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Abstract

We present the first examples of tethered olefin functionalization reactions using a 

silanol auxiliary. A range of allylic alcohols are readily condensed with di-tert-butylsilyl 

bis(trifluoromethanesulfonate) to form allylic silanols. When treated with Hg(OTf)2 and NaHCO3, 

these silanols facilely transform into cyclic silanediol organomercurial compounds. In most cases, 

the reactions are exquisitely diastereoselective. The scale can be increased more than ten-fold 

without loss of yield and selectivity. We demonstrate that the product silanediols are versatile 

synthons for a variety of further reactions.

Graphical Abstract

The family of organomercurials has earned an unfortunate reputation, largely due to the 

actions of a minority of its members.1, 2 Nevertheless, the majority of higher order 

organomercurial compounds are crystalline, air-stable, and, when treated with appropriate 

respect, no more dangerous than most chemicals encountered in the organic laboratory.3 The 

C–Hg linkage is essentially covalent, making it a most unique and versatile organometallic 

bond. 4–6 Our laboratory is deeply invested in the field of tethered olefin functionalization 

reactions.7–9 In such reactions, a nucleophilic auxiliary (the “tether”) is appended to 

an alcohol or amine and then cyclized onto a pendant alkene. Here, we disclose our 

most recent contribution to this area, a cyclization reaction of allylic silanols into cyclic 

silanediol mercury chloride compounds. Allylic alcohols can be readily transformed into 

allylic silanols using a combination of di-tert-butylsilyl bis(trifluoromethanesulfonate)10 and 
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imidazole; the free OH of the silanol tether serves as a convenient nucleophile for olefin 

attack.

The resulting cyclic silanediol compounds, reminiscent of intermediates en route to polyol 

natural products (Figure 1),11–17 are synthons for a variety of further transformations.

Silanol auxiliaries have been popularized by Gevorgyan and co-workers as directing groups 

in C–H functionalization reactions.18, 19 There is one example from the Lee laboratory 

of the use of silanols for gold catalyzed alkyne functionalization20, and an example 

of a silylperoxidation reaction of homoallylic alcohols from the Woerpel laboratory.21 

Nevertheless, our survey of the literature revealed no examples of the silanol tether 

employed in alkene functionalization. Our work has been directly inspired by the pioneering 

contributions of Overman22, 23 and Leighton24–28, who demonstrated that acetal tethers 

could be used for the mercuric-salt mediated functionalization of olefins (Scheme 1).29, 30

Optimization of our silanol-tethered alkene functionalization reaction (Table 1) was 

performed with (E)-(but-2-en-1-yloxy)di-tert-butylsilanol which was synthesized in one step 

from crotyl alcohol and di-tert-butylsilyl bis(trifluoromethanesulfonate) (See Supporting 

Information for full experimental procedures). With 1 equivalent of Hg(OCOCF3)2, we 

were pleased to observe formation of 22% of desired cyclic silanediol (Table 1, Entry 
1), giving us hope that our conceived reaction was viable. There was little improvement 

with increase of temperature (Table 1, Entry 2), equivalents of Hg(OCOCF3)2 (Table 1, 

Entry 3), or time (Table 1, Entry 4). We hypothesized that adventitious trifluoroacetic acid, 

formed as a byproduct of cyclization, was deleterious to reaction progress. Accordingly, we 

tested K2CO3 and NaHCO3 in varying equivalents (Table 1, Entries 5-7) as base additives. 

Nevertheless, we observed little change in reaction performance. Reducing the temperature 

to −40 °C was markedly deleterious (Table 1, Entry 8). To our amazement and excitement, 

at this temperature, simply switching to Nishizawa’s salt (Hg(OTf)2),31 in combination with 

NaHCO3 (1 equivalent) afforded clean and high-yielding conversion to the desired product 

(Table 1, Entry 9). It should be noted that the use of 1 equivalent of NaHCO3 was critical 
for reaction performance! In its absence, a complex mixture of decomposition products was 

observed (Table 1, Entry 10).

Our optimized protocol utilizing Hg(OTf)2 (1 equivalent) and NaHCO3 (1 equivalent) at 

−40 °C in THF was compatible with a wide array of alkenyl silanol substrates (Scheme 

2). The silanol auxiliary could be appended to both primary allylic alcohols as well as 

secondary ones (Scheme 2, Entry 9). In all but two instances (Scheme 2, Entry 10), the 

cyclization reaction proceeded with excellent diastereoselectivity (>20:1), with the pendant 

alkyl or aryl group and mercury chloride substituent in a trans relationship. A crystal 

structure of 31 (Scheme 2, Entry 6) unambiguously established this stereochemistry. It is 

remarkable to note that even with products containing 3 stereocenters (Scheme 2, Entry 9), 

only a single diastereomer was observed. We hypothesize that a chair-like transition state 

during silanoxy-mercuration is responsible for this excellent diastereoselectivity (Scheme 3). 

The reaction was tolerant of a wide variety of alkyl and aryl substituents attached to the 

olefin. Ethers (Scheme 2, Entries 2, 5, 6, 7), halogens (Scheme 2, Entry 6), and several 

heterocycles (Scheme 2, Entries 7 and 8) were all compatible. Di-substituted trans-olefins 
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were the most competent substrates in this cyclization. While di-substituted cis-olefins also 

reacted (Scheme 2, Entry 11), the yield of cyclized product dropped. Furthermore, an endo 
mode of cyclization was strongly preferred; exo cyclization (Scheme 2, Entry 12) proceeded 

in only low yield.

With tri-substituted alkenes, the cyclization reaction proceeded only partially, if at all 

(Scheme 4). Nevertheless, in these reactions, alcohol products were isolated, which 

themselves may be valuable intermediates for further derivatization.3

We were pleased to find that our cyclization reaction scaled greater than 10-fold with no loss 

in yield or selectivity (Scheme 5).

Furthermore, as we had envisioned at the conception of this project, the cyclic silanediol 

organo-mercury products could be used as starting materials for a variety of further 

transformations, including hydroxylation,32–34 demercuration, 35–38 and iodination39–41 

(Scheme 6A–C).

In summary, we present the first tethered olefin functionalization using a silanol auxiliary. 

The silanol tether could be conveniently appended to a variety of primary and secondary 

alcohols via condensation with di-tert-butylsilyl bis(trifluoromethanesulfonate). Hg(OTf)2 

mediated cyclization proceeded with high diastereoselectivity and afforded cyclic silanediol 

mercury chloride products. The reaction was scalable greater than ten-fold and the products 

were readily amenable for further demercurative transformations. We expect this reaction to 

find much application in the pursuit of important polyhydroxylated compounds.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Many antibiotics are polyhydroxylated compounds.

Shinde and Sathyamoorthi Page 6

Org Lett. Author manuscript; available in PMC 2023 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 1. 
A strategy for the conversion of alkenyl alcohols into diol synthons.
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Scheme 2. 
Substrate Scope
areactions conducted on a 0.2 mmol scale and relative stereochemistry is shown in all 

cases. bIsolated yields. cCrystallographic information deposited in the Cambridge Database 

(CCDC), Number 2032765 ddr = 1:1.
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Scheme 3. 
A chair-like transition state likely underlies the high diastereoselectivity of cyclization.
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Scheme 4. 
Some substrates do not fully cyclize but still form valuable diol products.
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Scheme 5. 
Cyclization scales greater than 10-fold with no loss of yield and selectivity.
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Scheme 6. 
The C–Hg organometallic bond is highly versatile.
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Table 1.

Reaction Optimization

Entry
a Hg (II)(equiv.) Base Temp/Time P/RSM

1 Hg(OCOCF3)2(1) None 23 °C, 1h 22/45

2 Hg(OCOCF3)2(1) None 40 °C, 1h 25/28

3 Hg(OCOCF3)2 (2) None 23 °C, 1h 29/30

4 Hg(OCOCF3)2 (1) None 23 °C, 16h 31/13

5 Hg(OCOCF3)2 (1) K2CO3 (1) 23 °C, 16h 34/18

6 Hg(OCOCF3)2 (1) NaHCO3 (1) 23 °C, 16h 34/18

7 Hg(OCOCF3)2 (1) NaHCO3 (2) 23 °C, 16h 38/8

8 Hg(OCOCF3)2 (1) NaHCO3 (1) −40 °C, 16h 6/63

9 Hg(OTf)2 (1) NaHCO3 (1) −40 °C, 16h 67/<5

10 Hg(OTf)2 (1) None −40 °C, 16h
—

b

a
Yield estimated with methyl phenyl sulfone as a 1H NMR internal standard.

b
Complex mixture of products.
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