especially N-demethylating a tricyclic antidepressant, 
imipramine [125], causing fluctuations in the plasma 
concentration of this drug [126]. Cistanche tubulosa, a 

species of Cistanches Herba, has been confirmed to elicit 
antidepressant activity by regulating bacterial composition. 
Cistanche tubulosa extract (CTE) is metabolized to 
aglycones and the degradation products of phenylethanoid 
glycosides (PhGs) and iridoid glycosides by intestinal 
microbiota. The PhGs and iridoid glycosides in CTE were 
readily metabolized to secondary glycosides and aglycones 
in rats with CUS. These metabolites typically display high 
intestinal absorption and bioavailability, thereby exerting 
satisfactory biological activity [127–130].

Intestinal Microbiota Influence Drug Absorption

An altered microbiota state in patients with MDD is linked 
to increased gut permeability and regulation of intestinal 

Table 1   Antidepressants and their effects on intestinal microbiota

Antidepressants Effects on intestinal microbiota Reference

SSRI Fluoxetine Enhance the abundance of phylum Bacteroidetes, 
family Porphyromonadaceae, genus Parabacte-
roides, genus Butyricimonas, and genus Alistipes; 
reduce the abundance of phylum Firmicutes, 
Ruminococcus, Adlercreutzia, and an undefined 
Alphaproteobacteria

[83, 84]

Escitalopram Reduce the abundance of Ruminococcus, Adler-
creutzia, and an undefined Alphaproteobacteria

[83]

SNRI Venlafaxine, and duloxetine Reduce the abundance of Ruminococcus, Adler-
creutzia, and an undefined Alphaproteobacteria

[83]

Tricyclic antidepressant Amitriptyline Increase the abundance of phylum Bacteroidetes, 
family Porphyromonadaceae, family Bacteroi-
daceae, genus Parabacteroides, genus Butyrici-
monas, and genus Alistipes; reduce the abundance 
of phylum Firmicutes

[84]

N-Methyl-d-aspartate 
receptor (NMDAR) 
antagonist

Ketamine Increase the abundance of bacteria genera (e.g., 
Lactobacillus, Turicibacter, and Sarcina); reduce 
the abundance of opportunistic pathogens (e.g., 
Ruminococcus and Mucispirallum)

[24]

(R)-ketamine (or arketamine) Attenuated the reduced levels of Butyricimonas, 
Mollicutes, Mogibacteriaceae, Bacteroidales, and 
Clostridiales, as well as the increased levels of 
Deltaproteobacteria, Clostridium, and Rumino-
coccaceae in the CSDS susceptible mice

[26, 90]

Extracts from tra-
ditional Chinese 
medicine

Neferine Increase the relative abundances of species belong-
ing to phylum Firmicutes; decrease those of spe-
cies belonging to phylum Bacteroidetes

[103, 104]

Rosemary extracts Enhance the sequences proportion of Lactobacillus 
and Firmicutes; reduce the sequences proportion 
of Bacteroidetes and Proteobacteria in feces

[103]

Others Inulin-type fructo-oligosaccharides Increase the abundance of the phylum Cyanobac-
teria

[91]

C-terminal domain of the heavy chain of tetanus 
toxin

Increase the abundance of Lactobacillus, Bifidobac-
terium, and Butyrivibrio; reduce the abundance of 
Mucispirallum

[92]

N-(2-(7methoxy-3,4-dihydroisoquinolin-1-yl)ethyl) 
acetamide hydrochloride

Reverse the phenomenon that CUMS increases the 
richness of the gut bacterial community, resulting 
in a return to a normal level of richness

[93]
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drug transport and absorption [131]. Depression can mod-
ulate intestinal permeability and barrier function, which 
in turn may alter the drug absorption [132]. Acute stress 
has been reported to be associated with the expression of 
the tight junction proteins zonula occludens-1 (ZO-1) and 
occludin in the duodenal mucosa of rats subjected to water-
immersion restraint stress [133], thus changing gut perme-
ability. The bacterial enzyme tryptophanase produces indole 
and its derivatives from tryptophan. Indole also regulates the 
permeability of the intestinal barrier [134, 135]. Therefore, 
intestinal microbiota may affect gut permeability, thus influ-
encing drug absorption.

Intestinal Microbiota Changes the Permeability of the BBB

Studies have shown that antibiotic-induced changes in gut 
microbial composition increase BBB permeability by intes-
tinal microbiota-produced metabolites that change central 
nervous system functions. A study showed a consistent 
increase in BBB permeability in the hippocampus, which 
may explain why intestinal microbiota dysbiosis is strongly 
correlated with neurological and psychological diseases 
such as Alzheimer’s disease, autism spectrum disorder, and 
depression [136]. TIV may enhance the abundances of Fir-
micutes (e.g., Lactobacillus spp.) and Bacteroidetes to medi-
ate the composition and function of intestinal microbiota and 
change the expression of ZO-1 and occludin, thus protecting 
the BBB to exert an antidepressant effect [137]. Yi et al. 
[138] reported that borneol can increase the permeability of 
the BBB and dose-dependently improve the distribution of 
puerarin in the brain. Puerarin is the main active ingredient 
in Puerariae Radix, a traditional Chinese medicinal herb. 
The self-microemulsifying drug delivery system co-loading 
borneol and puerarin resulted in the highest area under the 
curve (AUC)brain of all three oral formulations (nanocrys-
tals suspension, inclusion compound solution, and self-
microemulsifying drug delivery system) in the study, which 
was 10.27 times that of puerarin nanocrystals suspension 
without borneol. In addition, another study showed that the 
release of encapsulated 5′-(N-ethylcarboxamido)adenosine, 
an adenosine 2A receptor agonist, increased BBB perme-
ability, thus amplifying the therapeutic efficacy of clinical 
drugs and immune checkpoint blockade antibodies in the 
treatment of glioblastoma [139]. Interestingly, puerarin can 
also alleviate CUMS-induced depression-like behaviors, 
possibly owing to the restoration of stress-induced disrup-
tions of normal intestinal microflora [73]. Moreover, SCFAs 
derived from intestinal microbiota significantly increased the 
protein levels of ZO-1, claudin-5, and occludin in the brain 
vasculature of high fructose-fed mice exposed to chronic 
stress [69]. (R)-ketamine could ameliorate demyelination 
in cuprizone-treated mice possibly by normalizing the 
abnormal composition of intestinal microbiota, and could 

facilitate remyelination in the brain after cuprizone with-
drawal possibly by improving the decreased levels of lactic 
acid [140]. Thus, it can be estimated that the permeability of 
the BBB greatly influences the treatment outcomes of drugs, 
potentially indicating the importance of intestinal microbiota 
in altering BBB permeability during depression treatment.

Other Effects of Intestinal Microbiota

A recent study showed that intestinal microbiota can also 
modulate the availability and efficacy of antidepressants in 
another way, bioaccumulation. Klunemann et al. [32] found 
that the efficacy of duloxetine on the behavior of Caeno-
rhabditis elegans was reduced due to bioaccumulation by 
intestinal microbiota. During the experiment, the research-
ers confirmed that four selected strains (Streptococcus sali-
varius, Bacteroides uniformis, Escherichia coli IAI1, and 
E. coli ED1a) depleted duloxetine from the gut microbiome 
medium without biotransformation. This led to a direct 
reduction in drug availability. In addition, bioaccumulation 
can change metabolite secretion, which leads to changes in 
community composition, side effects, or even the mode of 
action of some drugs [141–143]. During the cultivation of S. 
salivarius in the presence of duloxetine, several metabolites 
were found to be accumulated, thus improving the growth 
of Eubacterium rectale. In terms of the drug duloxetine, gut 
bacterial interactions are involved in side effects such as 
weight gain, as well as in its mode of action [88, 144, 145]. 
Interestingly, another study indicated that R. flavefaciens, 
a type of intestinal microorganism, can reduce the antide-
pressant-like effect of duloxetine by impairing mitochondrial 
oxidative phosphorylation and neural plasticity in the medial 
prefrontal cortices [83].

Conclusions and Future Perspectives

There is a bidirectional relationship between antidepres-
sants and intestinal microbiota. Antidepressants may alter 
the abundance and composition of intestinal microbiota, 
which is closely related to the treatment outcomes of 
depression. The mechanisms by which antidepressants 
mediate intestinal microbiota to alleviate depressive-
like behaviors are unclear but some explanations have 
shed light on the microbial metabolites, neurotransmit-
ters, and inflammatory factors in the brain-gut axis [3, 4, 
146]. However, antidepressants may produce their effects 
through multiple mechanisms, and intestinal microbiota 
may just be one of them. Most recent studies have not 
performed behavioral experiments using germ-free mice, 
so these do not provide direct evidence of the effects of 
intestinal microbiota on the antidepressant actions of the 
drugs. Further investigations of the specific underlying 
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mechanisms are needed, to help us fully understand the 
role of the brain-gut axis in treating depression.

Intestinal microbiota can determine the efficacy of anti-
depressants by influencing their metabolism, drug absorp-
tion, BBB permeability, and bioaccumulation. These 
findings imply that it is important to consider intestinal 
microbiota when considering antidepressant therapy regi-
mens. However, studies on the interaction between anti-
depressants and intestinal microbiota are insufficient. For-
slund et al. [147] showed that medication intake, including 
dosage, drug combination, and previous exposure to anti-
biotics, can cause variations in the microbiome and clini-
cal phenotypes. As there has been an increase in polyphar-
macy involving antidepressants [148, 149], it is necessary 
to investigate the combinatorial effects and dosage on the 
microbiome and treatment outcomes and how intestinal 
microbiota affect the efficacy of these drugs, especially 
at the molecular level. After understanding the molecu-
lar mechanisms by which intestinal microbiota influence 
the efficacy of antidepressants, new medications target-
ing the corresponding molecular sites may be developed. 
Further studies should focus on the detailed mechanisms 
of how intestinal microbiota influence the efficacy of dif-
ferent antidepressants and how doctors can better utilize 
the advantages and bypass the disadvantages in treating 
depression. Some techniques have been developed to pre-
dict and identify pharmacokinetic changes mediated by 
the microbiome [150, 151], including tools that can map 
the ability of the human gut microbiome to metabolize 
small-molecule drugs [152]; these may be helpful for doc-
tors to administer personalized medicine and appropriate 
therapy regimens. However, several factors, including diet, 
mental illness status, exercise, and other medications can 
also cause alterations in the intestinal microbiota [80, 
153–155], while few studies have been conducted and 
concluded their confounding effects on the treatment of 
depression. Most antidepressants are effective in reduc-
ing anxiety disorders, too [29]. General anxiety disorder 
and MDD share many common features [58], and there is 
considerable comorbidity between them [28]. However, 
the gut-microbial compositions in patients with general 
anxiety disorder and MDD are different, and there is a cor-
relation between the bacteria and clinical symptoms [58]. 
As such, antidepressants may alleviate depressive behav-
iors by mediating anxiety-related microbiota. However, 
most studies targeting MDD patients have not considered 
the effects of anxiety comorbidity, which may cause some 
bias. More studies should be conducted to demonstrate 
the combined effects of confounding factors on intestinal 
microbiota and the treatment of depression.
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