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ABSTRACT

The Smith–Waterman algorithm yields a single align-
ment, which, albeit optimal, can be strongly affected
by the choice of the scoring matrix and the gap
penalties. Additionally, the scores obtained are
dependent upon the lengths of the aligned
sequences, requiring a post-analysis conversion. To
overcome some of these shortcomings, we developed
a Bayesian algorithm for local sequence alignment
(BALSA), that takes into account the uncertainty
associated with all unknown variables by incorporating
in its forward sums a series of scoring matrices, gap
parameters and all possible alignments. The algorithm
can return both the joint and the marginal optimal
alignments, samples of alignments drawn from the
posterior distribution and the posterior probabilities
of gap penalties and scoring matrices. Furthermore,
it automatically adjusts for variations in sequence
lengths. BALSA was compared with SSEARCH, to
date the best performing dynamic programming
algorithm in the detection of structural neighbors.
Using the SCOP databases PDB40D-B and PDB90D-B,
BALSA detected 19.8 and 41.3% of remote homologs
whereas SSEARCH detected 18.4 and 38% at an error
rate of 1% errors per query over the databases,
respectively.

INTRODUCTION

Biopolymer sequence comparison methods are the most
commonly used tools in bioinformatics. Popular sequence
alignment algorithms include SSEARCH, an optimal dynamic
programming algorithm, and FASTA and BLAST, two fast
heuristic algorithms. Among the three, SSEARCH has been
demonstrated on several occasions to find the most homologs
in a protein database search (1,2). Local dynamic programming
and heuristic methods were significant advances in biological
sequence analyses. However, these algorithms require the
specification of a scoring matrix and a set of gap penalties, and
return only a single alignment and an associated score that
must be adjusted for the lengths of the sequences. Bayesian
statistics provides a means to relax these requirements and to

achieve an automatic length adjustment. Furthermore, since all
required sums can be completed using a modified dynamic
programming method, exact inferences on all variables are
available.

Optimization algorithms

Local alignment is typically the method of choice for aligning
a pair of biopolymers; obtaining the best common subsequence
is usually more advantageous to detect distantly related
proteins than an alignment end to end, globally (3–5). In an
effort to overcome the issue of specifying gap penalties,
Sankoff (6) developed a constrained optimization algorithm
that produces the optimal alignment subject to the constraint
that there are no more than k aligned blocks, extending the
concept of local alignment; the portions of the sequences that
are not included in the aligned blocks are completely ignored.
However, the specification of the number of aligned blocks, or
equivalently the number of gaps, brings up a similar issue as
with traditional alignment algorithms.

Bayesian algorithms

There is one case in which Bayesian inference methods have
been used to develop a sequence alignment algorithm, the
‘Bayes Block Aligner’. The ‘Bayes Block Aligner’ is a local
alignment algorithm based on Sankoff’s method, which returns
the posterior distribution of all alignments considering all the
selected gapping and scoring matrices, weighing each in
proportion to its posterior probability based on the data. The
‘Bayes Block Aligner’ outperformed the optimized SSEARCH
on VAST pdb25, pdb35 and pdb45 alignments (7). Subsequently,
Liu and Lawrence (8) described a Bayesian approach for
global sequence alignment. In this work, we show how to
formulate a Bayesian local sequence alignment algorithm
(BALSA).

Bayesian inference

A more complete overview of Bayesian statistics in respect to
bioinformatics was given by Liu and Lawrence (8); below is a
brief summary. Let θ denote the set of unknown parameters,
such as the gap penalties, and let yobs denote the observed data,
such as the sequence data. The likelihood function is defined as
the probability of the observed data given the unknown
parameters: L(θ; yobs) = P(yobs | θ). Thus, the joint probability
distribution of θ and yobs is defined as:
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Joint = likelihood*prior
P(yobs, θ) = L(θ; yobs)P(θ) = P(yobs | θ)P(θ)

The Bayesian inference is made by obtaining and inspecting
the posterior distributions of the unknown quantities of
interest, where the posterior distributions are obtained from
Bayes theorem, i.e. P(θ | yobs) = P(yobs, θ) / P(yobs), where
P(yobs) is computed by integrating over θ in the joint distri-
bution (9). Suppose the unknown parameter is of n dimensions,
i.e. θ = (θ1, ..., θn). Those parameter components that are not of
immediate interest but necessary to the model need to be
integrated out from the joint distribution so as to provide a
proper inference on the unknown variable of interest, for
example θ1:

P(θ1 | yobs) = [�···� P(yobs | θ1, ..., θn) P(θ1, ..., θn)dθ2···dθn] /
[�···� P(yobs | θ1, ..., θn) P(θ1, ..., θn) dθ1···dθn]

Lastly, the appropriateness of the model must be evaluated.
From this step, improvements in the model may be suggested
and the process repeated.

MATERIALS AND METHODS

The premise behind our Bayesian analysis is that all quantities
related to the alignment task are treated as random variables,
observed data, missing data and unknown parameters alike.
For a pair of sequences, the observed data are R(1) = {R1

(1) ...RI
(1)}

and R(2) = {R1
(2) ...RJ

(2)}. Let A be a matrix that characterizes an
alignment whose (i, j)-entry is defined as:

Thus, two natural constraints have to be satisfied: Ai,j ≤ 1 and
Ai, j ≤ 1. We use Θ to denote a set of matrices analogous to

scoring matrices such as BLOSUM (10) or PAM (11), where
Θ(r1, r2) is defined as the joint distribution of a pair of aligned
residues, Θ(r1, H) and Θ(H, r2), the marginal distributions.
Typical scoring matrices correspond to the logarithm of
residue interactions:

log = log Θ(ri
1, ) – log Θ(ri

1, H) – log Θ(H, )

Lastly, Λ = (λo, λe) is a set of predefined gap odds ratios
comparable with traditional gap penalties where the penalty for
opening and extending a gap is log(λo) and log(λe), respectively
(7,8,12). Although the scoring matrices and gap penalties
utilized in the algorithm are odds ratios, as BALSA will calculate
the sums of probability ratios, they will be given throughout
the paper in the traditional manner; scoring matrices expressed
as BLOSUMs and gap penalties in halfbits in order to keep
consistency with the earlier evaluation on SSEARCH.

Joint, likelihood and priors

Most sequence alignment methods can be viewed as
optimizing an objective function, some of which can be viewed
as a log-likelihood (2,8). This requires the user to set specific
parameter values, Θο and Λο, in order to find the optimal
alignment, A*, over all possible alignments. Mathematically
this is equivalent to computing:

{log P(P(R(1), R(2) | A, Θ ο) + log P(A | Λ )ο}

The Bayesian procedure avoids prefixed Θ and Λ by allowing
for an integration over a range of possible gap penalty values
and scoring matrices. More precisely, the full joint distribution,
Joint = likelihood*priors, can be defined as:

P(R(1), R(2), A, Θ, Λ) = P(R(1), R(2) | A, Θ)P(A | Λ)P(Θ, Λ)

where we can write

log P(R(1), R(2) | A, Θ) = log Θ(ri
1, H) + log Θ(H, )

+ aij log

Prior probability distributions can be used to incorporate previous
knowledge about the parameters. Since we lack quantifiable
information in this case, uniform priors are employed. That is,
all scoring matrix and gap penalty pairs, (Θ, Λ), are equally
likely a priori, i.e. P(Θ, Λ) = 1 / NΘ, Λ, where NΘ, Λ is the
number of scoring matrix gap penalty pairs in the chosen
series. Let P(A | Λ) be the probability of any allowable path A
prior to seeing the sequence data. Then, we have:

P(A | λo, λe) =

where kg(A) is the total number and lg(A) is the length of the
gaps in A (8). The summation in the denominator is over all
possible alignments A′ in the two sequences beginning at any
point and ending at any point under the constraint that the
alignment must start before it ends.

Posteriors

The unknown variable A can be removed from the joint
distribution by summing over all alignments as follows:

P(R(1), R(2) | Θ, Λ) = (R(1), R(2) | A, Θ)P(A | λo, λe)

= 1

Then by the Bayes rule, the desired posterior distribution of the
gap parameters and the scoring matrix can be obtained:

P(Θ, Λ | R(1), R(2)) = 2

Similarly, the posterior distribution for an alignment A* can be
expressed mathematically as:

Ai j,
1 if Ri

(1) is aligned with Rj
(2)

0 otherwise�
�
�
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P(A* | R(1), R(2)) = 3

Given that the number of possible alignments for even small
biopolymer sequences is immense, it is not feasible to calculate
this distribution in a brute force manner, but equation 3 can be
calculated for any given path and a representative sample of
alignments can be drawn using a sampling backtrace algo-
rithm. Furthermore, the denominator of equation 2 gives the
marginal probability of the data, the so-called Bayes factor (9),
which can be used to judge whether the two sequences should
be aligned or treated independently.

Algorithm

The Bayesian model must capture the idea of local alignment,
i.e. aligning the related subsequences and ignoring the unrelated
sections of the sequence on the ends. The summation over all
alignments needs to take into account all alignments that begin
at any point and end at any point in the two sequences while
adhering to the constraint that an alignment may not end before
it has begun. In this section we describe how this summation
over all alignments can be achieved via a recursive algorithm.

Recursive algorithm

Completing the sums in the numerator of equation 1. At each
step of the algorithm, the partial sum up to residues i and j in
sequences 1 and 2, respectively, contains five components:
match residues ri

(1) and rj
(2), insertion in sequence 1, deletion in

sequence 1, start alignment at ri
(1) and rj

(2), and end alignment
at ri

(1) and rj
(2). In addition, the assumption that a deletion may

not be followed by an insertion and vice versa is made in order
to only take into account distinct alignments. Typically in
sequence alignment models the interaction term is used instead
of the joint probability term, Θ(ri

(1), rj
(2)). Thus, Θ(ri

(1), rj
(2)) can

be replaced by Ψ(ri
(1), rj

(2)) and Θ(ri
(1), H) and Θ(H, rj

(2))
replaced by 1. The algorithm can be written as follows:

(i) A match at ri
(1) and rj

(2) can follow a match, insertion, deletion
or new alignment from partial sums with indices (i – 1, j – 1):

Pm(i, j) ={Pm(i – 1, j – 1) + Pi(i – 1, j – 1) + Pd(i – 1, j – 1)
+ Pn(i – 1, j – 1)}Ψ (ri

(1), rj
(2))

(ii) An insertion in sequence 1 can only follow partial sums
with indices (i – 1, j). In addition, an insertion may not
follow a deletion. If the last move was an insertion, then a
gap is being extended, λe. On the other hand, if the last
move was a match, either continued or the beginning of a
new alignment, a new gap is being introduced, λo:

Pi(i, j) = λePi(i – 1, j) + λo{Pm(i – 1, j) + Pn (i – 1, j)}

(iii) Accordingly, the same follows for a deletion:

Pd(i, j) = λePd(i, j – 1) + λo{Pm(i, j – 1) + Pn(i, j – 1)}

(iv) Starting an alignment at ri
(1) and rj

(2) is matching those two
residues as if they are the first two residues in the
sequences:

Pn(i, j) = Ψ(ri
(1), rj

(2))

(v) The partial sum of ending at ri
(1) and rj

(2) is the sum of all
possible paths beginning anywhere prior to ri

(1) and rj
(2)

and ending at ri
(1) and rj

(2):

Pe(i, j) = Pm(i, j) + Pi(i, j) + Pd(i, j) + Pn(i, j)

(vi) Finally, the partial sum of all alignments beginning at any
point prior to ri

(1) and rj
(2) is the sum of all possible paths

ending at any point prior to and including ri
(1) and rj

(2):

P(i, j) = Pe(k, l)

Thus, at the end of the recursion, we have:
P(R(1), R(2), | A, Θ)λo

k
g (A) λe

lg (A) – kg(A)

= P(I, J)Θ(R(1), H)Θ(H, R(2))

The initial conditions are: Pm(i, 0), Pi(i, 0), Pd(i, 0), Pn(i, 0)
and Pe(i, 0) = 0 ∀i and Pm(0, j), Pi(0, j), Pd(0, j), Pn(0, j) and
Pe(0, j) = 0 ∀j.

Completing the sums in the denominator of equation 1. This
can be computed in a similar manner as the recursive algorithm
above:

Nm(i, j) = Nm(i – 1, j – 1) + Ni(i – 1, j – 1) + Nd(i – 1, j – 1) +
Nn(i – 1, j – 1)

Ni(i, j) = λeNi(i – 1, j) + λo{Nm(i – 1, j) + Nn(i – 1, j)}
Nd(i, j) = λe Nd(i, j – 1) + λo{Nm(i, j – 1) + Nn(i, j – 1)}
Nn(i, j) = 1
Ne(i, j) = Nm(i, j) + Ni(i, j) + Nd(i, j) + Nn(i, j)

N(i, j) = Ne(k, l)

The initial conditions are the same as for the recursive
algorithm for the numerator. From the above summations, the
exact posterior distribution for Θ and Λ can be calculated
according to equation 2.

Backward recursive sampling algorithm

The backward recursive algorithm for sampling alignments
from their exact posterior distribution is comparable with the
algorithm used by the ‘Bayes Aligner’ to obtain the posterior
alignment distribution (7). Sampling an alignment can be
broken down into three steps:

(i) The parameters Θ and Λ are sampled from their exact
posterior distribution, P(Θ, Λ | R(1), R(2)), obtained from the
forward algorithm.

(ii) Conditioning on Θ and Λ, an endpoint from which to start
the backtrace is sampled. In local dynamic programming
algorithms, this is simply the maximum of the matrix
obtained from the forward sum, but in Bayesian methods,
this is a sample from all the possible end points. Thus, the end
point (k, l) from which to begin the backward recursion is
chosen from all Pe(i, j): i = 1, ..., I; j = 2, ..., J. From the
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sampled endpoint (k, l) the next move is sampled from four
choices, matching, inserting, deleting or beginning the
alignment at (k, l), according to the probabilities, Pm(k, l) /
Pe(k, l), Pi(k, l) / Pe(k, l), Pd(k, l) / Pe(k, l) and Pn(k, l) / Pe(k,
l), respectively.

(iii) Afterwards, each choice now depends on the previous one:

(a) If the last choice was a match, Pm(k, l), rk
(1) and rl

(2) are
matched and (k, l) becomes (k – 1, l– 1). One proceeds by
taking one of the four choices, match, insert, delete or begin
alignment, according to the probabilities, Pm(k, l) / Pe(k, l),
Pi(k, l) / Pe(k, l), Pd(k, l) / Pe(k, l) and Pn(k, l) / Pe(k, l),
respectively.

(b) If the last choice was an insert, a gap is inserted into
sequence 1 and (k, l) becomes (k – 1, l). An insert may be
preceded by three of the four choices, match, insert or
begin alignment. The next choice is sampled from the
probabilities, Pm(k, l) / [Pm(k, l) + Pi(k, l) + Pn(k, l)], Pi(k, l) /
[Pm(k, l) + Pi(k, l) + Pn(k, l)] and Pd(k, l) / [Pm(k, l) + Pi(k, l)
+ Pn(k, l)].

(c) Similarly, if the last choice was a delete, (k, l) becomes
(k, l – 1). The next choice is sampled from the probabilities,
Pm(k, l) / [Pm(k, l) + Pd(k, l) + Pn(k, l)], Pd(k, l) / [Pm(k, l)
+ Pd(k, l) + Pn(k, l)] and Pn(k, l) / [Pm(k, l) + Pd(k, l) +
Pn(k, l)].

(d) If the last choice was to begin a new alignment, rk
(1) and rl

(2)

are matched. Since this is the beginning of the alignment,
similar to that 0 being the best choice in a local dynamic
programming backward algorithm, all upstream residues
are ignored and the sample is completed.

Availability

The software for BALSA is available at http://www.wadsworth.org/
resnres/bioinfo/

RESULTS

The performance of sequence alignment algorithms has been
evaluated and compared on several occasions. The two most
extensive comparisons were by Pearson and Lipman (13) and
Brenner et al. (1). Brenner et al. used SCOP, a database of
proteins of known structure and function, to compare FASTA
(13), BLAST (14) and SSEARCH. They found SSEARCH
with optimally chosen gap penalties and E()-values to outperform
the others, correctly identifying the most remote homologs in
the database. Pearson and Lipman’s comparison was similar,
but based on superfamilies in the Protein Information Resource.
Again SSEARCH was found to outperform the other procedures.

In order to keep consistency with earlier evaluations, the
same databases used by Brenner et al. (1), PDB40D-B and
PDB90D-B, were employed in the evaluation of our alignment
procedure, BALSA. PDB40D-B and PDB90D-B include only
domains <40 and <90% identical to any of the others and
contain 1323 and 2079 domains, respectively. In an all-versus-all
comparison there are 1 749 006 ordered pairs of which ∼9044
(0.5%) are structurally related for PDB40D-B. PDB90D-B
consists of 4 320 162 ordered pairs of which 53 988 (∼1.2%)
are distantly related (1). The analysis of our algorithm is
broken down into two parts, evaluation and performance. First,
we will address the dynamic programming issues including the

setting of parameters and length adjustments of optimal scores.
Subsequently, its ability to detect remote protein homologs is
compared with SSEARCH with E()-values. The selection of
scoring matrices and gap penalties to be utilized by BALSA
was determined by taking the set of 10 combinations of scoring
matrices and gap penalties previously identified by Brenner to
find the most structural homologs on the SCOP database (15).
The examination of all 10 of these showed little improvement
in coverage by the addition of matrices beyond the following
four; BLOSUM matrix/gap opening penalty/gap extension
penalty: 45/–12/–1, 50/–12/–2, 62/–10/–1 and 62/–12/–1. The
set that was found to perform best on SSEARCH was
BLOSUM 45/–12/–1. Brenner et al. used it in a previous
comparison of SSEARCH to FASTA and BLAST on
PDB40D-B and PDB90D-B (1).

Addressing dynamic programming issues

Preselection of scoring matrices and gap parameters. In the
majority of cases we found that the posterior distribution over
the BLOSUM series of scoring matrices was close to uniform.
However, in 21.4% of cases, the probability for one or several
of these gap/matrix combinations deviated from the uniform,
>2-fold, in at least one set. For example, as Figure 1
demonstrates, very different posterior distributions were
obtained for the protein 1npx_2, NADH peroxidase, with two
of its homologs, 3lada2 and 1lvl_2, both dihydrolipoamide
dehydrogenases. The large posterior probabilities for 1npx_2
versus 3lada2 for the second and third scoring-gap pairs
demonstrate that these score-gap pairs yield much larger scores
from the algorithm, likewise for 1npx_2 versus 2lvl_2 given
the fourth scoring-gap pair. Furthermore, if only the third set of
matrix/gap pairs are used, 1npx_2 versus 2lvl_2 does not
obtain a score large enough to be detected as a homologous
pair but 1npx_2 versus 3lada2 does at a 1% errors per query
(EPQ). The first and second matrix/gap pairs do not detect
either homologous pair and the fourth detects both. Effects of

Figure 1. BALSA allows multiple matrices and gap parameters to be input,
returning the posterior distribution over all selected parameters, P(Θ, Λ | R(1), R(2)).
Four matrix gap parameter pairs, BLOSUM matrix/λo/λe, were chosen based
on their performance on sample data: (i) 45/–12/–1, (ii) 50/–12/–2, (iii) 62/–10/–1
and (iv) 62/–12/–1. This histogram of the exact posterior distribution probabilities
demonstrates that the selection of scoring matrix and gap parameters is highly
dependent upon the given sequences.
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such variations on detection of homologs are given in the
Evaluation method section below.

Length dependence. A major development in optimal local
sequence alignment was the development of probabilistic
scoring schemes to take into account the dependence of score
on the lengths of the two sequences. This usually involves
fitting a curve to the distribution of the scores of the true
negatives in a database versus the log product of the sequence
lengths. This allows the significance of a given alignment to be
expressed in terms of a P-value or E()-value (2,16–19). For
example, SSEARCH raw scores obtained 10.5% coverage at a
1% EPQ whereas SSEARCH with E()-values yielded 18.4% at
the same cut-off. BALSA includes terms that adjust for
variations in sequence length. Specifically, the denominator of
the likelihood function

is only dependent upon the lengths of the two sequences, not
the amino acid sequences. As seen in Figure 2, the sum over all
alignments grows larger as the lengths of the two sequences
increase. Figure 3 indicates that there is little dependence of
the score on sequence length. To examine this adjustment more
quantitatively, a least-squares line was fit to BALSA score as a
function of the lengths of the sequences. The analysis was
performed on the Score versus the two independent variables,
Length1 and Length2, and likewise the Score versus
log(Length1*Length2). The analysis returned correlation
coefficients of 0.008699 and 0.01431, respectively.

Comparison with SSEARCH

Evaluation method. An all-versus-all comparison of the database
was conducted using BALSA, the results were sorted in
descending order, and a cut-off was drawn at which the number
of related sequences above the threshold was acceptable with a

given error rate (number of false positives). The various thresholds
and related errors were evaluated by utilizing coverage versus
error plots as in Brenner et al. (1). The coverage corresponds to
the fraction of homologs detected at a specified error rate
(EPQ), which is the number of non-homologs above the cut-off
divided by the total number of query sequences.

BALSA versus SSEARCH. In previous studies SSEARCH with
E()-values detected 18.4 and 38% of homologous pairs at a 1%
EPQ on PDB40D-B and PDB90D-B with parameters found to
be optimal, BLOSUM 45 and gap penalties –12 and –1 (1,15).
BALSA, with the set of four matrix/gap penalty pairs previously
defined, obtained 19.8 and 41.3% of all relationships at the same
error rate for the two respective databases. In evaluating the
non-overlapping sequences between the two databases
(sequences with between 41 and 90% sequence identity) an
even larger increase in detecting homologous pairs was noted;
60% for SSEARCH to 67.2% for BALSA at a 1% EPQ. In fact,
as seen in Figure 4, BALSA outperformed SSEARCH at all
EPQ levels for all three databases. In evaluating the individual
contribution of each of the matrix/gap penalty pairs, we found
that most of the gain was from one pair. The coverage was
increased by 0.3% from one to four matrices and 0.03% from
two to four matrices for the PDB40D-B databases, less for
PDB41-90D-B and PDB90D-B. The optimal single set of
parameters used by SSEARCH are BLOSUM 45/–12/–1 and
they produce coverages of 18.4, 38 and 60% at a 1% EPQ for
PDB40D-B, PDB90D-B and PDB41-90D-B, respectively. The
application of the same parameters to BALSA resulted in an
increase to 19.2, 41.5 and 67.0% at the same error rate on the
three databases. The single set parameters that found the
highest coverage for BALSA are BLOSUM 62/–12/–1, finding
19.5, 41.2 and 67% at a 1% EPQ for the respective databases.

The SCOP database is broken down into classes, folds,
superfamilies, families and domains. PDB40D-B and PDB90D-B
consist of seven classes, 346 folds and 474 superfamilies. The
number of proteins per class ranges substantially from 27 to
318 proteins, as does the number of structural homologs per
class, 49–1797, for PDB40D-B. There are 33–620 proteins and

λo

kg A ′( )
λe

lg A ′( ) kg A ′( )–

A ′
�

Figure 2. The denominator of the likelihood,

,

does not depend on amino acid sequences of the proteins. The plot of the
denominator versus a pair of sequences increases as their lengths increase,
inherently correcting for sequence length with the algorithm.

λo

kg A′( )
λe

lg A′( ) kg A′( )–

A ′
�

Figure 3. The plot of the score from BALSA versus log(Length1*Length2)
returns a correlation coefficient of 0.01431 from the least-squares analysis.
This demonstrates that there is little dependence of score on the lengths of
sequences 1 and 2, respectively.
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between 89 and 19 529 homologs per class for PDB90D-B. To
address potential biases that could arise from these substantial
differences, we examined the number of structural neighbors
found by each algorithm for each of the seven classes and the
seven largest superfamilies, the level at which homology is
defined, using the standard scoring scheme, BALSA 45/–12/–1.
To examine the differences of behavior by class we examined
the structural neighbors returned by one algorithm but not the
other. BALSA finds 74 more structural neighbors than
SSEARCH. Of the total number of homologs returned by each
algorithm, 85 are unique to BALSA and 11 are unique to
SSEARCH. As shown in Figure 5A, BALSA gains are in all
classes with its smallest proportionate gain in class 7. We also
examined the number of hits at the superfamily level. We
found that 45.2% of the homologs for PDB40D-B fell into the
seven superfamilies that have the largest numbers of
homologs. Both algorithms found proportionately fewer
structural neighbors than expected (35.5% for BALSA and
34.5% for SSEARCH) in these seven superfamilies. The
specific number of the structural homologs found by each
algorithm in these largest seven superfamilies are shown in
Figure 5B. BALSA again finds more homologs than
SSEARCH in all seven superfamilies. A comparison of
structural neighbors unique to each algorithm was completed
but is sparse. Only 34 of the 85 homologous pairs found by
BALSA and one of the 11 homologous pairs unique to
SSERACH fall into one of these seven largest superfamilies.
As shown in Figure 5C, BALSA finds more homologs in each

superfamily, with its advantage reasonably distributed over the
seven largest superfamilies. As seen in the eighth category, the
remaining superfamilies, the majority of the gain observed by
BALSA is not in the largest seven superfamilies. In addition,
the overall proportion of homologs identified uniquely by BALSA
within the seven largest superfamilies (40%) is somewhat lower
than the proportion in PDB40D-B (45.2%). The removal of the
seven largest superfamilies from the analysis resulted in an
increase in coverage for both algorithms, 18.4–25.1% for
SSEARCH and 19.2–27.0% for BALSA, raising the improvement
of BALSA over SSEARCH from 0.8 to 1.9%. An equivalent
analysis was completed for PDB90D-B: the comparison of the
number of homologs found by each algorithm for each class
and the largest seven superfamilies. For proteins detected by
only one of the algorithms, BALSA finds 1312 more structural
neighbors than SSEARCH. There are 1412 structural neighbors
identified only by BALSA and 100 detected only by
SSEARCH, and most of BALSAs gain is concentrated in class
two, Figure 5D. As before, we restrict the view to the seven
superfamilies that contain the most homologous pairs. 78.7%
of the total homologs found by BALSA fall into one of the
seven largest superfamilies, 76.9% for SSEARCH, in comparison
with 76.1% for PDB90D-B. The specific number of homologs
that fall into each of these superfamilies is shown in Figure 5E.
In this case, unlike our results for PDB40D-B, the vast
majority of the homologous pairs identified by BALSA, and to
a somewhat lesser extent by SSEARCH, is concentrated in one
superfamily, the immunoglobulins. Figure 5F shows more

Figure 4. Coverage versus EPQ plots of BALSA with the four given matrix gap parameter pairs and SSEARCH with optimal gap parameters and E()-values.
BALSA obtained a larger coverage, detection of more homologous pairs, than SSEARCH at all EPQ levels for PDB40D-B, PDB90D-B and PDB41-90D-B.
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Figure 5. The comparison of BALSA and SSEARCH at the class and superfamily levels was performed using the optimal set of parameters for SSEARCH, BLOSUM 45
with a gap opening penalty of –12 and gap extension penalty of –1. (A) The number of homologs in each class found only by BALSA or SSEARCH for PDB40D-B.
These seven classes are defined as: (1) all α proteins, (2) all β proteins, (3) α / β proteins, (4) α + β proteins, (5) multi-domain proteins, (6) membrane and cell
surface proteins and (7) small proteins. There are 226, 318, 322, 246, 37, 27 and 147 proteins, and 610, 1797, 1351, 314, 49, 112 and 289 structural homologs
defined for each class, respectively. BALSA finds 85 structural neighbors not detected by SSEARCH and SSEARCH finds 11 not identified by BALSA. This
refined view shows the levels at which classes are contributing to the increase of BALSA over SSEARCH. It does not appear that any class is contributing more
substantially than would be expected in the database. The most striking feature is that over half of the extra homologs for SSEARCH belong to the seventh class,
small proteins. (B) The number of homologous pairs that belong to the seven largest superfamilies, the level at which homology is defined, for the two algorithms
on PDB40D-B. For PDB40D-B, 45.2% of homologous pairs in the database belong to one of these superfamilies: (1) immunoglobulins (18.1%); (2) NAP
(P)-binding Rossman-fold domains (7.8%); (3) trans glycosidases (5.6%); (4) trypsin-like serine proteases (4.2%); (5) FAD/NAP (P)-binding domain (3.8%); (6)
cupredoxins (3.0%); and (7) globin-like (2.7%). Since a large majority of the structural neighbors belong to seven of the 474 superfamilies in PDB40D-B, this
figure gives a more detailed view of potential bias in the database that may have yielded the increase in coverage observed by BALSA. In the case of PDB40D-B,
BALSA detects slightly more homologs in each of these seven superfamilies than SSEARCH, but not more than would be expected in the database. (C) The
number of homologous pairs identified by only BALSA or SSEARCH for each of the seven largest superfamilies and the remaining 467 superfamilies, the eighth
category. This refined view at the superfamily level does not give useful information for SSEARCH since only one of the 11 unique homologs belong to one of
these seven superfamilies. In the case of BALSA, 34 of the 85 unique homologs, 40.0%, is less than the proportion in PDB40D-B, 45.2%. Additionally, no single
superfamily has a substantially larger proportion of these 34 structural neighbors than would be expected in the database. Additionally, as seen in the eighth
category, the largest gain is in the proteins that do not belong to the largest seven superfamilies. (D) The number of homologs in each class found only by BALSA
or SSEARCH for PDB90D-B. The classes are defined as identical to (A). PDB90D-B has 348, 620, 428, 362, 46, 33 and 242 proteins, and 2211, 19529, 3089, 936,
89, 183 and 952 structural homologs defined for each class, respectively. BALSA finds 1412 homologous pairs not identified by SSEARCH and SSEARCH finds
100 not detected by BALSA. For PDB90D-B, the majority of the homologs unique to BALSA fall into the second class. (E) The number of homologous pairs that
belong to the seven largest superfamilies for the two algorithms on PDB90D-B. These seven superfamilies made up 76.1% of all homologous pairs in the database: (1)
immunoglobulins (57.8%); (2) trypsin-like serine proteases (4.4%); (3) viral coal and capsid proteins (4.2%); (4) NAP (P)-binding Rossman-fold domains (3.5%); (5)
globin-like (2.8%); (6) trans glycosidases (2.0%); and (7) EF-hand (1.4%). Unlike (B), we do see a substantial difference between BALSA and SSEARCH in the first
superfamily, the immunoglobulins. The immunoglobulins make up 57.8% of the homologs in PDB90D-B and 66.0% of the homologs found by BALSA belong to this
superfamily. (F) The number of homologous pairs detected only by BALSA or SSEARCH for each of the seven largest superfamilies and the remaining superfamilies.
For BALSA, 1335 of the 1412 unique homologs belong to one of these superfamilies and 43 of the 100 for SSEARCH. The difference seen in (D) is more evident, a
large proportion of the homologs unique to BALSA, 88.8%, do belong to one single superfamily, the immunoglobulins. Thus, the majority of the increase of coverage
for BALSA on PDB90D-B beyond that shown for PDB40D-B is due to the detection of structural neighbors that belong to the immunoglobulins superfamily.
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specifically that BALSA gains are concentrated in this one
superfamily. The large proportion of homologs in the
superfamily of immunoglobulins found only by BALSA
explains the excess improvement for proteins with >40%
sequence identity. If these excess homologs found by BALSA
in the superfamily of immunoglobulins are subtracted from the
overall number of hits for BALSA, BALSA observes an
increase that is 0.33% larger than that shown for PDB40D-B.
Unlike PDB40D-B, the removal of the seven largest superfamilies
from the analysis resulted in a decrease in coverage for both
algorithms, 38–35.2% for SSEARCH and 41.5–36.8% for
BALSA, reducing the improvement of BALSA over
SSEARCH from 3.5 to 1.6%.

Assessing significance

Sequence alignment algorithms generally have two primary
foci, structural and functional prediction and large database
query. Our primary focus is on the utilization of BALSA as a
structure prediction tool and therefore employs a database of
proteins of known structure, PDB40D-B. Application of alignment
algorithm for searching of large databases traditionally
involves the assessment of statistical significance. Historically,
assessing statistical significance requires dynamic programming
and heuristic methods to perform a length-normalization step
because the raw scores produced are correlated with the length
of the sequences aligned. In the case of BALSA there is no
significant correlation between BALSA scores and sequence
length so such an exercise is not necessary. Traditional
procedures attempt to estimate the EPQ using E()-values, but
Bayesian methods calculate the Bayesian analog to a P-value
as a function of the score. The score is the probability ratio of
seeing the two sequences together versus independently, as
calculated in equation 1, and summed over the chosen series of
parameters. Thus, the score is written as:

Score =

In the SCOP database the number of homologs is known and
the prior odds ratio of a homolog versus not is: P(H) / P( )
= 6.8 / 1323. The posterior odds of a homolog can be
calculated exactly:

Unlike the P-value, which gives the level of significance at which
the null hypothesis (the two sequences are not homologous) could
have been rejected, here we calculate the ratio of probabilities
that the two sequences are homologous compared with not
homologous after examining the sequences, the posterior odds.
This ratio can be converted to the probability of identifying a
non-homolog as a function of the score:

Figure 6 shows the natural log of the BALSA score versus the
associated EPQ and posterior probability, P( | R(1), R(2)). As
shown in Figure 6, P( | R(1), R(2)) fits centrally in the individual
EPQ graphs for the four scoring matrix and gap penalty
combinations. Application of this equation to a database of
arbitrary size in which all protein structures are not known
requires a prior odds. The specification of this prior generally
depends on the application in a manner similar to the selection
of a cut-off E()-value. A common and usually conservative
assumption is that there is one structural neighbor in the database
for each query. Under this assumption the prior odds ratio P(H)
/ P( ) becomes 1 / 1323. As shown in Figure 6, this a priori
assumption yields a more conservative estimate than the true
prior and the EPQ for all parameter combinations.

Alignment output

Optimal alignment algorithms return a single alignment, one of
an enormous number of possible alignments. For example, the
probability of the optimal alignment (see Fig. 9B) obtained
with the parameters used by Brenner (1), BLOSUM 45/–12/–1,
is 4e–09. The structural alignment (see Fig. 9A) is less likely, 6e–
15. Given the parameters used in this analysis, BLOSUM 62/–12/
–1, the structural and optimal alignments have probability
1.4e–06 and 6.94e–14, respectively. Instead of a single align-
ment, BALSA returns the posterior alignment distribution
obtained as described in the Backward Recursive Sampling
Algorithm. The following example demonstrates how
accounting for all alignments in the forward sum can improve
coverage. The two proteins depicted in Figure 7 are 1npx_2,
NADH peroxidase, and 3lada2, dihydrolipoamide dehydro-
genase, with their structural alignment shown in Figure 8.
These two proteins are homologs based on structural analysis,
but are not reported by SSEARCH, even at large EPQ, but are
detected by BALSA as remote homologs. The reason behind
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Figure 6. The natural log of the BALSA score versus the associated EPQ given
the four scoring matrix and gap penalty pairs, P( | R(1), R(2)) under the true
probability ratio of a homolog versus not, P(H) / P( ) = 6.8 / 1323, and the a
priori assumption P(H) / P( ) = 1 / 1323. The probability of a non-homolog
given the two sequences, P( | R(1), R(2)), obtained from the Bayes factor under
the true probability ratio is a good estimate of the EPQ independent of the
parameters. P( | R(1), R(2)) under the a priori assumption is a conservative
estimate for the true EPQ and posterior probability obtained from the true prior
odds ratio.
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this is more clearly seen in Figure 9, the structural and optimal
alignments, and the alignment distribution.

As indicated earlier, these structural and optimal alignments
have extremely low probabilities for both the SSEARCH and
BALSA parameters, but there is an interesting comparison
between the three alignments. Both BALSA and SSEARCH
miss the loop at the beginning of the structural alignment, but
if the loop is ignored, then the structural, optimal and distribution
alignments begin and end at the same amino acid residues, 35 for
1npx_2 and 27 for 3lada2. The structural and optimal alignments
are identical up to residues 65 and 57 for 1npx_2 and 3lada2,
respectively. This portion of the alignment has the most
sequence identity and is reflected in the BALSA alignment
distribution as one large peak. From this point until residues
104 and 95 for the two respective proteins there is only one
difference between the structural and optimal alignments, but
there is very little sequence identity. This portion of the
alignment distribution has many small peaks demonstrating
that there are many ways to align this portion with similar
probability, but this portion is typically aligned. The most
interesting finding comes from the last portion up to residue
120 for 1npx_2 and 111 for 3lada2. The structural and optimal
alignments are clearly different and the alignment distribution
shows two distinct peaks with significant probability, separating
the alignment distribution into optimal- and structural-like
alignments. To examine how sums over all alignments may
have captured this structural relationship, we drew a sample of

100 000 alignments. Each sampled alignment was directly
compared with the structural and optimal alignments by
counting the number of aligned pairs in common. The sampled
alignment was categorized as structural or optimal, based on
which of the two alignments it better matched, yielding 43.9%
structural- and 56.1% optimal-like alignments.

DISCUSSION

In this study, we demonstrated how the Bayesian method can
be used to address some of the requirements and adjustments
associated with the local dynamic programming alignment
algorithms. The BALSA algorithm takes into account the
uncertainty associated with scoring matrices, gap parameters
and alignments by including them all in the joint distribution of
the data and the parameters. In our analysis, four score-matrix/
gap-penalty pairs were used and in 21.4% of the cases the
posterior distribution of the pair deviated considerably from
the uniform prior. We also found that no adjustment for length
was necessary as there was little relationship between the
BALSA score and the sequence length. BALSA outperformed
SSEARCH with E()-values on all three databases, increasing
coverage from 18.4 to 19.8%, 38 to 41.3%, and 60 to 67.2% at
1% EPQ for PDB40D-B, PDB90D-B and PDB41-90D-B,
respectively. The majority of this improvement stems from

Figure 7. Tertiary structures of 1npx_2 and 3lada2, both multi-domain
proteins consisting of multiple α helices and β sheets.

Figure 8. The structural alignment of NADH peroxidase, 1npx_2, and
dihydrolipoamide dehydrogenase, 3lada2.

Figure 9. The structural alignment in (A) indicates that nearly all of the alignment
between 1npx_2 and 3lada2 is conserved with two gaps. The SSEARCH optimal
alignment (B) does not report the alignment of the first 34 residues of inpx_2
and 26 residues of 3lada2 and incorrectly reports the remaining gap. This first
section missed is a loop and thus is also missed by the alignment distribution
of BALSA (C). The alignment distribution clearly follows a similar pattern to
that of the optimal but distinctly shows that there are many alignments similar
to the optimal with comparative scores.
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averaging over all alignments and to a lesser extent from the
use of multiple parameter combinations. Additionally, the
posterior odds appear to be a useful criterion for assessing the
evidence in an alignment of a structural homolog. Figure 9
demonstrates that although portions of the alignment with low
sequence similarity give a low score, the summation of all such
low-scoring alignments may contribute considerably to the
overall score. Additionally, we see here that ∼44% of the
sampled alignments are structural like, warranting further
investigation into the structural accuracy of the BALSA
alignment distribution in comparison with the SSEARCH
optimal alignment.

This analysis focused on utilizing Bayesian statistics to
address the primary issues of dynamic programming algorithms
for local sequence alignment, but it still retains the issue of
selecting scoring matrices and gap parameters. This study was
restricted to a set of fixed gap/score parameters and methods to
overcome this requirement are being examined. Equation 1,
L(Θ, Λ) = P(R(1), R(2) | Θ, Λ), is the probability of the data given the
parameters and can thus be viewed as the likelihood, yielding a
method for obtaining sequence-specific estimates and . Direct
search techniques are being investigated to find these estimates.
Additionally, BALSA sums over all possible single subsequence
pairs of the two sequences, but does not take into account the
possibility of having multiple subsequence pairs between the
two sequences. The extension of the local alignment model to
take into account multiple local conserved regions in pairwise
alignments would yield a super-local alignment procedure.

As is typical of alignment methods, there is a trade-off
between speed and accuracy. For comparison of run time on an
algorithmic basis it is imperative to use as similar code as
possible since code implementation can affect results. Thus,
we compared BALSA with the Smith–Waterman algorithm
using a minimally modified version of the BALSA code. Given
one set of parameters (i.e. a specific set of scoring matrix and
gap penalties), the BALSA required 1.3 times more computation
time, 13.75 h for BALSA and 10.5 h for Smith–Waterman, on a
1 GHz Pentium III processor for a full all-versus-all comparison
of the PDB40D-B database. Given k sets of parameters,
BALSA will be slower than SSEARCH by a factor of 1.3k.
However, since we found little gain beyond one or two sets of
parameters, local Bayesian alignment procedures promise to
offer improved potential to identify structural neighbors with
little cost in computational requirements.
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