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• Antibiotic and disinfectant overuse exacer-
bated propagation of environmental AMR.

• Antibiotic-quarternary ammonia com-
pound cross resistance ascended 3.0 times.

• Oxidative stress from trihalomethanes
boosted horizon ARG transfer by 7.9
times.

• qepA and oxa-20 were priority ARGs with
the potential risk for human health.
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During COVID-19 pandemic, chemicals from excessive consumption of pharmaceuticals and disinfectants
i.e., antibiotics, quaternary ammonium compounds (QACs), and trihalomethanes (THMs), flowed into the urban envi-
ronment, imposing unprecedented selective pressure to antimicrobial resistance (AMR). To decipher the obscure char-
acter pandemic-related chemicals portrayed in altering environmental AMR, 40 environmental samples covering
water and soil matrix from surroundings of Wuhan designated hospitals were collected on March 2020 and June
2020. Chemical concentrations and antibiotic resistance gene (ARG) profiles were revealed by ultra-high-
performance liquid chromatography-tandem mass spectrometry and metagenomics. Selective pressure from
pandemic-related chemicals ascended by 1.4–5.8 times in March 2020 and then declined to normal level of pre-
pandemic period in June 2020. Correspondingly, the relative abundance of ARGs under increasing selective pressure
was 20.1 times that under normal selective pressure. Moreover, effect from QACs and THMs in aggravating the
prevalence of AMR was elaborated by null model, variation partition and co-occurrence network analyses.
Pandemic-related chemicals, of which QACs and THMs respectively displayed close interaction with efflux pump
genes and mobile genetic elements, contributed>50% in shaping ARG profile. QACs bolstered the cross resistance ef-
fectuated by qacEΔ1 and cmeB to 3.0 times higherwhile THMs boosted horizon ARG transfer by 7.9 times for initiating
microbial response to oxidative stress. Under ascending selective pressure, qepA encoding quinolone efflux pump and
oxa-20 encoding β-lactamases were identified as priority ARGs with potential human health risk. Collectively, this re-
search validated the synergistic effect of QACs and THMs in exacerbating environmental AMR, appealing for the ratio-
nal usage of disinfectants and the attention for environmental microbes in one-health perspective.
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1. Introduction

Disinfection related chemicals were associated with the emergence and
dissemination of antimicrobial resistance (AMR). Quaternary ammonium
compounds (QACs), the major constituent in biocides, promoted prolifera-
tion of antibiotic resistance genes (ARGs) and stimulated AMR through
cross-resistance (Nordholt et al., 2021). Abundance of sul1 and blaTEM in
microbial community significantly ascended by 5.4 and 19.2 times under
QAC exposure (Harrison et al., 2020). Invoking transporters of QACs, mi-
croorganisms eject antibiotics from intracellular (Tezel and Pavlostathis,
2015). Trihalomethanes (THMs), typical by-products of chlorination
(Srivastav et al., 2020), accelerated the dissemination of ARGs (Zhang
et al., 2022b). Triggered by THM-induced reactive oxygen species (ROSs),
microbial SOS response promoted the spread of ARGs for alleviating the re-
pression to integrase gene expressing (Cai et al., 2021). From the one-health
perspective, the effect of QACs and THMs to AMR is still urgent to be
disclosed in the environment despite the laboratory evidence drawn
under high exposure concentration.

Pandemic prevention supplies (PPSs) were consumed with an inordinate
scale since COVID-19 pandemic (hereinafter the pandemic). To treat co-
infection from bacteria and prevent the spread of pandemic, antibiotic and
chlorine/QACs containing disinfectants were massively used. In stark con-
trast to the relatively low bacterial infection rate at 7 % (Lansbury et al.,
2020), 74.6 % of worldwide COVID-19 patients took antibiotics while the
prevalence was 76.2 % in China (Langford et al., 2021). Quinolones
(20.0 %) represented by Ofloxacin (OFL), macrolides (18.9 %) represented
by clarithromycin (CTM), and β-lactam (15.0%) represented by cephalospo-
rins (CEP) were the most commonly used antibiotics in COVID-19 treatment
(Langford et al., 2021). According to the daily defined dose (DDD), consump-
tion of antibiotics during pandemic rose by 4.6 times from 2715 g (Text S1)
to 12,509 g (Table S1) in Wuhan (Han et al., 2022; Van Laethem et al.,
2022). Based on the number of prescriptions, 1.6-fold increase was observed
in the antibiotic-taking population size during pandemic (Text S2) (Li et al.,
2019). In the meantime, disinfection has become a daily routine since pan-
demic. Benzalkonium Chloride (BAC), a type of QACs, was recommended
by China (NHC, 2020), U.S. (EPA, 2020), and German (VAH, 2022) to inac-
tivate COVID-19 virus in hospitals and households for its efficiency in
destroying the lipid envelope (Ogilvie et al., 2021). In hotspots like hospitals,
residential areas, and waste water treatment plants (WWTPs) of Wuhan, dis-
infectionwas respectively reinforced by 3.3 times (He et al., 2020), 4.3 times
(Guo et al., 2021), and 2.1 times (WuhanWater Affairs Bureau, 2020). Even-
tually, pandemic prevention chemicals i.e., leftovers and by-products of
PPSs, arrived at the same sink — environment — via WWTPs and surface
runoff, resulting in the “co-existence” of antibiotics, QACs, and THMs.

Antimicrobial resistance (AMR) in the context of pandemicwasworthy of
attention (Knight et al., 2021). Apart from the inducing of AMR from
overused antibiotics (Sun et al., 2019; Zainab et al., 2020), excessive disinfec-
tionwould promote the spread of AMRduring pandemic (Lu andGuo, 2021).
Under empirical antibiotic treatment, the proportion of multidrug-resistant
bacteria among pathogens isolated from COVID-19 patients increased by
4.5 times (Temperoni et al., 2021). The flux of chemicals derived from anti-
biotics and disinfectants into environment jointly imposed selective pressure
Table 1
Detailed information of sampling sites.

Nearest designated hospital Sampling site Geographic coordi

JinYinTan Hospital HuangTan Lake 30°39′50″N 114°16
FuHe River 30°39′50″N 114°21

HuoShenShan Hospital ZhiYin Lake 30°31′25″N 114°4′
HouGuan Lake 30°33′3″N 114°3′3
HanJiang River 30°33′59″N 114°17

LeiShenShan Hospital HuangJia Lake 30°26′25″N 114°17
TangXun Lake 30°26′21″N 114°19
XunSi River 30°28′58″N 114°18
DongHu Lake 30°33′5″N 114°20′
NanHu Lake 30°30′5″N 114°20′

2

to AMR. To what extent the disinfection intensified AMR in the environment
and the mechanism behind remained to be excavated urgently.

To decode the effect of disinfection related chemicals in altering envi-
ronmental AMR, sampling was conducted in surroundings of Wuhan
COVID-19 designated hospitals, the hotspot for disinfection, and down-
stream of WWTPs, the recipient of related chemicals. Two sampling cam-
paigns were carried out on March 2020 when selective pressure from
chemicals rose with the excessive disinfection and June 2020 when the
pressure descended to normal level of pre-pandemic period. Alternation
of ARGs when the ascending selective pressure declined to normal level
was comprehensively deciphered through metagenomics. Contributions
of disinfection related chemicals to environmental AMR were unraveled
by means of null model, variation partition and co-occurrence network
analyses. Moreover, synergistical effects of QACs and THMs in aggravating
environmental AMR were calculated. Additionally, ARGs 1) with access to
human and 2) promoted by related chemicals were defined as priority
ARGs with potential human health risk under excessive disinfection. This
work aimed to elaborate the interaction between disinfection and environ-
mental AMR, providing instructions for the proper use of disinfectants.

2. Materials and methods

2.1. Sample collection

Wuhan city, located in the middle and lower reaches of Yangtze River
basin, was one of the typical cities combating the initial wave of pandemic.
Two sampling campaigns were conducted in Wuhan on March 24th and
June 12th, 2020. On March 24th, there were still existing COVID-19
cases and PPSs were massively used to suppress the development of pan-
demic. On June 12th, COVID-19 cases have been completely cleared for
48 days and the usage of PPSs returned to normal with lockdown lifted.

As the main consumer of PPSs during pandemic, designated hospitals
and household discharged related chemicals to environment through
WWTPs and runoff. Based on previous research, chemicals from PPSs
were enriched in waters around designated hospitals during pandemic
(Hu et al., 2022). Therefore, samples from lakes near JinYinTan Hospital,
HuoShenShan Hospital, and LeiShenShan Hospital were collected. Effluent
recipients of SanJinTan WWTP, CaiDian WWTP, and HuangJiaHu WWTP
that disposed of wastewater from the designated hospitals were also taken
into account. Considering the high carbon-water partition constant of OFL
(LogKoc = 4.64) (Cycoń et al., 2019) and BAC (LogKoc = 4.5–5.15)
(Khan et al., 2017), soil would be the ultimate reservoir of these chemicals.
Thus, soil in riparian area of the above waters was simultaneously collected.
Overall, 20 surface water samples at depth of 0.5 m (1.0 L) and 20 topsoil
samples at depth of 0–10 cm (500 g) were obtained at 10 sites in the two
sampling campaigns (Table 1). For subsequent microbial analysis, water
samples were filtered by 0.22 μm microporous membrane.

2.2. Detection of ARGs and ROS-response related genes

Information about ARGs and ROS-response related genes were accessed
in virtue of metagenomics. DNA extracted by PowerSoil DNA Isolation Kit
nate Samples Description

′36″E HT 500 m from JinYinTan Hospital
′3″E FH 1.5 km from outfall of SanJinTan WWTP
59″E ZY 500 m from HuoShenShan Hospital
6″E HG 2500 m from HuoShenShan Hospital
′5″E HJ 1.5 km from outfall of CaiDian WWTP
′7″E HJH 500 m from LeiShenShan Hospital
′39″E TX 2500 m from HuoShenShan Hospital
′23″E XS 1.5 km from outfall of HuangJiaHu WWTP
56″E DH Inland lake
20″E NH
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(Qiagen, German) was sequenced on Illumina HiSeq 2500 platform (Liu
et al., 2020). For each sample, an aggregate comprising 10 G data was
acquired. To start with downstream analyses, inferior raw data was elimi-
nated by Trimmomatic (Bolger et al., 2014). Clean datawas then assembled
with de-novo method via Megahit tool (Li et al., 2016). After assembling,
average 406,004 scaftigs withN50 at 990 bpwere attained per sample. Pre-
dicted by Prodigal (Hyatt et al., 2010), open reading frames were clustered
to form non-redundant unigenes by Linclust (Steinegger and Söding, 2018).
Eventually, a catalogue of 22,046,813 unigenes with average length at
515 bp was constructed. The relative abundance of unigene was calculated
by rk

Lk
� 1

∑n
i¼1

ri
Li

, in which rk represented number of reads aligned to gene k, Lk

represented length of gene k.
ARGs were annotated by ARGs-OAP (V 2.0) (e ≤ 10−7, similarity

>80 %, length > 75 %) (Yin et al., 2018) while mobile genetic elements
(MGEs) were recognized by a published database (e ≤ 10−7) (Pärnänen
et al., 2018). A catalogue consisted of ARGs targeted to frequently used an-
tibiotics in pandemic i.e., quinolones, macrolides, and β-lactam was in-
volved in this research. To verify the relationship between antibiotic
consumption and ARGs, genes resistant to less used sulfonamides were
also analyzed. In addition, genes regulated by SoxRS systemwere screened
(Fig. S1) through eggNOG database (e ≤ 10−3) to reveal microbial re-
sponse to oxidative stress (Pomposiello et al., 2001; Imlay, 2013; Huerta-
Cepas et al., 2019). To discern whether ARGs were carried by pathogens,
genes belonging to bacteria infecting primate were distinguished through
PHI database (e≤ e−10) (Urban et al., 2020).

2.3. Determination of pandemic prevention chemicals

Environmental concentrations of PPS-generated chemicals were deter-
mined via ultra-high-performance liquid chromatography-tandem mass
spectrometry (UPLC-MS/MS) (Chen et al., 2021a, 2021b). Thirty-one
types of antibiotics including the frequently used quinolones, macrolides
as well as the less used sulfonamides were detected. Four types of disinfec-
tion by-products including trichloromethane (TCM), tribromomethane
(TBM), dibromochloromethane (DBCM), and bromodichloromethane
(BDCM) as well as two types of QAC leftovers including dodecyl dimethyl
benzyl ammonium chloride (BAC-12) and tetradecyl dimethyl benzyl am-
monium chloride (BAC-14) were quantified.

2.4. Data analyses

Difference of ARG abundance between two campaigns was tested using
STAMP (V 2.1.3) software (Parks et al., 2014). To ascertain the assembly
Fig. 1. Comparison between concentration of pandemic prevention chemicals in March
(A) ofloxacin (OFL) (Yan et al., 2013; Tong et al., 2014), (B) dodecyl dimethyl ben
(C) trichloromethane (TCM) (Jiang, 2006; Niu et al., 2017; Zhang et al., 2017a). The
distribution curve based on concentration before pandemic.
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mechanism of ARG profile, null model analysis was carried out to calculate
the stochasticity ratio based on difference between expected and observed
similarity (Hou et al., 2021). To evaluate the role of chemicals, microbial
community, andMGEs in shaping ARG profiles, variation partition analysis
(VPA)was conductedwithVegan package of R software (V 4.0.5) (Hu et al.,
2021). Co-occurrence network among chemicals, ARGs, and MGEs were
constructed with ggClusterNet package of R software (V 4.0.5) (Wen
et al., 2022). Pearson correlation coefficients between chemicals and
ARGs were calculated via SPSS (V 20). Randomforest (RF) package was ap-
plied to identify effect of chemicals on specific ARG (Ke et al., 2022). In RF
models with which the concentration of chemicals from PPSs was distin-
guished by ARGs, IncMSE (Increase in Mean Squared Error) measured the
response degree of each ARG (Wright et al., 2020). The abundance of
ARGs with IncMSE >1 % was more likely to fluctuate under effect of pan-
demic prevention chemicals.

3. Results

3.1. Dynamic of pandemic prevention chemicals and ARG profiles in the
environment

To evaluate the selective pressure from pandemic prevention chemicals,
concentration of chemicals in March 2020/June 2020 were compared with
that in pre-pandemic period. The concentration of OFL at Xunsi River in
March 2020 was 5.8 times higher than that in Yangtze river basin before
pandemic (Fig. 1A). The concentration of BAC-12 in Xunsi River ascended
by 3.1 times compared to that before pandemic (Fig. 1B). TCM was de-
tected at Xunsi River in March 2020 and its concentration increased by a
factor of 1.4 times (Fig. 1C). In stark contrast, OFL was not detectable in
June 2020 at the same site. Concentrations of BAC-12 and TCM reduced
to the range of previous study. The excessive consumption of PPSs was re-
lated to the rise in environmental concentration of antibiotic and disinfec-
tion related chemicals, leading to the surging selective pressure in March
2020. With the usage of PPSs returning to normal, the selective pressure
in June 2020 decreased to pre-pandemic level.

Temporal dynamics of ARG profiles were depicted when surging selec-
tive pressure of pandemic prevention chemicals in March 2020 descended
to normal level in June 2020. Inwater samples, 300ARG subtypes affiliated
to 17 antibiotics were detected.With selective pressure alleviated, the num-
ber of ARG subtypes and the abundance of ARGs respectively decreased by
24.2 % (p < 0.01) and 97.2 % (p < 0.001) (Fig. S2A). FuHe River (173 ARG
subtypes), HanJiang River (165 ARG subtypes) and XunSi River (141 ARG
subtypes) that received effluent from WWTPs during pandemic were char-
acterized by diverse ARG subtypes. Water samples from ZhiYin Lake and
2020/June 2020 and that in pre-pandemic period. Environmental concentrations of
zyl ammonium chloride (BAC-12) (Li et al., 2020a, 2020b; Li et al., 2021), and
left was boxplot of concentration before pandemic. The right was fitted normal
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HouGuan Lake located nearby HuoShenShan hospital held the highest
abundance of ARGs at 7.32×10−4 and 6.91×10−4 to total metagenomic
sequences. A catalogue of 354ARG subtypes resistant to 20 antibiotics were
Fig. 2. ARG profile in the environment under different selective pressure from pandemic
(C) macrolide and (D) sulfonamide in March 2020 and June 2020. Abundance of ARG
samples.

4

obtained from soil samples. Number of ARG subtypes in soil was similar be-
tween March (134 ARG subtypes) and June (123 ARG subtypes). In corre-
spondence with ARG dynamic of water samples, the abundance of ARG
prevention chemicals. Abundance of ARGs targeted to (A) β-lactam, (B) quinolone,
s with significant difference between March and June 2020 in (E) water, (F) soil
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descended by 92.2 % from March 2020 to June 2020 in soil samples
(p< 0.001) (Fig. S2B). Holding themost ARG subtypes (150ARG subtypes),
soil sample from HouGuan Lake possessed the highest ARG abundance
(6.09 × 10−4 to total metagenomic sequences). Echoing with the con-
sumption rate, abundance of ARGs resistant to β-lactam, quinolone, and
macrolide in March 2020 exceeded that in June 2020 respectively by 503
(water) / 439 (soil) (Fig. 2A), 13/16 (Fig. 2B), and 12/38 times (Fig. 2C).
As for ARGs targeted to less frequently used sulfonamide in COVID-19 treat-
ment, their abundance went through 2.5-fold rise in water and 7.7-fold rise
in soil from March 2020 to June 2020 (Fig. 2D).

To pinpoint ARGs responsible for temporal dynamics of ARG profile,
difference in ARG abundance was tested under different selective pressure.
Overall, 20 ARG subtypes including 5 β-lactam ARG subtypes, 2 quinolone
ARG subtypes, and 2macrolide ARG subtypes demonstrated significant dis-
crepancy (p < 0.05) in water samples between March 2020 and June 2020
(Fig. 2E). Among 7 ARG subtypes with abundance ratio > 100 between
March 2020 and June 2020, KPC-16 targeted to β-lactam in March was
225 times the abundance of that in June. In soil samples, abundance of
18 ARG subtypes represented by 5 β-lactam ARG subtypes and 5 multidrug
ARG subtypes significantly diverged between two sampling campaigns
(Fig. 2F). Out of 5 ARG subtypes with fold change of abundance >100 be-
tween March 2020 and June 2020, KPC-16 was 357 times more abundant
under increasing selective pressure.

3.2. Contributions of pandemic prevention chemicals in shaping ARG profile

To determine the assembly mechanism of ARG profile, stochasticity
ratio was calculated via null model. The stochasticity ratio of ARG profile
in March 2020 was 36 % while it rose to 66 % in June 2020 (p < 0.001),
indicating the transform fromdeterministic (< 50%) assembly to stochastic
(> 50 %) assembly (Fig. 3A). With the selective pressure from pandemic
prevention chemicals intensifying, the stochasticity ratio sharply declined
(r = −0.63; p < 0.001) (Fig. 3B). Accordingly, pandemic prevention
chemicals considerably shaped ARG profile during pandemic.

To measure the effect of pandemic prevention chemicals in shaping
ARG profile, VPA was conducted to compare the interpretability of
chemicals with that of microbial community and MGE. Chemicals along
with the biotic factors i.e., microbial community and MEG accounted for
78 % variation of ARGs (Fig. 3C). Notably, the interpretability of chemicals
reached up to 52 %. Besides, the combined explanation rate of chemicals
and MGEs was 12 %. As for ARGs resistant to quinolone, β-Lactam, and
macrolide that were frequently used during pandemic, chemicals
interpreted 54 % of variation in which the joint explanation rate with
MGE was 13 % (Fig. 3D). It was speculated that pandemic prevention
chemicals shaped the ARG profile through environmental filtration and in-
teractions with MGEs.

To further decipher the relationship between pandemic prevention
chemicals and ARGs, the co-occurrence network was built among
chemicals, ARGs, and MGEs. Among 154 edges established on 3 chemicals,
56 ARG subtypes and 34MGEs, 96% of themwere positive (Fig. 3E). Efflux
pump genes involved in QAC-resistance e.g., qacEΔ1 encoding small multi-
drug resistance (SMR) protein and cmeB encoding resistance-nodulation-
cell division (RND) protein, were closely related to antibiotics, implying
the cross-resistance induced by QACs. Integrons i.e., intI1 and int2 simulta-
neously displayed positive interaction with THMs and antibiotics, suggest-
ing that THMs promoted the horizonal gene transfer.

3.3. Mechanism of THMs and QACs in exacerbating environmental AMR

To delve into the role of THM and QAC in exacerbating environmental
AMR, mechanism was probed through gene relevant with oxidative stress
and cross resistance. THMs initiatedmicrobial response to ROS and thus ac-
celerating the dissemination of ARGs during pandemic. The abundance of
gene soxR that encoded proteins to perceive oxidative stress was observed
to significantly rise with antibiotic (r = 0.73, p < 0.05) (Fig. 4A)
(Fig. 4D). At Xunsi River where the concentration of THMs was highest,
5

the abundance of soxS that activated expression of downstream genes to
combat oxidative stress in March 2020 was 5.5 times that in June 2020
(Fig. 4A). As for genes regulated by SoxRS system, fldA (r = 0.66,
p < 0.05) associated with relief of oxidative stress by flavodoxin and recA
(r=0.68, p < 0.05) involved in the repair of DNA damage positively corre-
lated with THMs (Fig. 4E). Compared to June, March saw the 10.8-fold
abundance of fldA in Xunsi River (Fig. 4A). Besides, relationships between
THMs and SoxRS-regulated cell membrane gene ompW (r=0.69, p< 0.05),
competence gene pilU (r = 0.68, p < 0.05) were significantly positive. The
dynamic of intI 1 abundance echoed with alternations of THM concentra-
tion (r = 0.92, p < 0.001) (Fig. S4B). Also, ompW as well as genes in
SoxRS system i.e., soxS and fldA displayed positive correlations in pace
with intI 1 (Fig. S4C) (Fig. S4D). In accordance to the general least square
regression model (Fig. S6), the possibility of HGT represented by abun-
dance of MGEs averagely escalated by 7.9 times when the concentration
of THMs increased by 1.4 times compared to pre-pandemic period.

QAC induced microbial cross-resistance to antibiotic, intensifying envi-
ronmental AMR during pandemic. As ARGs encoding efflux pump, qacEΔ1
(small multidrug resistance, SMR) and cmeB (resistance-nodulation-cell di-
vision, RND) were abundant under ascending selective pressure. Compared
to June 2020, the abundance of qacEΔ1 and cmeB were respectively 150.7
(p < 0.05) and 57.2 (p < 0.001) times higher in March 2020 (Fig. 4B)
(Fig. 4C). Apart from antibiotics, QACs could initiate AMR effectuated by
qacEΔ1 and cmeB. Notably, explanation rates of QACs along with antibiotic
in interpreting dynamics of qacEΔ1 (Fig. 4F) (Fig. 4H) and cmeB (Fig. 4G)
(Fig. 4I) were > 80 %. Based on the general least square regression model
(Fig. 4H) (Fig. 4I), 3.1-time rise in QAC concentration compared to pre-
pandemic period corresponded to 2.4-time and 3.6-time ascendence in
cross-resistance effect from qacEΔ1 and cmeB.

3.4. Identification of priority ARGs under excessive disinfection

To identify the effect of aggravated AMR on human health under exces-
sive disinfection, priority ARGs with potential risk were screened. A frame-
work covering the following criteria was established to discern priority
ARGs in the context of excessive disinfection: i) fold change of ARG abun-
dance under different selective pressure > 100 (p < 0.05); ii) response de-
gree of ARG represented by IncMSE in RF model to antibiotic, THM, and
QAC > 1 %; iii) horizontally transferable; iv) accessible to human beings.
(Fig. 5A). ARGs that catered to all the standards were likely to affect
human health under excessive disinfection and should be listed as priority.
According to criterion i), 8 ARG subtypes, 5 of which were resistant to β-
lactam, were chosen in water samples (Fig. 5B); 5 ARG subtypes consisted
of 2 β-lactam, 2 trimethoprim, and 1 macrolide resistant genes were
selected in soil samples (Fig. 5C). Aminoglycoside aph(3′)-I, β-lactam oxa-
20, and quinolone qepA in water samples fulfilled criterion ii) (Fig. 5D).
As for soil, none of ARGs conformed to the criterion ii) (Fig. 5E). oxa-20
located in class 1 integrons and plasmid-mediated qepAwere positively re-
lated with MGEs such as insertion sequence, integron, and transposon, ver-
ifying their ability of dissemination (Fig. 5F). Carried by opportunistic
pathogenic bacteria such as Escherichia coli, Streptococcus pneumoniae, and
Streptococcus pneumoniae, oxa-20 and qepA were ultimately evaluated as
priority ARGs (Fig. 5G).

4. Discussion

4.1. ARGs induced by massively used antibiotics

Massively used antibiotics from anthropogenic activities increased AMR
burden in the environment. Compared to natural antibiotics in the environ-
ment, man-made antibiotics added more intense and extensive pressure to
environmental microorganisms (Davies and Davies, 2010). The pollution
level of antibiotics was observed to positively correspond with ARGs in
soil (Sun et al., 2015), surface water (Zhang et al., 2020), and WWTPs
(Gao et al., 2012). Nevertheless, these sentiments were refuted based on
the fact that concentration of antibiotics in unpolluted environment was
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too low to select for AMR. Predicted antibiotic concentrations to induce re-
sistance were mostly close to 1 ng/L, but the concentration of antibiotic in
the environment was merely 10–100 μg/L (Bengtsson-Palme and Larsson,
2016; Qiao et al., 2018). Hence, the collinearity between ARGs and antibi-
otics was perceived to only indicate their same origin (Larsson and Flach,
2022). Excretions from human, the major source of antibiotic and ARGs
in the environment, explained the high correlation between each other
(Karkman and Parnanen, 2019). In this research, abundance of ARGs in
the environment positively correlated with the concentration of antibiotic
(r = 0.92, p < 0.001) (Fig. S7) as well as the usage of antibiotics (r =
0.75, p < 0.05) (Fig. S5). According to the above paradox, ARGs could be
Fig. 3. Effect of pandemic prevention chemicals on ARGs. (A) Assembly of ARG profile
assembly and pandemic prevention chemicals. Variation partition analysis among chemi
resistant to quinolones, macrolides, and β-lactam. Percentage was interpretation degree
factors; the middle circle represented the combined interpretation of 3 factors. (E) Co-o

6

introduced to environment because of the usage of antibiotic and were
also likely to be induced by residue of antibiotics in situ.

4.2. Synergistic effect from disinfection: complex impact of THMs and QACs

The synergistic effect from antibiotics, QACs, and THMs substantially
boosted AMR in the environment. As typical by-products of chlorination,
THMs were speculated to alter the AMR in a similar way as chlorine con-
taining disinfectants. Chlorination destroyed antibiotic resistance bacteria
but bolstered horizon transfer of ARGs in the meantime (Wang et al.,
2020). Responding to ROSs provoked by chlorination, microorganisms
in March 2020 and June 2020. (B) Relationship between stochasticity ratio in ARG
cals, microbial community, mobile genetic elements (MGEs) and (C) ARGs, (D) ARGs
of each factor to ARG variation; arrow represented the combined interpretation of 2
ccurrence network of pandemic prevention chemicals, ARGs, and MGEs.



Fig. 4. Effect of THMs andQACs in boosting AMR. Comparisons of (A) genes relatedwith ROS response, (B) qacEΔ1 gene, (C) cmeB gene betweenMarch 2020 and June 2020.
(D) Relationship between antibiotic and soxR that encoded homodimeric regulatory protein to initiate ROS response. (E) Relationship between THM and soxRS system
regulated fldA that encoded flavodoxin to relieve oxidative stress. Relationship between antibiotic and (F) qacEΔ1 encoding SMR efflux pump, (G) cmeB encoding RND
efflux pump. Relationship between QAC and (F) qacEΔ1, (G) cmeB.
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launched SOS reaction which was in favor of conjugation and transforma-
tion of ARGs (Zhang et al., 2017b; Tang et al., 2022). In this research, the
AMR burden from antibiotics became heavier due to additional effect of
THMs. Alongwith antibiotics, THMs stimulated oxidative stress of microor-
ganisms. fldA gene, encoding flavodoxin that tolerated ROSs pressure (de la
Pena et al., 2013; Moyano et al., 2014) through reducing oxidized SoxR
(Ziegelhoffer and Donohue, 2009), was positively correlated with THMs
7

(Fig. 4E). THMs further modified abundance of gene associated with cell
membrane and pilus, facilitating the horizontal transfer of ARGs (Zhang
et al., 2021b). At Xunsi river where the concentration of THMs reached
peak among all sampling sites, regulators i.e., ompW and ompR of outer
membrane proteins related with molecule transport (Beketskaia et al.,
2014) were 4.0 and 2.6 times more abundant under increasing selective
pressure (Fig. S1C). At the same site, the abundance of pilL and pilU



Fig. 5. Identification of priority ARGs with potential human health under excessive disinfection. (A) The framework for identifying priority ARGs. Fold changes of ARG
abundance in (B) water samples, (C) soil samples under different selective pressure. Importance values of ARGs from (D) water samples and (E) soil samples in random
forest model. (E) Correlation coefficient between ARGs and MGEs. (G) Abundance of ARGs that were carried by pathogenic bacteria.
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involved with pilus protein synthesis (Akahane et al., 2005) in March 2020
was respectively 4.4 and 6.7 times higher than that in June 2020 (Fig. S1B).
Consequently, THMs benefited dissemination of antibiotic resistance
through horizon transfer. Similarly, experiments on E. coli under exposure
of THMs indicated the samemechanism that THMs advocated HGT as a re-
sult of ROS response (He et al., 2022). Besides, multidrug resistant gene
i.e., qacEΔ1 and cmeB, thrived when confronting synergetic stress of antibi-
otics and QACs (Fig. 4B) (Fig. 4C). qacEΔ1 and cmeB respectively encode ef-
flux transporters of small multidrug resistance (SMR) family (Kermani
et al., 2020) and resistance-nodulation-cell division (RND) superfamily
(Su et al., 2017), assisting microbes to survive adversity of QACs (Buffet-
Bataillon et al., 2012). Also, antibiotics were discharged through the same
efflux pump regulated by qacEΔ1 and cmeB through cross resistance
(Poole, 2005). Under environment overloaded with antibiotics and QACs,
cross resistance was conceived to considerably contribute to AMR.

4.3. Human health risk from ARG during the pandemic

As biological pollutant, ARG in the environment especially those ac-
quired by clinical human pathogens were not controllable (Larsson and
Flach, 2022). Consequently, the rise of environmental antimicrobial resis-
tance was an emerging risk to human health. For the purpose of measuring
human-originated pollution, ARGs cloud be selected as indicator. The abun-
dance of qnrS gene inwastewaters accurately represented the usage of quin-
olones (Castrignano et al., 2020) while ermF in extreme habitats reflected
the worldwide effect of anthropogenic activities (Yang et al., 2021). For
predicting impact of AMR on human health, a subgroup was distinguished
as ARGs with high risk (Zhang et al., 2021a). In this research, qepA gene re-
sistant to quinolone and oxa-20 gene resistant to β-lactam were selected as
ARGs that should be preferentially controlled for their high probability to
affect human health under excessive disinfection. qepA was most likely to
be carried by Escherichia coli and Streptococcus pneumoniaewhile Escherichia
coli, Salmonella enterica, and Serratia marcescens were assumed as hosts of
oxa-20 (Fig. 5F). qepA gene, usually located in plasmids, encoded major fa-
cilitator superfamily (MFS) protein that manipulates the outflow of quino-
lone antibiotics (Yamane et al., 2007). oxa-20 associated with class 1
integron regulated the expression of Class D β-lactamases (Poirel et al.,
2010). Since the discovery of this quinolone resistant gene, qepA has been
continuously found in human related environment. In poultry farms, the
predominance of qepA gene reached up to 88.66 % (El-Aziz et al., 2021).
During the pandemic, qepA and oxa-20 corresponded to quinolone and β-
lactam antibiotics which were clinically consumed at rate of 20.0 % and
18.9 % (Langford et al., 2021). Indeed, initiating of efflux pump was
deemed to be a universal microbial response when combating adverse con-
ditions including but not limited to antibiotics and QACs (Henderson et al.,
2021). Nowadays, the thriving of efflux pump related genes has become a
peril to human health (Silver, 2011). The prevalence of quinolone resistant
isolates from food soared from 82.4 % to 100.0 % with qepA gene as one of
the determinants (Zhang et al., 2022a). Overall, the emergence of qepA and
oxa-20 qualified to symbolize human health risk during the pandemic. De-
spite the expanding concerns from chemicals generated by pandemic pre-
vention supplies, the potential human health risk derived in AMR
promoted by these chemicals was overlooked. The framework put up in
this research provided an approach to monitor this risk with indicator
ARG that can be efficiently and precisely detected. To make the result
more convincing, human health risk evaluation from qepA and oxa-20
should be conducted in the future. If possible, pathogens in hotspots like
designated hospitals and WWTPs should be isolated to affirm the preva-
lence of qepA and oxa-20.

5. Conclusion

To summarize, this work emphasized the co-selection resulted from dis-
infection related chemicals in aggravating the AMR of urban environment.
Besides the effect of antibiotics in inducing proliferation of ARGs, QACs and
THMs synergistically promoted the spread of AMR for eliciting cross
9

resistance and boosting ARGdissemination. qepA and oxa-20were screened
as priority ARGs with high probability to affect human health under exces-
sive disinfection. Even though the prevalence of COVID-19 declined
sharply nowadays, but disinfectants were still massively used in some
places e.g., hospitals and elevator. These results underlined the proper use
of disinfectants especially in hotspots and the attention for environmental
microbiology in the framework of one-health perspective.
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