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Abstract 

Background  Trauma is one of the most critical public health issues worldwide, leading to death and disability and 
influencing all age groups. Therefore, there is great interest in models for predicting mortality in trauma patients 
admitted to the ICU. The main objective of the present study is to develop and evaluate SMOTE-based machine-learn-
ing tools for predicting hospital mortality in trauma patients with imbalanced data.

Methods  This retrospective cohort study was conducted on 126 trauma patients admitted to an intensive care 
unit at Besat hospital in Hamadan Province, western Iran, from March 2020 to March 2021. Data were extracted from 
the medical information records of patients. According to the imbalanced property of the data, SMOTE techniques, 
namely SMOTE, Borderline-SMOTE1, Borderline-SMOTE2, SMOTE-NC, and SVM-SMOTE, were used for primary preproc-
essing. Then, the Decision Tree (DT), Random Forest (RF), Naive Bayes (NB), Artificial Neural Network (ANN), Support 
Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost) methods were used to predict patients’ hospital 
mortality with traumatic injuries. The performance of the methods used was evaluated by sensitivity, specificity, Posi-
tive Predictive Value (PPV), Negative Predictive Value (NPV), accuracy, Area Under the Curve (AUC), Geometric Mean 
(G-means), F1 score, and P-value of McNemar’s test.

Results  Of the 126 patients admitted to an ICU, 117 (92.9%) survived and 9 (7.1%) died. The mean follow-up time 
from the date of trauma to the date of outcome was 3.98 ± 4.65 days. The performance of ML algorithms is not good 
with imbalanced data, whereas the performance of SMOTE-based ML algorithms is significantly improved. The mean 
area under the ROC curve (AUC) of all SMOTE-based models was more than 91%. F1-score and G-means before 
balancing the dataset were below 70% for all ML models except ANN. In contrast, F1-score and G-means for the bal-
anced datasets reached more than 90% for all SMOTE-based models. Among all SMOTE-based ML methods, RF and 
ANN based on SMOTE and XGBoost based on SMOTE-NC achieved the highest value for all evaluation criteria.

Conclusions  This study has shown that SMOTE-based ML algorithms better predict outcomes in traumatic injuries 
than ML algorithms. They have the potential to assist ICU physicians in making clinical decisions.
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Introduction
Trauma is one of the world’s most critical public health 
issues, leading to death and disability and influencing all 
age groups [1]. Traumatic injuries are the leading cause 
of mortality in the first four decades of life [2]. Trauma 
causes 4.4 million deaths annually and accounts for 
almost 8% of all deaths worldwide [1, 3]. In this regard, 
it is important to find solutions to reduce the impact of 
traumatic injuries and the number of deaths resulting 
from trauma. For example, improving the ability to pre-
dict the outcome of a trauma patient with a high degree 
of accuracy and identifying important factors that influ-
ence the patient’s outcome can assist medical trauma 
teams in their rapid efforts to treat trauma patients.

Many previous studies have used traditional methods 
such as the logistic and Poisson regression models to 
identify factors that influence traumatic injuries [4–6]. 
Numerous studies have also used the Trauma and Injury 
Severity Score (TRISS) as one of the most common mod-
els, which is based on logistic regression (LR) and uses 
a small cohort from a single center to predict the prob-
ability of survival of patients with traumatic injuries [7]. 
However, the TRISS and its various modifications are 
evidence-based tools, and the results of some studies 
indicate that they may mislead physicians by misclassi-
fying the patient’s condition [8]. Nevertheless, both cat-
egories of models performed poorly when collinearity, 
heteroskedasticity, higher order interactions, and non-
linear relationships among variables were present [9–11]. 
Hence, more valuable and accurate prognostic tools 
that are not limited to these assumptions are needed to 
achieve better patient outcomes and make the best use of 
resources.

In recent decades, methods based on machine learning 
algorithms have been developed whose main advantage 
is that they overcome the problems of classical meth-
ods [12, 13]. Recently, various ML methods have been 
used to predict outcomes in medical research, espe-
cially in trauma [14–19]. In addition, several studies 
have compared the performance of ML methods with 
evidence-based and regression models such as TRISS for 
predicting mortality in trauma patients [11, 17].

However, ML algorithms may be inappropriate when 
they encounter imbalanced data. An imbalanced data 
set is common in medical data. It occurs when there are 
many more instances of one class (majority class) than 
the other class (minority class). In such cases, the pre-
dictive ability of the classifiers is impaired because they 
are biased towards the majority classes and misclassify 
the minority class instances. Consequently, the classi-
fiers provide high predictive accuracy for the majority 
class. Therefore, if the data are imbalanced, the criterion 
of accuracy is not suitable to evaluate the performance of 

the classifiers. Although, the minority class is often the 
main class that researchers want to predict with higher 
accuracy [20–22]. Nevertheless, the problem of imbal-
anced data is critical, but investigations have shown that 
less attention has been paid to this problem in recent 
studies. For trauma, the data are generally unbalanced. 
Nevertheless, the results of a recent systematic review in 
this area show that most studies support the benefits of 
ML models [23]. However, the sensitivity–specificity gap 
values showed a wide range (0.035 to 0.927), highlighting 
the risk of imbalanced data [10, 23].

There are several methods to deal with the imbalanced 
class, such as resampling data by oversampling or under-
sampling, increasing the cost of the minority class classi-
fication error, or learning only one class [21, 24, 25]. The 
synthetic minority oversampling (SMOTE) method pro-
posed by Chawla et al. is the first model in the SMOTE 
family to be widely used in imbalance problems [21]. 
Over time, many SMOTE algorithms have been pro-
posed, such as borderline SMOTE, ADASYN, SMOTE-
NC, and SVM-SMOTE [26].

To the best of our knowledge, most of the studies 
conducted have evaluated the performance of SMOTE 
techniques using simulated data and publicly available 
data [27–29]. Moreover, few studies have used these 
techniques in trauma, and there is no study that has 
addressed in depth the prediction of traumatic injury 
in Iran. In this work, five SMOTE methods, such as 
SMOTE, Borderline-SMOTE1, Borderline-SMOTE2, 
SMOTE-NC, and SVM-SMOTE, were used to balance 
imbalanced datasets. We selected these methods among 
the numerous SMOTE variants because they belong to 
the category of data-level techniques that can be flexibly 
combined with other methods and are easier to use com-
pared to algorithm-level approaches. Moreover, these 
methods are more adaptable since their application does 
not depend on the chosen classifier. They are also the 
most commonly used resampling methods in the litera-
ture [21, 26–28].

Therefore, the main objective of this study is to com-
prehensively compare the performance of six ML algo-
rithms, namely DT, RF, NB, ANN, XGBoost, and SVM, 
based on five techniques of the SOMT family for predict-
ing hospital mortality in patients with traumatic injuries. 
In addition, identify important variables in predicting 
hospital mortality in patients with traumatic injuries was 
referred to the Besat hospital of Hamadan city from—
March 2020 to—March 2021.

Materials and methods
Data collection and preparation
The present study was a retrospective cohort study con-
ducted on 126 trauma patients. These patients were 
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admitted to an intensive care unit at the Besat hospital 
of Hamadan province, in the west of Iran, from—March 
2020 to—March 2021. The data were extracted from the 
patients’ medical records. Our focus was on the infor-
mation about trauma patients’ status (alive/dead) as a 
response and related risk factors to trauma. Patients were 
followed up from the time they entered the ICU until 
death or discharge, and the mean follow-up time from 
the date of trauma to the date of outcome was 3.98 days. 
We chose six risk factors associated with trauma out-
come including, age, sex (male, female), type of trauma 
(blunt, penetrating), location of injuries (head and neck, 
thorax, abdomen and pelvic, spinal, extremities, multi-
injuries), Glasgow coma scale (severe, moderate, minor) 
and white blood cells (k /mm3) to evaluate the perfor-
mance of ML methods.

Decision tree
Decision Tree is one of the easiest and popular algo-
rithms for classification and regression problems. The 
main goal of the DT is to construct a model that can 
predict the value of a target variable by learning simple 
decision rules deduced from the data features. Nodes and 
branches are the two main components of a DT model. 
The three essential steps in making a DT model are divi-
sion, stopping, and pruning. The tree’s making starts with 
all training data in the first node. Then, the first partition 
splits the data into two or more daughter nodes based on 
a predictor variable [30].

DT contains three types of nodes. (a) A root node or 
decision node indicates a decision that will result in the 
subdivision of all features into two or more mutually 
exclusive subsets. This node has no input branch, and the 
number of its output branches can be zero or more. (b) 
Internal nodes indicate one of the possible selects avail-
able in the tree structure; the Input branch of the node 
is linked to its parent node, and the output branch of the 
node is linked to its child nodes or leaf nodes. (c) Leaf 
nodes or terminal nodes indicate the final conclusion of a 
combination of decisions or events. These have one input 
branch and no output branch [31].

The benefit of DT contains simplicity in interpretation, 
the facility to handle categorical and quantitative values, 
the ability to fill missing values in features with the most 
probable value, and robustness to outliers. The main 
drawback of the decision tree is that it can be exposed 
to overfitting and under-fitting, especially when using a 
small data set [32].

Random forest
The RF method was first proposed by Leo Breiman 
[33]. This algorithm is an ensemble learning method 
used widely in classification and regression problems. 

It produces a large number of decision trees from sub-
samples of the dataset. Each decision tree will gener-
ate an output. Then the final output is obtained based 
on majority votes for classification and the average for 
regression. At first, in this algorithm, bootstrap sam-
ples were drawn through the resampling of the original 
data. Approximately 37% of the data is excluded from 
each bootstrap sample, named out-of-bag or OOB data. 
Afterward, for each of the bootstrap samples, RF will 
create an unpruned tree as follow: At each tree node, 
some variables were randomly picked from all variables, 
and then picked the best split from among those vari-
ables. All the decision data created from the bootstrap 
samples are compounded and analyzed to gain the final 
RF model [13, 33].

The performance of the random forest can be estimated 
by its internal validation using the OOB data. For clas-
sification issues, the RF’s classification error rate, which 
is named out-of-bag (OOB) error will be calculated from 
OOB data. Each bootstrap iteration will be predicted 
using the tree grown with the bootstrap sample for the 
OOB data. Then will be cumulated the OOB predictions 
and computed the error rate or OOB error [34]. A ben-
efit of the OOB error is that original data is used for its 
estimation and the other benefit of using it is high com-
putational speed [35]. Many studies represent that the 
RF algorithm compared with other ML algorithms has 
higher stability, robustness and high classification per-
formance. Also, it can preserve high classification perfor-
mance when missing data exist [18]. Another property of 
the RF method is the generation of prediction rules. This 
method can identify essential variables [13].

Naïve bayes
The NB classifier is a simple algorithm that applies 
the famous Bayes’ theorem with strong independence 
assumptions. Indeed, the NB classifier supposes that all 
predictor variables are conditionally independent of one 
another. NB method looks for a clear, simple, and very 
quick classifier. NB classification model categorized sam-
ples by computing the probability that an object belongs 
to a specific category. Due to the Bayesian formula, the 
posterior probability is computed according to the prior 
probability of an object, and the class with the maximum 
posterior probability is chosen as the object’s class. Easy 
implementation, good performance, working with little 
training data and making probabilistic predictions are 
advantages NB method. Also, it is not sensitive to unre-
lated features. In addition, NB executes well, even when 
the independence assumption is violated. However, it is 
computationally intensive, especially for models involv-
ing many variables [15, 32].
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Artificial neural network
An artificial neural network inspired by the operation 
of neurons in the human brain is a machine learning 
method widely used that performs mightily in classifi-
cation and pattern identification. The learning process 
in this method performs via gathering information by 
detecting patterns and relationships in data and learn-
ing through experience. A multilayer feed-forward neural 
network consists of an input layer, one or more hidden 
layers, and an output layer. The hidden layer is intermedi-
ate between the input and output layers, and the number 
is commonly specified with the cross-validation method. 
Each layer is made up of units called neurons (nodes). The 
neurons in the two adjacent layers are fully connected 
in which each connection has a weight associated with 
it, while the neurons inside the same layer are not con-
nected. In the feed-forward neural network, information 
proceeds unidirectionally. Information traverses from the 
input layer neurons and transits from the hidden layer’s 
neurons to the output neurons. Furthermore, in a neural 
network, complex non-linear mappings between input 
and output are taught by activation functions [13, 32]. 
In this study, we used the sigmoid activation function 
because it is a non-linear activation function usually used 
before the output layer in binary classification.

Support vector machine
The SVM is based on statistical learning theory and was 
first suggested by Vapnik [36]. The main aim of SVM is 
to find a particular linear model that maximizes hyper-
plane margin. Maximizing the hyper-plane margin will 
maximize the distance between classes. The nearest 
training points to the maximum cloud margin are the 
support vectors. Hence, classification is performed by 
mapping a vector of variables into a high-dimensional 
plane by maximizing the margin between two data 
classes. The SVM algorithm can classify both linear and 
nonlinear observations. When data are not linearly sepa-
rable, SVM using a kernel function transforms nonlinear 
input to a linear state in high-dimensional feature space 
and carries out the linear separation in this new space. In 
order to do this, several kernel functions have been pro-
posed and adopted for SVM, such as linear, radial, poly-
nomials, and sigmoid [13]. Selecting the kernel function 
in the SVM makes it a flexible method [9]. In the present 
study, we employed the radial basis kernel function for its 
better performance.

Extreme gradient boosting
XGBoost algorithm has gradient boosting at its core but 
is an enhanced version of the gradient-boosted decision 
tree algorithm. This algorithm is a scalable tree-boosting 

system to overcome long learning times, and Chen and 
Guestrin developed the overfitting of traditional boost-
ing algorithms in 2016 [37]. XGBoost classifier synthe-
sizes a weak base classifier with a robust classifier. A base 
classifier’s residual error is utilized in the next classifier 
to optimize the objective function at each stepwise of 
the training process [38]. Moreover, this algorithm can 
restrict overfitting, decrease classification errors, handle 
the missing values and minimize learning times while 
developing the final model [39].

SHAP value
Machine learning models have great potential in pre-
diction and classification. However, understanding the 
complexity of the predictive models’ results is slightly 
complicated, which is a barrier to the admission of ML 
models. Hence to overcome this problem, Lundberg 
and Lee proposed a novel Shapley additive explana-
tions (SHAP) approach for interpreting predictions for 
different techniques, including XGBoost. It helps us to 
describe the prediction of a specific input by calculating 
the impact of each feature on the prediction. SHAP val-
ues obtain interpretability through summary plots and 
the global importance of the variable [19].

Synthetic Minority Over‑Sampling Technique (SMOTE)
The imbalanced dataset classification problem occurs 
when the number of instances of one class is greater 
than that of the other class. In classification problems 
with two classes, the class with more specimens is 
named the majority class, and the class with a smaller 
number of specimens is called the minority class [20]. 
The level of class imbalance of a dataset is measured by 
the imbalance ratio (IR). The IR is defined as the ratio 
of the number of samples in the majority class to the 
number of samples in the minority class. The higher the 
IR, the greater the imbalance [40]. In such cases, report-
ing the prediction accuracy as an evaluation criterion is 
inappropriate, as this usually leads to a bias in favor of 
the majority class [21].

Two main approaches have been proposed to solve 
the class imbalance problem: a data-level approach and 
an algorithm-based approach. The data-level approach 
aims to change or modify the class distribution in the 
dataset before training a classifier, which is usually done 
in the preprocessing phase. The algorithm-level approach 
focuses on improving the current classifier by adapting 
the algorithms to learn minority classes [41].

The data-level approach is usually preferred and pro-
posed to deal with unbalanced classes in classification 
problems. This could be due to the fact that the class 
composition of the data can be adjusted to a "relatively 
balanced" ratio by adding or removing any number of 
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class instances in the data set, depending on the situ-
ation [42].

Other reasons that can be given are: 1) The samples 
generated by these methods represent the right trade-
off between introducing variance and approximating the 
original distribution. 2) These techniques are easier to 
apply compared to algorithm-level methods because the 
datasets are cleaned before they are used to train differ-
ent classifiers. 3) Data-level techniques can be flexibly 
combined with other methods [26–28].

Re-sampling or data synthesis is the most popular 
method of processing unbalanced datasets used for 
data-level approach. The re-sampling approach can be 
divided into three categories, (i) over-sampling (ii) under-
sampling (iii) hybrid sampling [43]. In over-sampling, 
the weight of the minority class is increased by repeat-
ing or generating new samples of the minority class. 
Under-sampling randomly deletes instances from the 
majority class to balance with the minority class. Hybrid 
sampling combines these two methods to take advan-
tage of the benefits and drawbacks of both approaches 
[43]. The over-sampling approach is generally applied 
more frequently than other approaches. This approach is 
called SMOTE family and a collection of numerous over-
sampling techniques (85 variants) evolved from SMOTE 
[26]. One of the first Over-sampling methods, SMOTE, 
is a powerful tool for dealing with imbalanced data sets 
suggested by Chawla et al. [21]. SMOTE is an oversam-
pling technique that generates synthetic data for a minor-
ity class based on its k-nearest neighbor until the ratio of 
minority and majority classes becomes more balanced. 
The new synthetic data are very similar to the actual data 
because they are produced based on initial features [21].

The main advantage of SMOTE is that it prevents over-
fitting by synthesizing new samples from the minority 
class instead of repeating them [44].

There are also some disadvantages of SMOTE, how-
ever: oversampling of noisy samples, Oversampling of 
borderline samples [28]. To overcome these problems, 
many strategies have been employed in the literature 
including [28]:

•	 Extensions of SMOTE by combining it with other 
techniques such as noise filtering, e.g., SMOTE-IPF 
and SMOTE-LOF

•	 Modifications of SMOTE, e.g., borderline SMOTE 
(B1-SMOTE and B2-SMOTE) and SVM-SMOTE.

Borderline-SMOTE is an extension of SMOTE with 
a more powerful performance ability proposed by Han 
et al. in 2005. In this method, only the borderline exam-
ples of the minority class are over-sampled. A Border-
line is a region where the samples of minority classes 

are near the majority. At first, the number of major-
ity neighbors of each minority instance is used to 
split minority instances into three groups: safe, noise, 
and danger, then generate new instances. Suppose the 
neighbors of the points in the danger region are consid-
ered from the minority class. In that case, this method 
is called Borderline-SMOTE1, and when the point’s 
neighbors in the danger region are considered from 
the minority and majority classes, called Borderline-
SMOTE2 [45]. Support vector machine SMOTE (SVM-
SMOTE) is another extension of SMOTE that generates 
new synthetic samples near the decision boundary. 
This approach used SVM to detect decision boundaries 
[46]. SMOTE-Nominal Continuous (SMOTE-NC) is an 
over-sampling method that uses k-nearest neighbors, 
applying the modified-Euclidean distances to gener-
ate new synthetic samples [21]. This study introduced 
SMOTE techniques that have been used in the prepa-
ration initial data stage, then training ML algorithms 
have performed.

Performance criteria
The predictive performance of ML algorithms was evalu-
ated using several criteria, including sensitivity, specific-
ity, Positive Predictive Value (PPV), Negative Predictive 
Value (NPV), accuracy, Area Under the Curve (AUC), 
Geometric Mean (G-means), F1 score, and P-value of 
the McNemar test. We evaluated the predictive perfor-
mance of ML methods using a cross-validation approach 
in which both groups of datasets, the original imbal-
anced dataset, and the SMOTE-balanced datasets, were 
randomly split into training (70%) and test (30%) sets. 
This process was iterated 100 times. Then, mean values 
for each evaluation criterion were calculated over 100 
repetitions. Moreover, to prevent over-fitting, ML algo-
rithms performed fivefold cross-validation to select the 
optimum hyperparameters. Different values for each of 
hyperparameters were examined and optimum value 
was determined. The optimal values of hyperparameters 
selected for each of the ML models are shown in Table 1.

Software packages
In the present study, all SMOTE-balancing methods were 
executed through programming in Python software ver-
sion 3.10.6 with the package "imbalanced-learn." Also, all 
analyses of ML methods were implemented using R soft-
ware version 4.1.1, with the following packages: “e1071” 
for SVM; “nnet” for NN; “naivebayes” for NB; “random-
Forest” for RF and variable importance (VIMP) in the RF; 
“rpart” for DT; “xgboost” for XGBoost; and “SHAPforxg-
boost” for SHAP value.
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Results
In this study, of the 126 patients admitted to an inten-
sive care unit, 117 (92.9%) were alive and 9 (7.1%) were 
dead. The mean follow-up time from the date of trauma 
to the date of outcome was 3.98 ± 4.65 days, with a mean 
follow-up time of 1.56 ± 0.73 days for patients who died 
and 4.17 ± 4.77 days for patients who survived. The over-
all mean (± SD) age of patients with traumatic injuries 
was 37.71 ± 12.78 years, with a minimum and maximum 
of 18 and 60  years, respectively. The characteristics of 
patients according to their traumatic injuries are listed in 
Table 2. Most of them were men, 85 (67.5%). The mean 
WBC value of the alive patients (9066.67 ± 2938.57) 
was significantly lower than that of the dead patients 
(15,500 ± 4492.22) (p < 0.001). Univariate analysis based 
on the chi-square test showed that the type of trauma 
in patients and the GCS were significantly related to the 
outcome of traumatic injuries. Mortality was significantly 
higher among penetrating trauma (18.5%) than in blunt 
trauma (4%) (p = 0.022). In patients with severe GCS 
(50%), mortality was significantly higher than in patients 
with moderate and minor GCS (8.5%) (p < 0.001).

According to the findings, the ratio of dead to alive 
population was 1:13 (IR = 13), expressing an extreme 
imbalance between the two classes. Therefore, vari-
ous SMOTE family techniques were applied to face the 
imbalance of the data in the original datasets.

Initially, all classifiers are performed on the imbalanced 
data to represent the impact of the imbalanced data 
problem on the performance of the classifiers. Afterward, 
all classifiers are conducted on balanced data generated 
by SMOTE family techniques.

Table 3 demonstrates the performance of the six ML 
algorithms for the prediction of mortality in patients 
with traumatic injuries on the imbalanced datasets 

(original) and on the balanced dataset in terms of sen-
sitivity, specificity, PPV, NPV, accuracy, AUC, G-means, 
F1-score, and P-value of McNemar’s test. Further 
details on the 95% confidence intervals for each cri-
terion of the models used are provided in Additional 
file 1.

One of the most important results from Table  3 is a 
considerable discrepancy between specificity and sen-
sitivity in all ML methods used before balancing the 
dataset. In addition, it can be seen in Table 3 that in the 
rows of the original dataset, all methods used had high 
accuracy (≥ 90%). In comparison, the sensitivity values 
for all algorithms except ANN and XGBoost were less 
than 55%, which means that the classifiers are biased 
towards the majority class.

The results in Table  3 show that all methods used 
except XGBoost have high accuracy (≥ 90%) and speci-
ficity (≥ 92%) before and after SMOTE techniques. 
Compared with imbalanced data, the accuracy of the 
classifiers increases by a maximum of 8% with balanced 
data. The sensitivity and AUC of all the algorithms used 
before SMOTE techniques were significantly lower than 
after SMOTE techniques. The specificity of all models 
except XGBoost slightly decreased after the application 
of SMOTE techniques. In five ML Models, namely, SVM, 
NB, DT, XGBoost, and RF, the sensitivity and ACU were 
significantly increased by the use of SMOTE techniques, 
but the ANN model showed a slight increase in these cri-
teria. For example, with imbalanced data, the DT classi-
fier achieved a sensitivity of 26%, while the result with the 
SVM-SOMTE technique increased to 95%.

Before applying the SMOTE algorithm, the G-means 
score for DT was 45%, and for the other models, it was 
between 60 and 81%. After applying the SMOTE algo-
rithm, the G-means score for all models was over 91%.

Table 1  The tuning parameter values of SMOTE-based machine learning methods

Methods Hyperparameters Definition Value

ANN Size The number of nodes in the hidden layer 5

Weight decay The regularization parameter to avoid overfitting 0.1

SVM Gamma The width of the radial basis function kernel 0.12

Cost The parameter that controls the complexity of the model 1

RF mtry Number of variables randomly selected as candidates for each tree 2

ntree The number of trees 500

DT minsplit The minimum number of observations in a node 10

minbucket The minimum number of observations in any terminal node 3

XGBoost nrounds The maximum number of iterations 100

eta Learning rate 0.3

gamma Regularization parameter to prevent overfitting 5

max depth The depth of the tree 3
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The F1 score ranged from 60 to 81% when unbalanced 
data were used, while it increased to exceed 90% for all 
models after the SMOTE technique was applied.

Among the SMOTE-based data-balancing techniques, 
the SMOTE-NC technique attained the highest accu-
racy value for XGBoost (100%) and SVM (99%), NB, 
and DT (96%), while Borderline-SMOTE1 provided the 
highest value of 100% for the ANN Model. SMOTE for 
ANN and RF also obtained an accuracy of 100% and 
99%, respectively. Sensitivity was highest for SMOTE to 
ANN, RF, and NB, with the highest value of 100%, 99%, 
and 99%, respectively, whereas Borderline-SMOTE1 had 
the highest value of 100% to ANN and 99% for SVM. 
XGBoost with SMOTE-NC also yielded a sensitivity of 
100%, and DT with SMOTE-SVM yielded a sensitivity of 
95%. Three ML models, namely XGBoost, SVM, and DT 
with SMOTE-NC, achieved specificity and PPV of 100%, 
99%, and 97%, respectively. The ANN model for SMOTE 
and Borderline-SMOTE1 achieved a specificity and PPV 
of 100%. RF with SMOTE also had both specificity and 
PPV 99%.

Based on the NPV comparison of ML algorithms, the 
performance of the ANN, SVM, and RF classifiers using 
the SMOTE method was 100%, 99%, and 99%, respec-
tively. In addition, SMOTE-NC provided the highest 
value of 100% for XGBoost, Borderline-SMOTE1 pro-
vided the highest value of 100% for ANN, and the SVM-
SMOTE method achieved the highest value of 97% for 
the DT model.

According to AUC, the performance of the XGBoost, 
SVM, NB, and DT classifiers with the SMOTE-NC 
method was 100%, 99%, 96%, and 96%, respectively, while 
Borderline-SMOTE1 gave the highest value of 100% for 
the ANN Model. ANN and RF classifiers with SMOTE 
also obtained AUC of 100% and 99%, respectively.

Finally, the P-value of McNemar’s test for all classifiers 
was greater than 0.05. Consequently, there was no signifi-
cant difference between the frequencies of false positives 
and false negatives between two classes.

In summary, the SMOTE-NC balancing technique 
outperformed all other four data balancing techniques 
based on several evaluation criteria for four classifiers: 

Table 2  Demographic and clinical characteristics of patients according to traumatic injuries

LOS Length of stay in ICU, WBC White blood cells, GCS Glasgow coma scale, SD Standard deviation
a Chi-square test
b T-test
c Mann-Whitney Test

Variable Traumatic Injuries Outcome Total

Alive Dead

N % N % N % P-valuea

All 117 92.9 9 7.1 126 100

Sex

  Male 79 92.9 6 7.1 85 67.4 0.609

  Female 38 92.7 3 7.3 41 32.6

Type of trauma

  Blunt 95 96 4 4 99 78.6 0.022

  Penetrating 22 81.5 5 18.5 27 21.4

Location of injuries

  Head and Neck 33 97.1 1 2.9 34 27 0.175

  Thorax 12 100 0 0 12 9.5

  Abdomen and Pelvic 4 100 0 0 4 3.2

  Spinal 3 100 0 0 3 2.4

  Extremities 16 100 0 0 16 12.7

  Multi injuries 49 86 8 14 57 45.2

GCS

  Minor 79 100 0 0 79 62.7 0.001

  Moderate 32 91.4 3 8.6 35 27.8

  Severe 6 50 6 50 12 9.5

Age(year): Mean ± SD 37.52 ± 12.76 40.22 ± 13.48 p-value b 0.543

LOS (day): Mean ± SD 4.17 ± 4.77 1.56 ± 0.73 p-value c 0.105

WBC: Mean ± SD 9066.67 ± 2938.57 15,500 ± 4492.22  < 0.001
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SVM, NB, DT, and XGBoost. Moreover, the XGBoost 
model outperformed three other ML models among 
these ML classifiers. The performance comparison of the 
classifiers with SMOTE techniques and without SMOTE 
in terms of accuracy, AUC, G-means, and F1 score is 
shown in Fig. 1. The plots comparing the performance of 
the classifiers according to other criteria can be found in 
Additional file 2.

According to the SMOTE dataset, the RF model out-
performed the other ML methods based on all evalu-
ation criteria. Therefore, Fig.  2 indicates the relative 
importance of each variable obtained by the RF method 
in terms of mean decrease accuracy and mean decrease 
Gini. These indices identified WBC, GCS, and Age as 
the three most important variables for predicting trauma 
injury mortality. Afterward, the location of injuries and 
sex were important variables.

To better understand the performance of the XGBoost 
model in predicting mortality and to identify the vari-
ables that influenced the prediction model, the SHAP 
summary plot was shown in Fig.  3. This plot indicates 
the ranking of variables’ importance and the mean SHAP 
value. Positive SHAP values show that the model predicts 
patients with traumatic injuries who die, while negative 
SHAP values show patients with traumatic injuries who 
survive. SHAP values farther away from zero indicate a 
more impact for a specific variable.

Figure  3 demonstrates that the most important vari-
ables that have a significant impact on the prediction 
of the XGBoost model are GCS, WBC, type of trauma, 
age, and gender. In addition, it can be seen in Fig. 3 that 
the patients who died according to the prediction of the 
model had high values in all the important variables.

According to Figs.  2 and 3, the important variables 
detected in predicting trauma injury mortality with RF 
and XGBoost models were nearly identical.

Discussion
In the current study, several machine learning methods 
were applied to predict traumatic injury outcomes in 
trauma patients referred to the Besat hospital of Hama-
dan province. Data in this study were highly imbalanced: 
approximately 7% of the people were classified as dead 
patients. The imbalance ratio was 13, which indicates 
that for each sample of the minority class (dead), there 
were 13 samples of the majority class (alive). Hence, we 
first used SMOTE balancing techniques for building bal-
anced classes in the original dataset. These techniques 
are data oversampling approaches that are generally used 
more frequently than other approaches in studies and 
cause the improved performance of classifiers [29, 43, 
47–51]. Then, machine learning methods were applied 

to predict the in-hospital mortality of patients with trau-
matic injuries.

In this regard, the six algorithms of machine learning, 
DT, RF, NB, ANN, SVM, and XGBoost, were constructed 
and evaluated to predict traumatic injury outcomes on 
balanced and imbalanced datasets. This study tried to 
show the undesirable impact of imbalanced data prob-
lems on the performance of the machine learning models 
and apply SMOTE balancing methods to solve them.

In general, the performance of machine learning meth-
ods based on the balanced datasets was remarkably bet-
ter than that of models based on the original imbalanced 
dataset, as expected. This indicates to perform predic-
tion using the SMOTE strategies on imbalanced data is 
rational.

The findings show a considerable difference between 
specificity and sensitivity in all of the used ML methods 
before applying to SMOTE methods, which indicates 
classifiers are biased toward the majority class. At the 
same time, there is little difference between the sensitiv-
ity and specificity of SMOTE-based machine learning 
algorithms. The slight difference between these two crite-
ria was seen in other studies, too [48, 49, 52, 53].

Also, the evaluation results showed high accuracy for 
all ML methods except XGBoost before using SMOTE-
balancing methods.

The main reason for achieving high accuracy in such a 
situation is that the classification algorithms are biased 
toward the majority class. Some studies have shown that 
when classes are imbalanced, the accuracy of classifiers 
is slightly higher than that of classifiers in balanced data 
[48–50]. However, some studies demonstrated a slight 
increase in the accuracy of classifiers with balanced 
data compared to imbalanced data [29, 51]. In the cur-
rent study, a slight increase in the accuracy of classifiers 
with balanced data existed as compared to imbalanced 
data. Therefore, the accuracy criterion is not a sufficiently 
robust measure when facing imbalanced datasets classifi-
cation problems. Hence, to evaluate ML algorithms’ per-
formance, the AUC criterion is widely used for evaluating 
classifiers in the imbalanced dataset [26].

The findings showed that the mean area under the 
ROC curve for all ML models in SMOTE-balanced data-
sets improved significantly compared with that in the 
imbalanced dataset. This accents the importance of using 
SMOTE balancing techniques.

Although the general performance of SMOTE-based 
machine learning algorithms is excellent, finding the 
appropriate SMOTE-balancing technique to get the best 
results from ML algorithms is tricky. There is no single 
SMOTE-balancing technique can achieve the best results 
for all ML algorithms.
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Fig. 1  Comparison of the performance of classifiers with SMOTE techniques and without SMOTE in terms of accuracy, AUC, G-means and F1 score

Fig. 2  Variable importance from the RF method, in terms of mean decrease accuracy and mean decrease Gini for predicting mortality traumatic 
injuries patients. WBC: white blood cells, GCS: Glasgow coma scale
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The current study shows that ML algorithms work bet-
ter on the data balanced by SMOTE-NC and SMOTE. 
Also, among all ML classifiers, ANN and RF models in 
SMOTE and the XGBoost model in SMOTE- NC outper-
formed other ML models.

It should be pointed out that was not possible to per-
form a comprehensive comparison in the present study 
for several reasons. First, there was no prior study con-
ducted on the use of SMOTE-based ML algorithms in 
the trauma field that have focused on general trauma. 
However, these algorithms were employed in some 
fields. For example, Karajizadeh et  al. had compared 
balancing approaches of under-sampling, oversampling, 
SMOTE, and ADASYN with SVM, ANN, C5.0 tree, 
and CHAID tree to predict in-hospital mortality from 
hospital-acquired infections in trauma patients. They 
reported that among these ML algorithms, the SVM 
algorithm by SMOTE balancing approach in terms of 
accuracy outperformed other ML algorithms by balanc-
ing approaches. The prediction accuracy by SVM with 
SMOTE was 100% [54]. Kumar et al. had also evaluated 
the performance of six ML algorithms: DT, k-Near-
est Neighbor, Logistic regression, ANN, SVM, and 
NB over five imbalanced clinical datasets. They used 
seven balancing techniques for generating balanced 
data, namely under-sampling, random oversampling, 
SMOTE, ADASYN, SVM-SMOTE, SMOTEEN, and 
SMOTETOMEK. Then applied, ML algorithms were 
for the classification of balanced data. They reported 
that among seven balancing techniques, SMOTEEN 

had the best performance [29]. Second, there are many 
oversampling techniques in the field of imbalanced 
learning. So far, 85 oversampling techniques have been 
developed to solve the imbalanced data problem [26]. 
As a result, available studies used different SMOTE 
techniques that make comparison difficult and impossi-
ble. Third, the performance of both oversampling tech-
niques and ML Models is generally data-dependent, 
one cannot detect an oversampling technique and ML 
classifier that always is the best for the classification 
of different datasets. Fourth, although various studies 
have investigated predicting trauma patient mortal-
ity using different ML methods. Nevertheless, most of 
these studies have concentrated on a specific type of 
trauma, such as burns, brain injuries, head injuries, and 
tooth injuries, and used the NN method [15–17, 55]. 
Hence, only a few studies were conducted in the trauma 
field focused on general trauma.

In this research, the RF model with SMOTE based on 
the evaluation criteria outperformed more ML meth-
ods. Consequently, the RF model has been used to iden-
tify the importance of variables in predicting traumatic 
injuries. The result of the variable importance based 
on the random forest model demonstrates that white 
blood cells and Glasgow coma scale and age, in terms 
of mean decrease accuracy and mean decrease Gini, 
have higher relative importance than other variables. 
Of these variables, WBC was identified as an impor-
tant risk factor related to trauma mortality. This result 
is consistent with the findings of Almaghrabi et al. [47]. 

Fig. 3  SHAP summary plot for input variables of the XGBoost model for predicting mortality traumatic injuries patients. WBC: white blood cells, 
GCS: Glasgow coma scale



Page 13 of 15Hassanzadeh et al. BMC Medical Research Methodology          (2023) 23:101 	

They compared the performance of DT, RF, ANN, SVM 
and Logistic regression to predict traumatic injury 
mortality and found all applied ML algorithms have 
similar prediction accuracy of 94%. However, based on 
AUC, logistic regression and RF have the highest value, 
and SVM has the lowest value. Also, the results of their 
study showed that the location of treatment and age are 
other important factors too.

External validation is critical for establishing ML 
algorithms’ validity and reliability [56]. Therefore, there 
needs to be external validation attempts of SMOTE-
based ML algorithms using an alternative external 
dataset. Therefore, the lack of external validation in our 
current study is one of the limitations.

Another limitation of the present study is that the 
data employed here were obtained from a registry-
based retrospective study which causes the analysis 
to be prone to potential biases for the estimations for 
measures such as sensitivity. In addition, our study had 
a small sample size. Therefore, studies with large sam-
ple sizes are needed to investigate the performance and 
reliability of these methods. Also, factors such as injury 
severity scale (ISS), vital signs, and infection need to 
be considered in future predictive models in these 
patients.

Recently, to overcome the limitations of SMOTE, new 
versions of SMOTE have been introduced. Therefore, 
the authors propose to use the new versions of SMOTE, 
e.g., A-SMOTE, RN-SMOTE, SMOTE-LOF, to deal with 
imbalances and compare them with the prior versions of 
SMOTE for further analysis [28, 57, 58].

In this study, we used SMOTE and modifications of 
SMOTE to account for borderline samples in the classi-
fication of imbalanced datasets. In future work, we will 
use variants of SMOTE to detect noise samples. We will 
also employ deep learning methods to detect noise and 
borderline samples and to resample data.

Conclusion
Prediction models are broadly used in healthcare man-
agement, medical sciences, and clinical decision support. 
These methods help identify the rate of patient injuries, 
prioritize immediate threats, and decision-making in 
trauma. Hence causes improved medical care and the 
development of trauma services. Prediction models can 
help ICU physicians determine which patients are at 
high risk of mortality and who should be prioritized for 
treatment, enabling them to optimize clinical interven-
tions and improve patients’ prognoses. According to the 
excellent performance of machine learning models based 
on the SOMTE technique in predicting mortality in this 
study, the design of accurate decision support systems 

using these models facilitates and accelerates healthcare 
management processes.

Our finding demonstrated that RF and ANN models 
with SOMTE and XGBoost model with SMOTE-NC may 
be better than other ML models in predicting traumatic 
injury outcomes in trauma patients in terms of all criteria. 
Also, the most important variable affecting the predicting 
mortality in trauma patients based on SHAP value and 
RF were the white blood cells, the Glasgow coma scale, 
and age. However, these results are based on the find-
ing of our study and do not have a generalization ability. 
Consequently, simulation studies are suggested for more 
investigation. Simulation studies are needed to investigate 
overall results and recommend a valuable tool for hospital 
mortality prediction in patients with traumatic injuries.
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