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ABSTRACT

Here, we present DeepBIO, the first-of-its-kind au-
tomated and interpretable deep-learning platform
for high-throughput biological sequence functional
analysis. DeepBIO is a one-stop-shop web ser-
vice that enables researchers to develop new deep-
learning architectures to answer any biological ques-
tion. Specifically, given any biological sequence data,
DeepBIO supports a total of 42 state-of-the-art deep-
learning algorithms for model training, comparison,
optimization and evaluation in a fully automated
pipeline. DeepBIO provides a comprehensive result
visualization analysis for predictive models cover-
ing several aspects, such as model interpretabil-
ity, feature analysis and functional sequential re-
gion discovery. Additionally, DeepBIO supports nine
base-level functional annotation tasks using deep-

learning architectures, with comprehensive interpre-
tations and graphical visualizations to validate the
reliability of annotated sites. Empowered by high-
performance computers, DeepBIO allows ultra-fast
prediction with up to million-scale sequence data in
a few hours, demonstrating its usability in real appli-
cation scenarios. Case study results show that Deep-
BIO provides an accurate, robust and interpretable
prediction, demonstrating the power of deep learn-
ing in biological sequence functional analysis. Over-
all, we expect DeepBIO to ensure the reproducibil-
ity of deep-learning biological sequence analysis,
lessen the programming and hardware burden for bi-
ologists and provide meaningful functional insights
at both the sequence level and base level from biolog-
ical sequences alone. DeepBIO is publicly available
at https://inner.wei-group.net/DeepBIO.
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INTRODUCTION

The development of next-generation sequencing techniques
has led to an exponential increase in the amount of bio-
logical sequence data accessible, including genomic, tran-
scriptomic and proteomic sequences. It naturally poses
an important challenge—how to build the relationships
from sequences to structures and functions (1). Given such
large-scale data, traditional wet lab experimental meth-
ods are laborious, time-consuming and high cost for func-
tional analysis. Alternatively, the booming development of
machine-learning approaches has paved a new way to un-
derstand the complex mapping from biological sequences to
their structures and functional mechanisms. Over the past
few decades, data-driven machine-learning approaches have
emerged as powerful methods to enable the automated and
fast function prediction ab initio from sequences alone, pro-
viding a new perspective on studying the functional aspects
of biological sequences (2-5).

The increasing use of machine-learning workflows in bi-
ological sequence analysis and the willingness to dissem-
inate trained machine-learning models have pushed com-
puter scientists to design more user-friendly solutions. In
recent years, there have been an increasing number of
web servers and software packages developed for this pur-
pose. For instance, BioSeq-Analysis was the first plat-
form to analyze various biological sequences via machine-
learning approaches (6). Later, Liu ez al. established BioSeq-
Analysis2.0 (7) to automatically generate various predictors
for biological sequence analysis at both the residue level
and sequence level. Additionally, iLearnplus is a popular
platform that provides a pipeline for biological sequence
analysis, which comprises feature extraction and selection,
model construction and analysis of prediction results (8).
More recently, Liu et al. developed BioSeq-BLM, a web
platform that introduces different biological language mod-
els for DNA, RNA and protein sequence analysis (9). In
addition, other representative tools include iFeatureOmega
(10), Repi (11) and protr (12). The platforms and tools have
boosted the use of machine-learning solutions for biologi-
cal sequence analysis tasks in biology. However, these tradi-
tional machine-learning workflows have some drawbacks.

For instance, to train a good model, strong professional
knowledge is usually required in terms of designing feature
descriptors, selecting machine-learning algorithms as well
as setting up the model parameters, which limit their usabil-
ity in real applications to some extent; on the other hand,
they cannot support large-scale prediction and analysis. Re-
cently, deep learning has played a complementary role to
traditional machine learning due to its excellent scalabil-
ity and adaptivity. Therefore, some deep-learning analysis
tools have been developed, such as Kipoi (13), Pysster (14)
and Selene (15). Kipoi (13) is a repository of ready-to-use
trained models for genomic data analysis. Pysster (14) is a
Python package that supports training deep-learning mod-
els only with convolutional neural networks on biological
sequence data. More recently, Chen et al. developed Selene,
a PyTorch-based deep-learning library for quick and sim-
ple development, training and application of deep-learning
model architectures for biological sequence data (15).

These tools make the use of deep learning more conve-
nient for data-driven biological sequence analysis to some
extent. However, there remain some key challenges that
need to be addressed. First, despite the availability of deep-
learning tools, they are not completely automated. Running
the tools still faces some technical challenges for non-expert
researchers. On the one hand, they require strong profes-
sional knowledge and programming skills to set up sophisti-
cated software, which directly limits the generic use of deep
learning in non-expert communities (i.e. researchers with-
out any computer science training). On the other hand, it
is extremely difficult for researchers to train deep-learning
models with the enormous scale of data space, since the ma-
jor downside of deep learning is its computational inten-
sity, requiring high-performance computational resources
and a long training time. Accordingly, a web platform
that enables an automated deep-learning pipeline is greatly
needed. Second, most of the existing tools cannot meet the
high demand of the research community, since they pro-
vide few deep-learning architectures (seen in Supplemen-
tary Table S1), such as convolutional neural networks, for
model construction. In fact, there are some state-of-the-
art deep-learning models with successful applications in
bioinformatics problems. For example, Graph Neural Net-
works (GNNs) demonstrated an ability to address com-
plex biological problems, for example, the prediction of
microRNA-disease interaction (16). Large-scale language
pre-trained models such as DNABERT and ProtBERT
showed strong capacities in discriminative feature learn-
ing in biological sequence analysis (5,17). Thus, it is neces-
sary to enable the use of state-of-the-art deep-learning ap-
proaches in biology. Ultimately, existing tools lack compre-
hensive result analysis, which might limit users’ understand-
ing of what the deep-learning models learn; how reliable the
deep-learning predictions are; and why the deep learning
performs well.

In this work, we present DeepBIO, an automated deep-
learning platform for biological sequence prediction, func-
tional annotation and result visualization analysis. To be
specific, our DeepBIO distinguishes itself from other plat-
forms with the following unique advantages. (i) One-stop-
shop service. DeepBIO is the first-of-its-kind platform as a
code-free web portal to ensure the reproducibility of deep-



learning biological sequence analysis and to lessen the pro-
gramming burden for biologists. (ii) Pure deep-learning
platform. DeepBIO is a purely deep-learning platform that
integrates >40 state-of-the-art mainstream deep-learning
algorithms, including convolutional neural networks, ad-
vanced natural language processing models and GNNs
(detailed in Supplementary Table S2), which enables re-
searchers who are interested to train, compare and evalu-
ate different architectures on any biological sequence data.
(ii1) Two predictive modules. DeepBIO is the first platform
that supports not only sequence-level function prediction
for any biological sequence data, but also allows nine base-
level functional annotation tasks using pre-trained deep-
learning architectures, covering DNA methylation, RNA
methylation and protein binding specificity. Besides, we fur-
ther offer an in-depth comparative analysis between the pre-
dictions by our models and by experimental data to validate
the reliability of the predictions. Notably, empowered by
high-performance computers, we demonstrate that Deep-
BIO supports fast prediction with up to million-scale se-
quence data, demonstrating its usability in real application
scenarios. (iv) Comprehensive result visualization analysis.
Aiming to help researchers to delve into more insights from
the model predictions, DeepBIO offers a comprehensive vi-
sualization result analysis with a variety of interactive fig-
ures and tables, covering the following five aspects: statis-
tical analysis of input data; evaluation and comparison of
the performance of the prediction models; feature impor-
tance and interpretable analysis; model parameter analysis;
and sequence conservation analysis. In particular, integrat-
ing interpretable mechanisms (e.g. attention heatmap and
motif discovery) into deep-learning frameworks enables re-
searchers to analyze which sequential regions are important
for the predictions, addressing the issue of the ‘black box’ in
deep learning and effectively building the relationship be-
tween biological sequences and functions.

MATERIALS AND METHODS
The overall framework of DeepBIO

The DeepBIO platform fully automates the model training
process and applies >40 deep-learning approaches for se-
quence classification prediction and functional site analysis
for genomic, transcriptomic, and proteomic sequence data.
Figure 1A illustrates the overall framework of the proposed
DeepBIO, which consists of four modules: (i) data input
module; (ii) sequence-level functional prediction module;
(iii) base-level functional annotation module; and (iv) re-
sult report module. The workflow of DeepBIO is described
as follows. Firstly, DeepBIO takes biological sequence data
from the data input module, where it can handle three bi-
ological sequence types: DNA, RNA and protein. Next,
there are two functional modules for the two types of tasks:
one is the sequence-level functional prediction module for
binary classification tasks and the other is the base-level
functional annotation module for functional annotation
tasks. The detailed web techniques and the overview of
the interaction between the front end and back end are
shown in Figure 1B. In the sequence-level functional pre-
diction module, we support users in automatically training,
evaluating and comparing the deep-learning models with
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their input data. Specifically, there are four main steps (seen
in Figure 1C) in this module: (i) data pre-processing; (ii)
model construction; (iii) model evaluation; and (iv) visu-
alization analysis. In the base-level functional annotation
module, we provide the base-level functional annotation us-
ing deep-learning approaches, such as DNA methylation,
RNA methylation and protein binding specificity predic-
tion. Similarly, we also curated four steps for this module
(seen in Figure 1C): (i) data selection; (ii) task selection; (iii)
model loading; and (iv) result visualization. Ultimately, in
the result report module, we provide a series of visualization
analysis results with various kinds of data formats. Below,
we emphasize the details of the four modules.

Data input module

DeepBIO serves as an automatically integrated analysis
platform based on biological sequence data, including for
DNA, RNA and protein, which can be entered in the online
input box or uploaded with the standard file format. In ad-
dition, users can select deep-learning models and different
settings (e.g. whether to turn on the data enhancement op-
tion). After obtaining the user’s input data, DeepBIO fur-
ther performs data cleaning to ensure that the user input
data are ready and legal to pass into the next module and
run properly.

Sequence-level functional prediction module

Step 1. Data pre-processing.  This step is an optimization-
based data-processing phase that uses a variety of ap-
proaches to handle and obtain the input sequence data that
are suitable for model training, ensuring the robustness of
the final results and improving the success rate of our ser-
vice. We design four sections to pre-process the input data:
(1) sequence legitimacy testing; (ii) sequence similarity set-
ting; (ii1) imbalanced data processing; and (iv) data augmen-
tation. In Section (i), for the input sequence data, we first
examine whether the input data have the legal data format
(e.g. FASTA), and then check if the input sequences con-
tain illegal characters (e.g. characters other than A, T, C and
G in DNA sequences). In Section (ii), considering that the
high sequence similarity in the input data might lead to a
performance evaluation bias, we provide a commonly used
tool named CD-HIT (18) to reduce the sequence similarity
in the input data. The similarity threshold ranges from 0.7
to 1. In Section (iii), considering that the data imbalance is-
sue might exist in a majority of datasets in real scenarios (i.e.
the number of the positives and negatives are extremely im-
balanced), we further provide several imbalanced data pro-
cessing strategies that are commonly used in the machine-
learning field, including Focal Loss (19), Synthetic Minority
Oversampling Technique (SMOTE) (20) and Adaptive Syn-
thetic (ADASYN) (21). By doing so, we can prevent the bi-
ased prediction of models due to the imbalanced data distri-
bution and perhaps achieve an improvement in the overall
predictive performance. Finally, in Section (iv), to deal with
the few sample learning problem, we further provide some
data augmentation methods, such as sequence replacement,
sequence flipping and sequence cropping, which can im-
prove the robustness and generalization ability of the deep-
learning models.
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Step 2. Model construction. The pre-processed sequence
data are then fed into user-selected models to train and
make the binary prediction. For a scenario in which users
do not provide sequence data with training and testing la-
bels, we randomly split the dataset into the training and
testing set at a ratio of 8:2 for model training and eval-
uation. Table 1 summarizes all the state-of-the-art deep-
learning models in our platform. There are a total of 42
deep-learning models, covering classic deep-learning meth-
ods [e.g. Deep Neural Networks (DNN) and Gate Re-
current Unit (GRU)], natural language processing (NLP)
methods [e.g. Transformer and Bidirectional Encoder Rep-
resentations from Transformers (BERT)] and GNN meth-
ods [e.g. Graph Convolutional Network (GCN)]. Notably,
each of the above models can be exploited to deal with all
three types (DNA, RNA and protein) of sequence anal-
ysis tasks. In addition, DeepBIO permits users to select
multiple models simultaneously, and train and compare
their performance on the same datasets. It is worth not-
ing that we have also deployed several deep-learning models
(e.g. DNABERT, RNABERT and ProtBERT) that are well
pre-trained on large-scale biological background sequences.
They can be utilized for fine-tuning the models on small
datasets, if necessary, to alleviate the overfitting problem
and increase the models’ generalization capability.

Step 3. Model evaluation. For the performance compari-
son of deep-learning models, we chose several commonly
used evaluation metrics, including sensitivity (SN), speci-
ficity (SP), accuracy (ACC) and Matthews’ correlation coef-
ficient (MCC). The formulas of these metrics are as follows:

SN — Tpi% (1)

SP = % @)

ACC =75 +TTPN:£§+FN )

MCC TPxTN — FP x FN @)

~ /(TP FP) (TP+FN)(TN+EP) (IN+EN)

where TP, FP, TN and FN represent the numbers of true
positives, false positives, true negatives and false negatives,
respectively. For the comprehensive performance compari-
son of different models, the area under the receiver operat-
ing characteristic (ROC) curve (AUC) and the area under
the precision recall (PR) curve (AP), which range from 0 to
1, are calculated based on the ROC curve and the PR curve,
respectively. The ROC curve shows the proportion of true
positives versus false positives, in which the AUC equals the
probability of ranking a randomly chosen true target higher
than a randomly chosen decoy target. The PR curve is used
more frequently to evaluate the performance of a model on
imbalanced datasets (61). Similarly, we can calculate the AP,
which equals the average of the interpolated precisions. The
higher the AUC and AP values, the better the predictive per-
formance of the underlying model.
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Table 1. Deep-learning models in DeepBIO

Category Methods References
Classic deep-learning DNN (22)
methods
RNN (23)
LSTM (24)
BiLSTM (25)
LSTM-Attention (26)
GRU (27)
TextCNN (28)
TextRCNN (29)
VDCNN (30)
RNN-CNN (31)
Natural language Transformer (32)
processing methods
Reformer (33)
Performer (34)
Linformer (35)
RoutingTransformer (36)
DNABERT, RNABERT, (5,17)
ProtBERT
BERT-Base 37
BERT-CNN (38)
BERT-DPCNN (39)
BERT-RCNN (40)
BERT-RNN (41)
ERNIE (42)
Graph neural network GCN (43)
methods
TextGCN (44)
GIN (45)
GAT (46)
GraphSage (47)
ChebGCN (48)
RECT-L (49)
LightGCN (50)
GNN-FILM (51)
HYPER-Conv (52)
HYPER-Attention (53)
APPNP (54)
TextRGNN (55)
TextSGC (56)
BertGCN (57
BertGAT (58)
ROBERTaGCN (59)
RoBERTaGAT (60)

Step 4. Visualization analysis. DeepBIO combines the pre-
diction results and intermediate data analysis generated
from above, and helps users to better understand the in-
put data through statistical analysis and the model results
through various types of visualization analyses. To provide
users with intuitive and comprehensive result analysis, we
have designed and illustrated multiple visual presentation
formats, including the pie plot, histogram, sequence statis-
tics graph, ROC and PR curves, kernel density plot and scat-
ter plot. In Table 2, we present the four sections of visual-
ization analysis, which are dataset statistical analysis, result
analysis, feature analysis and parameter optimization anal-
ysis. The details of each section are described as follows.
For dataset statistical analysis, we summarize the over-
all status of the input datasets to assist users in better
comprehending the datasets themselves. There are the fol-
lowing three statistical analyses, namely sequence compo-
sition analysis, sequence motif analysis and the sequence
length distribution analysis. In sequence composition anal-
ysis, DeepBIO plots the sequence composition histogram



3022 Nucleic Acids Research, 2023, Vol. 51, No. 7

Table 2. Result visualization analysis in the prediction module

Category Type Purpose
Statistical Pie plot Sequence composition
analysis analysis
Sequence Sequence statistical analysis
statistics graph from the datasets
Histogram Sequence length distribution
analysis
Result analysis ROC and PR curve  Performance of model
prediction
Line chart Performance of different

epochs of models

Prediction confidence by
different models

Overlap of prediction results
of different models

Feature performance
comparison between
hand-crafted features and the
features learned by selected

Kernel density plot

Venn diagram and
Upset plot

Feature analysis ROC and PR curve

models

UMAP plot Feature analysis result by
UMAP

SHAP plot Feature importance analysis
by SHAP

Attention heatmap  Feature representation
attention analysis
The discovery of conservative

sequence motifs by models

Motif discovery

Parameter ROC and PR The effect of different
optimization curve, histogram parameters (sequence
analysis similarity setting, data

augmentation and
imbalanced data processing)
on predictive performance

for the samples in the positive and negative dataset. In se-
quence motif analysis, users can obtain the conservation of
each position along the sequences. Ultimately, the sequence
length distribution analysis provides users with the length
preference of the sequences in the dataset.

For result analysis, the DeepBIO visualization analysis
includes plots considering all the evaluation metrics pre-
sented in step 3, to conduct detailed performance compar-
isons among different models, such as ROC and PR curves,
the performance of different epochs and density distribu-
tion of model prediction confidence. In addition, we offer a
Venn diagram and an Upset plot to illustrate the relation-
ship among different models from the overlapping predic-
tion results. It can be concluded that in this part users can
obtain an intuitive comparison of prediction performance
for different deep-learning models.

For feature analysis, we use a dimensionality reduction
tool called Uniform Manifold Approximation and Projec-
tion (UMAP) (62) for feature space analysis, and a com-
monly used tool Shapley additive explanation (SHAP) (63)
for feature importance analysis. UMAP can map and visu-
alize the high-dimensional features learned from the deep-
learning models to the low-dimensional space. It intuitively
illustrates how good the learned features are. On the other
hand, SHAP gives a good explanation of the feature impor-
tance, which quantitively measures the impact of each of
the learned features on the predictive performance. In ad-
dition, for some specific models such as DNABERT and
RNABERT, to further explore what the model learns, we

employ the attention heatmap to visualize the information
the model captures from either global or local perspectives.
Furthermore, the motif discovery enables users to know
the conservative sequential determinants which the models
learn from the datasets. The details of the motif discovery
process are described as follows. Firstly, we apply the at-
tention mechanism of BERT-based models to identify key
regions from the sequences. Then, for those identified re-
gions, we further extract and visualize the corresponding
motifs using the attention scores obtained from the model.
In this way, we highlight the concerns of different models
for different features and enhance the interpretability of the
deep-learning models.

For parameter optimization analysis, we provide users
with some parameter options to make their own choice to
optimize the model training, including the effect of different
sequence similarities in datasets, the effect of different data
augmentation strategies and the effect of different imbal-
anced data processing methods on predictive performance.
We also give some tabular information, including a sum-
mary of the input datasets and the performance of deep-
learning models. This helps the users to compare the results
of the same model with different parameters.

Base-level functional annotation module

The base-level functional annotation module is to predict
the functions of the biological sequences at base level using
deep learning. In this module, we provide nine annotation
tasks, including the methylation annotation for DNA and
RNA sequences, and the ligand-binding site recognition for
protein sequences. The module comprises four steps: data
selection, task selection, model loading and result visual-
ization. The details of this module are as follows.

Step 1. Data selection. In this step, DeepBIO enables users
to upload the sequences they want to annotate. In particu-
lar, for the DNA methylation site prediction task, we sup-
port two ways to input sequence data, i.e. (i) uploading se-
quence data by themselves and (ii) selecting a segment of
our pre-set human genome by choosing a specific cell line
and chromosome.

Step 2. Task selection. There are three types of func-
tional annotation tasks: DNA methylation site predic-
tion, RNA methylation site prediction and protein-ligand
binding site prediction. For DNA methylation site predic-
tion, there are DNA N*-methylcytosine (4mC) site predic-
tion, DNA 5-hydroxymethylcytosine (ShmC) site predic-
tion and DNA NS-methyladenine (6mA) site prediction.
For RNA methylation site prediction, there are RNA 5-
hydroxymethylcytosine (ShmC) site prediction, RNA N°-
methyladenosine (m6A) site prediction and RNA N*-
methylcytidine (m4C) site prediction. For protein—ligand
binding site prediction, there are DNA-binding site predic-
tion, RNA-binding site prediction and peptide-binding site
prediction.

Step 3. Model loading. 1n this step, there are two modes
for deep-learning model selection. One is the default and
the other is customized. For the default mode, we provide



several deep-learning models that are well pre-trained with
large-scale biological data, such as DNABERT. The well-
pre-trained models generally have good generalization abil-
ity and achieve good performance for different downstream
tasks. For the customized mode, we allow users to upload
the models they trained for the same tasks in the sequence-
level functional prediction module.

Step 4. Result visualization. In this part, we provide users
with the in-depth annotation result analysis based on the
model predictions and biological experiment data (e.g. hi-
stone modification signals and protein 3D structural infor-
mation). Specifically, for DNA, we designed two visualiza-
tion sections, namely functional site annotation and inte-
grative analysis. For base-level functional annotation, we
predict the functional sites that match the selected task type
(e.g. DNA 4mC site prediction) and perform the model-
predicted confidence of the corresponding position. In the
integrative analysis, we perform statistical analysis between
DNA methylation predictions and different histone mod-
ification signals. For RNA, due to the constraint of data,
we only perform the functional site annotation section the
same as in DNA. In addition, for protein, to intuitively
show the binding site annotation results, we visualize and
annotate the binding residues on the 3D structure of a given
protein sequence with PDB ID.

Result report module

We list the analysis results in the form of reports, which in-
volve various kinds of data formats from the results of the
two main functional modules. Users can view or download
freely all of the result data and charts. Notably, each submit-
ted task is immediately notified to the corresponding user
once it is completed.

RESULTS AND DISCUSSION
Case study

We showcase real-world applications of DeepBIO with two
bioinformatic scenarios: (i) the prediction of DNA 6mA
methylation and (ii) the prediction of protein toxicity. We
emphasize that the underlying objective is to illustrate how
to use our platform for two such diverse applications, rather
than securing the top predictive performance compared
with the state-of-the-art methods.

DNA methylation is closely associated with a variety of
key processes, such as genomic imprinting and carcinogen-
esis (64). Therefore, for the task of the DNA 6mA methyla-
tion prediction, we use the Drosophila melanogaster dataset
with 11 191 methylation sequences (as positives) and 11
191 non-methylation sequences (as negatives) as an exam-
ple dataset (65) for DNA sequence functional analysis. In
addition, protein toxicity is closely related to most neurode-
generative diseases, and accurate toxicity prediction leads to
significant promotion in new drug design. We choose a pro-
tein toxicity benchmark dataset (66) with 3379 toxic animal
protein sequences (as positives) and 5464 non-toxic animal
protein sequences (as negatives) for protein functional anal-
ysis. With the two example datasets, we first randomly split
them into the training set and testing set and then submit
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them to our online platform to demonstrate the data anal-
ysis and various functions of DeepBIO. More details of the
visualization results of the two cases are described below.

Dataset statistics

Figure 2 illustrates the dataset statistics of the protein toxi-
city dataset. The proportion and number of bases or amino
acids in the dataset are counted and illustrated as a pie chart
and composition histogram, respectively (Figure 2A), from
which we can clearly see the difference between the posi-
tives and the negatives from the compositional perspective.
In addition, we calculate and show the sequence length dis-
tribution (Figure 2B), which intuitively gives users the se-
quence length preference in the datasets. For example, it can
be seen from Figure 2B that positive samples are mainly
distributed in the range of 50-150 amino acids, while the
negative samples have a relatively even distribution. Fur-
thermore, we use a motif analysis tool called Weblogo to
generate the sequence motifs of the datasets, which enables
users to analyze the composition and conservation at the
sequence level (Figure 2C).

Model prediction analysis

DeepBIO provides detailed analysis for users to interpret
and show comprehensive performance comparisons among
different deep-learning models. Here, we select four models
(DNABERT, DNN, LSTM and RNN) to train and com-
pare their prediction performance on the DNA methylation
dataset. Figure 3A shows the performances of the compared
models in terms of ACC, sensitivity, specificity, AUC and
MCC. It can be seen that DNABERT achieves the best per-
formance with the ACC, sensitivity, specificity, AUC and
MCC of 0.921, 0.896, 0.946, 0.967 and 0.844, respectively.
For a better evaluation of models, Figure 3B illustrates the
ROC and PR curves of the compared models. As seen in
Figure 3B, DNABERT achieved the highest AUC and AP
values of 0.968 and 0.973, respectively, which further con-
firms that DNABERT is better than the other compared
models. To further study the generalization ability of the
compared models, we draw the epoch plot in Figure 3C to
show the trends of accuracy and calculation loss for each
model during the training process. From Figure 3C, it is
easy to see that the accuracy of three models (DNABERT,
LSTM and RNN), but not DNN, increases rapidly at first
and then the accuracy curves become smooth gradually.
Meanwhile, their calculation losses converge to lower val-
ues, indicating that these models are well trained and their
predictions are reliable. It is worth noting that during the
training process, DNN always achieves relatively low ac-
curacy, however with high calculation loss on the exam-
ple dataset (seen in Figure 3C). This indicates that it is
not a good and robust model after training. In addition,
to intuitively show the relationship among different models
from their prediction results, we further provide an Upset
plot and a Venn diagram in Figure 3D and E. From Fig-
ure 3D and E, we can see that most positive samples are
successfully predicted from the overlapping predictions of
the compared models. Moreover, to clearly understand the
prediction preference for each model, we visualize the den-
sity distribution of the prediction confidence of different
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Figure 2. The statistical analysis on the protein toxicity dataset. (A) Sequence compositions of positive and negative samples in the training and testing
sets. (B) Sequence length distribution of positive and negative samples in the training and testing sets. (C) Motifs of sequence statistics from the training

and testing sets.

deep-learning models in Figure 3F. As can be seen, DNN
mainly focuses its prediction confidence on ~0.5, which is
the center part of the x-axis, illustrating its poor discrim-
ination ability between positive and negative samples on
the example dataset. In contrast, the other three models
(DNABERT, LSTM and RNN) achieve higher prediction
confidence on both positive and negative samples, indicat-
ing that they possess better classification ability on the ex-
ample dataset. The comparison results for this part on the
dataset of protein toxicity can be seen in Supplementary
Figures S1-S6.

Feature analysis and visualization

To compare the features automatically learned by deep-
learning models with the traditional hand-crafted features,
we select some commonly used feature encodings, including
accumulated nucleotide frequency (ANF) (67), binary (68),
composition of K-spaced nucleic acid pairs (CKSNAP) (69)
and dinucleotide composition (DNC) (70,71) for nucleotide
sequences, and show the prediction performance in terms of
different metrics in Figure 4A and B. It is worth noting that
in Figure 4A and B, the compared deep-learning models,
with the exception of DNN, outperform most of the tradi-
tional feature encodings, allowing us to easily conclude that
the features learnt from the deep-learning methods gener-
ally are superior to hand-crafted features.

In addition, to intuitively evaluate the feature representa-
tions learnt from different deep-learning models, we employ
UMAP to conduct the dimension reduction and feature vi-
sualization (Figure 4C). In Figure 4C, each point represents
a sample in the dataset; the positive and negative samples
are assigned with different colors. In this case, we can get a
better sense of the classification ability of each model from
the UMAP plot. Specifically, Figure 4C shows that com-
pared with the other three models (DNABERT, LSTM and

RNN), the samples belonging to different classes in the fea-
ture space of DNN are almost connected, making it difficult
to distinguish the positives from the negatives. Moreover,
the positives and negatives are distributed more clearly in
two clusters the feature space of DNABERT than in that
of RNN and LSTM. This demonstrates that DNABERT
has stronger prediction ability than the other models. In
addition, we also provide the SHAP plot (Figure 4D), as-
signing each feature a value to represent its importance for
the model prediction. Each row represents the SHAP value
distributions of a feature, and the x-axis refers to the SHAP
value, where the value of SHAP >0 shows that the predic-
tion favors the positive class, and a value <0 indicates that
the prediction tends to be the negative class. The color of
sample points in Figure 4D indicates the corresponding fea-
ture value: redder points mean higher feature importance
values, while bluer points indicate lower feature values. The
features are sorted according to the sum of SHAP values
incorporating all the samples in the dataset. Therefore, the
SHAP plot shows the relationship between the value of fea-
tures and their impact on the model prediction. From Fig-
ure 4D, we can see that the high-dimension features play
a predominant role for DNABERT; the top-ranked fea-
ture values in DNABERT are more easily distinguished in
the color as compared with other models, indicating that
DNABERT performs better in feature representation learn-
ing.

To improve the interpretability of the deep-learning mod-
els, in Figure 4E we calculate the importance of the base at
each position on the user-given sequence from the attention
matrix in the model and visualize it with normalized atten-
tion scores, enabling us to analyze which sequential region
the model considers is more important for the prediction.
To further study what the models learn from the training
process, we extract the important regions with high atten-
tion scores through the attention mechanism of the mod-
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Figure 3. The prediction result analysis from different models using DeepBIO. (A) Performance comparison among different models in terms of ACC,
sensitivity, specificity, AUC and MCC. (B) ROC and PR curves of different deep-learning models. (C) The trends of performance and calculation loss
with each epoch, showing ACC and the loss change process on different models. (D and E) Upset plot and Venn diagram to express the relationships of
prediction results for different models. (F) Density distribution of the prediction confidence for different deep-learning models.

els to find conservative sequence motifs in Figure 4F from
the datasets, which might be related to biological functions.
The detailed feature analysis results on the dataset of pro-
tein toxicity can be seen in Supplementary Figures S7-S9.

Functional annotation analysis

To intuitively illustrate in-depth annotation result analy-
sis of biological sequences, we provide users with func-

tional site prediction and result visualization analysis as il-
lustrated in Figure 5. As seen in Figure SA, we can pre-
dict DNA methylation sites with corresponding positions
and prediction confidence based on user-provided DNA se-
quences or a segment of our pre-set human genome. In ad-
dition, if users select a segment from our pre-set human
genome by choosing a specific cell line and chromosome, we
will display the statistical analysis between our DNA methy-
lation site predictions and relevant histone modification sig-
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Figure 4. The visualization of feature analysis and model interpretation using DeepBIO. (A) Prediction performance comparison between deep-learning
models and traditional hand-crafted feature-based methods. (B) ROC and PR curves of deep-learning models and traditional hand-crafted feature-based
methods. (C) UMAP feature visualization results of different deep-learning models. (D) SHAP feature importance analysis of different deep-learning

models. (E) Attention heatmap of the user-chosen biological sequence. (F) Motif discovery by deep-learning models.

nals queried from the database (Figure 5B), assisting in min-
ing the potential relationships between them. Moreover, for
base-level annotation on protein sequences, we predict and
visualize the annotation results on the 3D structure of the
given protein sequence with its PDB ID. Specifically, Figure
5C shows the protein-peptide binding site prediction results
of an example protein (PDB ID 1a81A), and the residues in
red color on the protein 3D structure indicate the protein-
peptide binding sites.

Webserver implementation

DeepBIO is empowered by the high-performance graphic
processing architecture with million-scale calculation capa-
bility. Specifically, DeepBIO is deployed with the Ubuntu

18.04 Linux system, multiple Intel Xeon Silver 4210R
CPUs, 256 GB of RAM, hundreds of TB Solid State Drives
and NVIDIA RTX 3090 GPU clusters. Unlike other on-
line platforms that use CPU for training models and mak-
ing predictions, the models we provide are all trained and
evaluated based on GPU, which significantly reduces the
computational time. It can be seen from Supplementary Ta-
ble S3 that we spent less time in optimizing deep-learning
models and enable fast and accurate predictions. In addi-
tion, Supplementary Figures S10-S15 show that the front-
end pages are carefully designed to give users an interac-
tive visualization of the results while they can download
each result graph freely. To be specific, we use React frame-
work to set up the user interface, Spring Boot framework
for server implementation in the back end, Python and R
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Figure 5. The biological sequence functional annotation analysis using DeepBIO. (A) Prediction results of DNA methylation annotation. (B) Comparison
and analysis between the DNA methylation site prediction results and relevant histone modification signals. (C) Prediction results of protein-peptide

binding site annotation on an example protein (1a81A).

programming languages for the model’s construction and
visualization, and the MySQL database to manage the data
storage. In addition, to provide a better Web experience
for users, we also construct interactive graphs to visual-
ize the analysis results on the front page. Our platform
can be run stably on many browsers including Internet Ex-
plorer (>v.7.0), Mozilla Firefox, Microsoft Edge, Safari and
Google Chrome. In conclusion, with our DeepBIO plat-
form, data scientists and researchers limited by equipment
resources can now employ high-performance computers to
tackle their challenging work.

DATA AVAILABILITY

As an online platform for biological sequence analy-
sis, DeepBIO can be freely accessed without registra-
tion via https://inner.wei-group.net/DeepBIO. All code
used in data analysis and preparation of the manuscript,
alongside a description of necessary steps for reproduc-
ing results, can be found in a GitHub repository ac-
companying this manuscript: https://github.com/WLY Lab/
DeepBIO. The source code for DeepBIO is also freely avail-
able at Zenodo website (DOI: 10.5281/zenodo.7547847).
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