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ABSTRACT 

An RNA design algorithm takes a target RNA struc- 
ture and finds a sequence that folds into that struc- 
ture. This is fundamentally important for engineer- 
ing therapeutics using RNA. Computational RNA de- 
sign algorithms are guided by fitness functions, but 
not much research has been done on the merits of 
these functions. We survey current RNA design ap- 
proaches with a particular focus on the fitness func- 
tions used. We e xperimentall y compare the most 
widely used fitness functions in RNA design algo- 
rithms on both synthetic and natural sequences. It 
has been almost 20 years since the last compari- 
son was published, and we find similar results with 

a major new result: maximizing probability outper- 
forms minimizing ensemble defect. The probability 

is the likelihood of a structure at equilibrium and 

the ensemble defect is the weighted average num- 
ber of incorrect positions in the ensemble. We find 

that maximizing probability leads to better results on 

synthetic RNA design puzzles and agrees more often 

than other fitness functions with natural sequences 

and structures, which were designed by evolution. 
Also, we observe that many recently published ap- 
proaches minimize structure distance to the mini- 
mum free energy prediction, which we find to be a 

poor fitness function. 

INTRODUCTION 

Ribonucleic Acid (RNA) is a versatile molecule ( 1 ). It is 
fundamental to life ( 2 ) and has a breadth of roles includ- 
ing transcription and translation ( 3 ), catalyzing reactions 
( 4 ), gene regulation ( 5 ), maintaining telomeres ( 6 ) and be- 
yond. The functions of these RNAs are often governed by 

their structure ( 7 ). Additionall y, synthetic RN As can eas- 
ily be constructed ( 8 ). A consequence of these properties is 
that RNA is a popular tool for bioengineering therapeutics 
(including mRNA vaccines ( 9 )) and biomachines ( 10–12 ). 

RNAs have the quality that fast and (relati v e to other 
molecules) accurate algorithms exist to predict their struc- 

tures in silico ( 13–17 ). Since structure usually determines 
function in biology, a multitude of attempts have been made 
to de v elop algorithms to automaticall y design RN As with 

specific structures ( 18 ). We refer to this as the RNA design 

problem. Algorithmic RNA design dates back to at least the 
early 1990s ( 19 ). These algorithms have led to some promis- 
ing, practical successes ( 20–23 ). Howe v er, reliab ly solving 

RNA design puzzles is an open problem. No algorithm 

has solved the entire EteRNA100, a widely used RNA de- 
sign benchmark that was hand-crafted by humans ( 24 ). Re- 
cent results suggest the RNA design problem is NP-hard by 

proving that the most general version of the problem is hard 

( 25 ) as well as a simplified model ( 26 , 27 ). 
Many techniques have been applied to the RNA design 

prob lem. We gi v e a non-e xhausti v e sample for conte xt. The 
first method was likely RNAinverse ( 19 ), which applied an 

adapti v e random walk. Later methods used stochastic lo- 
cal search ( 28 ) with seeding heuristics ( 29 ), genetic algo- 
rithms ( 30–32 ), constr aint progr amming ( 33–35 ), simulated 

annealing ( 36 ), hierarchical decomposition ( 37 , 38 ), Monte 
Carlo methods ( 39–41 ), global sampling ( 42 , 43 ) and ant 
colony optimisation ( 44 ). The EteRNA project has turned 

RNA design into a game in which solutions to RNA design 

puzzles can be cro w d sourced from human players ( 45 ). Re- 
cently, deep learning has also been applied to the problem in 

se v eral ways including learning from human solutions ( 46 ), 
and by a ppl ying r einfor cement learning ( 47 , 48 ). 

Each of these RNA design algorithms generally have 
three components: 

(1) A computational model (encompassing multiple com- 
ponents ( 17 )), that can predict the structure of an RNA 

gi v en its sequence. 
(2) A fitness function , which determines the quality of a po- 

tential solution with r efer ence to a target structure. 
(3) A searc h algorithm , w hich explores the sequence space 

to find a desirable solution under the fitness function. 
The choice of possible search algorithms is often limited 

by the choice of fitness function. 

The thermodynamic ‘nearest neighbor’ model de v eloped 

by Turner, Mathews, Tinoco and many others ( 49 ) is ubiq- 
uitous in the RNA design litera ture. The implementa tion of 
the nearest neighbor model in the ViennaRNA package was 
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used in our work. This is the most widely used implemen- 
tation ( 13 ). Howe v er, it should be noted that other models 
exist and may offer new options for different fitness func- 
tions and search algorithms ( 17 ). 

Generally speaking, design algorithms r equir e a fitness 
function to guide their search. This is a measure of how 

promising an intermediate solution is. The fitness functions 
used are almost as numerous as the algorithms. Howe v er, 
most algorithms use fitness functions that are a variant of 
one of the four main types. These will be defined formally 

la ter. They comprise structur e distance minimization , fr ee 
ener gy minimization , pr obability maximization and ensem- 
ble defect minimization . 

Our aims are to summarize information about fitness 
functions for RNA design, and to provide an objecti v e anal- 
ysis of them. The latter is achie v ed by e xperiments. We use 
a fitness function agnostic search algorithm to do a fair 
benchmark. Both our aims ar e r elevant to future works de- 
veloping computational approaches to RNA design. The 
only similar work we are aware of is by Dirks et al. ( 50 ). We 
significantly expand and modernize the methods used, and 

find new results that differ somewhat from those of Dirks 
et al. We find that probability maximization performs better 
than any other fitness function, which differs from the pre- 
vious result. This has implications for algorithms for RNA 

design, many of which currently use other fitness functions. 

The computational RNA design problem 

Before we begin our discussion of fitness functions, we must 
understand the rules of the game: what is RNA design? 

An RNA is r epr esented by a string p ∈ { A , U , G , C } ∗
where the letters correspond to nucleotides. We refer to this 
string p as the sequence . A secondary structure s is a (possi- 
bly empty) set of pairings between the indexes of p such that 
an index appears in s at most once and ther e ar e no two ele- 
ments ( i , j ) ∈ s and ( k , l ) ∈ s such that i < k < j < l . In short, 
s is a properly nested set of pairings in p . In nature, some 
RN A structures contain improperl y nested pairings called 

pseudoknots. Also, some natural structures contain a sin- 
gle nucleotide binding to more than one other nucleotide 
forming a triplex or quadruplex. Since the computational 
model we use does not support these well, we do not con- 
sider them. Henceforth we elide secondary structure to just 
structure for brevity. 

Call S ( p ) the set of all possible structures for a sequence 
p . Define a modelm ( p , s ) as a function that assigns e v ery 

s ∈ S ( p ) a score. Since the structure represents bonds that 
form as the RNA sequence folds, we call the process of find- 
ing the optimal structure folding and define FOLD ( m, p) = 

arg min s ∈ S ( p) m ( p, s). Ties for the arg min are broken arbi- 
trarily. The solution to FOLD ( m, p) is the best guess of the 
true structure of the RNA under the model. Assuming the 
widely used thermodynamic model ( 49 ), FOLD ( m, p) can be 
computed in O (| p | 3 ) time ( 16 , 51 ). 

The algorithmic RNA design problem is essentially to in- 
vert the folding problem. The folding problem takes a se- 
quence p and finds an optimal structure s . The design prob- 
lem inverts this relationship by taking a structure s and find- 
ing a sequence p that folds into s . Formally, we are gi v en a 

structure s and a model m . Define the in verse f olding func- 

tion FOLD 

−1 ( m, s) = { p ∈ { A , U , G , C } | S| | FOLD ( m, p) = 

s } . Any sequence p ∈ FOLD 

−1 ( m, s ) is a solution to the 
RNA design problem. 

Sometimes, there can be ties for the optimal fold 

FOLD ( m, p). This ha ppens w hen ther e ar e multiple struc- 
tures with the minimum score. This issue is often over- 
looked in the literatur e. Ther e ar e many published r esults 
where a folding algorithm is run and whate v er arbitrary 

structure it produces in the case of ties is taken –– a non- 
e xhausti v e list: ( 18 , 39 , 44 , 45 ). There are two ways to ad- 
dress the issue. We can say that a sequence p is a correct 
design for a structure s when it is tied with the optimal fold: 
m ( p, s) = m ( p, FOLD ( m, p)). Alternati v ely, we can say that 
p is a correct design iff FOLD ( m, p) = s and there are no ties. 
We adopt the latter tie-breaking strategy because it is more 
stringent and should lead to more accurate designs in vivo . 
If ther e ar e ties for an optimal structure, it means the model 
cannot determine which is the most likely. An ideal design 

should ensure the target structure is non-ambiguously se- 
lected under the model. 

Fitness functions 

Success on the algorithmic RNA design problem as we have 
defined it is binary. Either a design is correct, or it is not. 
This is not directly usable for most search algorithms, which 

need to be able to make incremental progress toward a so- 
lution. This is why fitness functions are important. Their 
use is to estimate the effecti v eness of intermediate sequence 
solutions towards a target structure. Next, we describe the 
typical fitness functions used in RNA design. 

Structure distance minimization. The key idea in structure 
distance minimization is to make FOLD ( p, m ) as similar to 

the target structure as possib le. Gi v en a distance function 

d ( s 1 , s 2 ) between two structures, the structure distance for 
a gi v en potential solution sequence p and target structure t 
is d( t, FOLD ( p, m )). Minimizing the structure distance can 

lead to a correct design. This category of fitness function 

seems to be the most widely used ( 19 , 28 , 30 , 36 , 39 , 40 , 48 ). 
It is important to choose a good distance function. In our 

experiments, we use three that are widely used in the liter- 
ature. The first is base pair distance as implemented in the 
ViennaRNA software package ( 13 ). Base pair distance is 
the number of base pairs that occur in exactly one of the 
two compared structures. The second is the number of in- 
dexes in p where the structure differs from the target, defined 

as the number of incorrect nucleotides in ( 50 ). The third is 
Interaction Network Fidelity (INF) applied to secondary 

structures, which is the Mathews correla tion coef ficient of 
predicted and true base pairs ( 52 , 53 ). 

A weakness of using structure distance is that it is unclear 
what to do in the case of ties for the optimal fold. The typ- 
ical approach in the literature seems to be not to address 
this edge case and accept the arbitrary result of FOLD for 
structure distance comparison. We try se v eral methods of 
dealing with ties including using the average distance and 

minimum distance. Another weakness is that structure dis- 
tance myopically considers only the results of FOLD while 
ignoring all other structures. This can make structure dis- 
tance a poor guide when the target structure is close to op- 
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timal, but not an optimal fold. Due to these w eaknesses, w e 
expected that structure distance is not an effecti v e fitness 
function. The expectation that structure distance is a poor 
metric may be considered controversial, since it is widely 

used. Howe v er, the pre vious wor k on fitness functions by 

Dirks et al. found structure distance (they call it MFE sat- 
isfaction) to have middling efficacy ( 50 ). 

Fr ee ener g y minimization. Most e xisting RNA design al- 
gorithms use a thermodynamic nearest neighbour model. 
This model assigns each structure s ∈ S ( p ) a free energy 

scor e. Lower fr ee energy structur es ar e mor e likely at equi- 
librium and ther efor e mor e likely to be the true structure. 
Free energies can be used directly for RNA design. The util- 
ity of a potential design p for a target structure t can be de- 
fined as m ( p , t ). It seems na tural tha t we want to select de- 
signs that minimize the free energy of our target structure. 
This fitness function is often used in conjunction with other 
metrics ( 29 , 30 , 39 ), but it has been used independently too 

( 50 , 54 ). 
Despite its intuiti v e appeal, free energy minimization has 

a major weakness when used for algorithmic RNA de- 
sign. Consider two sequences p 1 and p 2 and a structure s 
∈ S ( p 1 ) ∩ S ( p 2 ) where m ( p 1 , s ) > m ( p 2 , s ). It is possible that 
FOLD ( m, p 1 ) = s and FOLD ( m, p 2 ) �= s. In words, s may be 
more stable in p 2 compared to p 1 , but not the most stable 
among all structures with respect to p 2 while being the most 
stab le ov er all structures for p 1 . This is because a ‘good’ 
score in S ( p 1 ) may not be a ‘good’ score in S ( p 2 ). In essence, 
we cannot sensibly compar e scor es drawn from different 
thermodynamic ensembles. Additionally, if free energy min- 
imization was a perfectly effecti v e fitness function, then ei- 
ther algorithmic RNA design would not be NP-hard or NP 

= P since a sequence with the minimum possible free energy 

for a structure can be found in polynomial time ( 29 ). Due 
to this w eakness, w e expect tha t free energy minimiza tion 

is not an effecti v e fitness function. Dir ks et al. pre viously 

found free energy minimization to be a relati v ely poor fit- 
ness function ( 50 ). 

Pr obability maximization. The thermod ynamic equilib- 
rium partition function for RNAs under the thermody- 
namic model can be computed efficiently, requiring O (| p | 3 ) 
time, the same as computing FOLD ( m, p) ( 55 ). This allows 
us to compute the conditional probability P ( s | p) of a 

structure s gi v en a sequence p . This probability can be max- 
imized and used as a fitness function for RNA design. This 
fitness function has been used for RNA design, ( 19 , 31 , 50 ) 
albeit less widely than some other fitness functions. 

Using probability maximization is similar to free energy 

minimization, but it addresses many of the major shortcom- 
ings. Because the probabilities are normalized to the same 
scale, it is more sensible to compare two probabilities taken 

from different sequences. In this sense, probability can be 
thought of as a ‘better’ free energy minimization. There is 
still a w eakness, how e v er. Suppose we are comparing two 

sequences p 1 and p 2 as potential designs for a target struc- 
ture t . It is possible that t is the best ranked (by probability) 
for p 1 , but has a higher probability and a worse rank in p 2 . 
This can happen when the probability distributions looks 
dissimilar between sequences, for example p 1 could have a 

flat distribution and p 2 could have an exponential distribu- 
tion. 

This weakness is similar to the weakness of free energy 

minimization. Howe v er, it should hav e a lower negati v e im- 
pact, since it r equir es the distributions of structure prob- 
abilities for sequences to look dissimilar. For this reason, 
we expected that probability will be a better fitness function 

than free energy. Dirks et al. found that probability maxi- 
mization was an effecti v e fitness function ( 50 ). 

Ensemble defect minimization. Ensemble defect was orig- 
inally introduced by Dirks et al. who found it to be the 
best fitness function they tested ( 50 ). They called it ‘aver- 
age number of incorrect nucleotides,’ which describes what 
it measures. It was later called ensemble defect ( 37 ). In 

essence, the ensemble defect of a sequence p with respect 
to a target structure t is the sum of a certain distance 
function over the ensemble of structures S ( p ) weighted by 

probability. 
A structure s is a set of paired nucleotide locations. For 

convenience, let s i = j if i and j ar e pair ed, and s i = i if i 
is not paired to any nucleotide. Let our distance function 

be the average number of incorrect nucleotides between a 

structure s and a target structure t such that | s | = | t |, similar 
to a Hamming distance: 

d( s, t) = 

∑ 

1 ≤i≤| s| 

{
0 if s i = t i 
1 otherwise (1) 

Define P ( s | p) as the probability of the structure s gi v en 

the sequence p . The ensemble defect of a sequence p for a 

target structure t is defined as: 

D( p, t) = 

∑ 

s ∈ S ( p) 

P ( s | p) × d( s, t) (2) 

It is possible to compute D( p, t) in O (| p | 3 ) time, mak- 
ing it no less efficient to compute than comparable fit- 
ness functions ( 50 ). While not as widely used as struc- 
ture distance minimization, ensemble defect is well known 

( 33 , 37 , 38 , 50 , 56 ). It appears to combine the strengths of 
probability maximization and structure distance minimiza- 
tion while avoiding the weaknesses of both. We expect that 
it will be the most effecti v e fitness function. 

MATERIALS AND METHODS 

We ran two different experiments. The first used synthetic 
RNAs, and the second used real RNAs. In the first, we 
used a fitness function agnostic search algorithm to test 
the performance of each fitness function type on synthetic 
RNAs. In the second, we took real RNA sequences with 

conserved structures and determined if the fitness functions 
predict that the true sequence is a good design for the true 
structure. 

We used the ViennaRNA package 2.5.0 ( 13 ) as the model 
and the RNAfold program as the folding algorithm for all 
our experiments. 

Synthetic RNAs 

A search algorithm is needed to test the fitness functions. 
It must be compatible with all fitness functions. We used an 
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Adapti v e Random Walk (ARW), since it supports all fitness 
functions, is widely known, and is relati v ely simple. Dir ks 
et al. ( 50 ) used an ARW, as does the RNAinverse program 

in ViennaRNA ( 13 , 19 ). The algorithm is described in Al- 
gorithm 1, and makes a sequence of muta tions tha t main- 
tain base pairs and accepting only those that improve the 
fitness function score. Our introduction points out the di- 
versity of search algorithms for the RNA design problem. 
By restricting ourselves to a single search algorithm, we 
limit the conclusions we can make about different search 

algorithms. Howe v er, we hav e picked a search algorithm 

that is similar to local search subroutines in many algo- 
rithms ( 19 , 38 , 40 , 56 ), and is also comparable to techniques 
that have elements of local search like Monte Carlo meth- 
ods, genetic and evolutionary algorithms, and simulated 

annealing. 

Algorithm 1 Adapti v e Random Walk. 

The ARW was run using each fitness function. ARW was 
run for 1000 steps on each target structur e. A r esult se- 
quence p was considered correct for a target structure t if 
it was the unique solution; that is it was the unique mini- 
mum free energy structure as judged by ViennaRNA ( 13 ). 
If ther e wer e ties or if p did not fold into the target struc- 
tur e, then a r esult was consider ed incorr ect. For each fitness 
function, we counted the number of correct and incorrect 
results. Better fitness functions should guide the ARW to 

good solutions more often, so the rate of corr ect r esults was 
used to measure fitness function efficacy. 

Three synthetic data sets were used. A 40nt, 80nt, and 

120nt set. In all sets, target structures were generated sim- 
ilarly. First, sequences were generated by picking each 

nucleotide with equal probability. A target structure was 
picked randomly for each sequence from the set of struc- 
tures within Tkcal / mol of the minimum free energy. A dif- 
ferent T value was picked in different data sets to adjust dif- 
ficulty. We use this method because always picking a min- 
imum free energy structure tended to generate structures 
that were easily solved by the ARW. The resulting set of tar- 
get structures for each sequence was used as our testing data 

set. Wuchty’s algorithm ( 57 ) in ViennaRNA ( 13 ) was used 

to generate all suboptimal structures within the free energy 

window. We ensured that a data set contained no duplicate 
structures. 

For the 80nt and 120nt data sets, 1600 structures of 
lengths 80 and 120 respecti v ely were generated with T = 5.0 

kcal / mol. For the 40nt data set, 1600 structures of length 40 

with T = 1.0 kcal / mol were generated. These values (1600, 
80, 120, 5, 40, 1) were picked before examining the perfor- 

mance results. Running the ARW for 1000 steps was an arbi- 
tr ary par ameter that was also chosen before examining per- 
formance results. Length 120 was picked because it was the 
largest length that ran in time on an AMD 5950X processor. 
Lengths 80 and 40 were picked arbitrarily. A window of T 

= 5.0 kcal / mol was chosen because 6.0 was too slow on our 
processor, and 1.0 was picked because it was significantly 

smaller than 5.0. 
The code used to generate the data sets is provided in 

the Data Availability section. These can be used to generate 
the same set of structures used in our experiments. Statis- 
tics about the structural motifs in our data set are gi v en in 

Table 1 . 
The previous work by Dirks et al. tested on 11 struc- 

tures ( 50 ). Of these, 9 were variants of the a tRNA inspired 

three-way multiloop structure with varying stem lengths 
and numbers of unpaired nucleotides. Of the two remain- 
ing, one is a larger multiloop, and the other is a small pseu- 
doknot. In contrast, we use 4800 structures with a much 

gr eater degr ee of di v ersity due to our method of generation. 
In particular, we expect our 80nt and 120nt data sets to con- 
tain much more difficult to solve structures. A major issues 
with the Dirks test set in addition to its small size is that 
all structur es wer e solved by both probability and ensemble 
defect. We belie v e har der puzzles are needed to distinguish 

between these two. 
We do not belie v e that our structure generation method 

has a bias toward producing structures that are easier for 
any particular fitness function, because the results using 

synthetic data are consistent across all data sets and with 

those from real RNAs. Howe v er, we could not find a way 

to ensure no bias in da ta genera tion for this or any other 
method except picking structures uniformly at random. 
Uniform random structure generation could not be used 

because we found it almost always generates structures no 

fitness function can solve. 
Recall that the ARW algorithm starts with a random 

seed sequence and modifies it. This sequence was picked 

uniformly at random. We tested all fitness functions on 

the three data sets with different seeding strategies for the 
ARW. This was to assess the sensitivity of the fitness func- 
tions to the seed sequence. Seed sequences were tested with 

25% GC-content and 75% as well as picking sequences uni- 
formly at random, which have 50% GC-content. 

Structure distance. We tried se v eral variants of structure 
distance. We used ‘base pair distance’ (BPD), which is a 

standard distance measure included in ViennaRNA ( 13 ) 
and defined as the number of base pairs that occur in ex- 
actly one of the two compared structures. We also used a 

structural Hamming distance (HD) defined the same as in 

Equation ( 1 ). Finally, Interaction Network Fidelity (INF) 
was used ( 52 , 53 ). 

For all of these distance functions, we tried three different 
ways of dealing with ties for the minimum free energy struc- 
ture. This issue is described previously in Fitness Functions . 
We tried using the single arbitrary structure ViennaRNA 

returns; taking the average distance over all ties; and taking 

the minimum distance over all ties. 
Both BPD and HD gi v e distance values in the range from 

0 to n for n nucleotides. Because our ARW implementation 
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Table 1. Statistics about the structural motifs in the Nearest-Neighbor model across the three synthetic data sets. Each data set contains 1600 structures. 
Average counts over the data set ( / 1600) are included in brackets. We define a helix as a sequence of consecutive base pairs with no loops 

Data set % P air ed Helices Hairpin loops Bulge loops Internal loops Multiloops 

40nt 44% 4184 (2.62) 1978 (1.24) 868 (0.54) 1331 (0.83) 7 (0.00) 
80nt 50% 9865 (6.17) 3374 (2.11) 2321 (1.45) 3803 (2.38) 367 (0.23) 
120nt 54% 14724 (9.2) 4488 (2.81) 3622 (2.26) 5735 (3.58) 879 (0.55) 

maximizes fitness values, we used n − d ( s 1 , s 2 ) as our fitness 
value where d ( s 1 , s 2 ) represents some distance function be- 
tween the structures s 1 and s 2 . INF gi v es a value between 0 

and 1, so 1 − d ( s 1 , s 2 ) was used. 

Fr ee ener gy. The free energy as ev aluated b y the Vien- 
naRNA package ( 13 ) was used. Because a lower free en- 
ergy is more stable, and our ARW maximizes fitness, we 
use −� G as the fitness value, where � G is the free energy 

change. 
Free energy minimization produces sequences with a high 

GC-content ( 50 ). This is known to cause issues in RNA de- 
sign ( 28 , 29 , 43 ). To address this, we test a variant of free 
energy minimization with a GC-content constraint which 

penalises e xcess GC e xponentially. The ARW maximizes 
Equation ( 3 ) where g is the target GC-content ratio (0.5 in 

our experiments) and ˆ g is the actual GC-content. 

− �G − 10 × e max (0 , ̂ g −g) − 1 

e − 1 

× | �G | (3) 

Probability. The probability P ( s | p) for a structure s gi v en 

a sequence p as evaluated by the ViennaRNA package ( 13 ) 
was used. This was achie v ed by computing the partition 

function for the sequence p . Probability was maximized di- 
rectly by the ARW. 

Ensemble defect. The normalized ensemble defect was cal- 
culated using the method provided in the ViennaRNA 

package ( 13 ). This is the same as in Equation ( 2 ), but nor- 
malized by sequence length: D( p,t) 

| p| . Because our ARW max- 

imizes fitness, we optimized 1 − D( p,t) 
| p| . 

Real RNAs 

Many RNAs in nature hav e conserv ed structures. Consider 
a natural RNA sequence p with a known structure s . A fit- 
ness function f can be used to rank e v ery structure in S ( p ) 
as a design for p . We can assign each structure s 

′ ∈ S ( p ) a 

score f ( p , s 
′ 
) then order S ( p ) according to these scores. A 

good fitness function is expected to rank the true structure s 
highly. Natural sequences have been ‘designed’ through nat- 
ural selection to fold into their structure. While the compu- 
tational folding algorithm onl y a pproximates this, we do ex- 
pect that the real structure for a natural sequence is seen as 
a good design. A subtlety worth emphasizing is that we are 
not comparing multiple sequences for a single target struc- 
ture, as with synthetic RNAs. Instead, we are looking at all 
the structures for a single, natural sequence that has a single 
true structure. 

Using natural sequences is important to fairly compare 
ensemble defect. It is claimed that ensemble defect is ex- 
pected to make good predictions on natural sequences due 

minor base pairing fluctuations in vivo and the observed low 

ensemble defect of natural helices ( 37 , 38 , 50 ). Despite this, 
the pre vious wor k on fitness functions by Dirks et al. ( 50 ) 
did not test on natural sequences, so we consider this anal- 
ysis novel. 

We used ArchiveII , a curated collection of 3948 natu- 
ral RNA sequences with conserved structures ( 58 ). For 
each, suboptimal folds were generated using the implemen- 
tation of Wuchty’s algorithm ( 57 ) in ViennaRNA ( 13 ). The 
suboptimal free energy window started at 0 kcal / mol and 

was increased in increments of 0.2 kcal / mol until at least 
200 000 suboptimal structures were generated or the win- 
dow exceeded 10 kcal / mol. The structures were ranked by 

their corresponding fitness function values. The rank of the 
RNA’s true structure was found in the ranked list of struc- 
tures. If it was not found, the closest structure by base pair 
distance ( 13 ) was used. If the closest structure differed by 

> 5% of the sequence length, the sequence was excluded 

from the experiment. A total of 1719 sequences were ex- 
cluded this way. The 5% similarity threshold was picked be- 
cause often the true structure does not appear in the sub- 
optimal list (e.g., it contains a base pair not allowed in the 
nearest neighbour model), but a nearly identical structure 
does appear. 

Probability, ensemble defect, and structur e distance wer e 
considered in our experiment. We opted not to test free en- 
ergy. In the special case of this experiment, free energy nec- 
essarily always has the same ranking as probability because 
the sequence is fixed. For structure distance, we considered 

only Hamming distance breaking ties for the minimum free 
energy by averaging because it is r epr esentati v e of other 
structure distance methods on synthetic RNAs. 

RESULTS 

Synthetic RNAs 

Tables 2 - 4 summarize the results for synthetic RNAs. The 
first table shows probability and ensemble defect with the 
strongest performances on the easier synthetic data set. 
Ensemble defect and probability perform similarly. In or- 
der, the performance seems to be fr ee energy, structur e dis- 
tance, ensemble defect, probability. This is somewhat simi- 
lar to the results found by Dirks et al. ( 50 ) who found that 
both probability and ensemble defect solved their entire test 
set. 

The second table contains results from the 80nt synthetic 
data set and shows probability with the highest correct rate 
and number of unique solutions. The same performance 
hierarchy is maintained, but probability pulls away by a 

lar ger mar gin. The number of unique solves is of partic- 
ular inter est wher e probability dominates all other fitness 
functions. 
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Table 2. Results on synthetic structures of length 40. The ‘# Correct’ is the number of correct solutions out of 1600. The ‘Correct Rate’ is the ratio of 
the number of correct solutions and 1600. The ‘Unique Solver’ column contains the number of structures for which a fitness function was the only fitness 
function to find a correct solution 

Fitness function # Correct Correct rate GC-percent Unique solver 

Ensemble defect 1530 0.96 0.52 1 
Free energy 249 0.16 0.74 0 
Free energy (GC-controlled) 546 0.34 0.49 0 
Probability 1565 0.98 0.52 14 
Structure distance (BPD; arbitrary tie breaking) 1260 0.79 0.51 0 
Structure distance (BPD; average tie breaking) 1437 0.90 0.51 0 
Structure distance (BPD; minimum tie breaking) 1101 0.69 0.50 0 
Structure distance (HD; arbitrary tie breaking) 1248 0.78 0.51 1 
Structure distance (HD; average tie breaking) 1425 0.90 0.51 1 
Structure distance (HD; minimum tie breaking) 1098 0.69 0.50 0 
Structure distance (INF; arbitrary tie breaking) 1262 0.79 0.51 0 
Structure distance (INF; average tie breaking) 1427 0.89 0.50 0 
Structure distance (INF; minimum tie breaking) 1107 0.69 0.50 0 

Table 3. Results on synthetic structures of length 80. The ‘# Correct’ is the number of correct solutions out of 1600. The ‘Correct Rate’ is the ratio of 
the number of correct solutions and 1600. The ‘Unique Solver’ column contains the number of structures for which a fitness function was the only fitness 
function to find a correct solution 

Fitness function # Correct Correct rate GC-percent Unique solver 

Ensemble defect 906 0.57 0.58 23 
Free energy 14 0.01 0.77 0 
Free energy (GC-controlled) 74 0.05 0.50 0 
Probability 1185 0.74 0.59 218 
Structure distance (BPD; arbitrary tie breaking) 353 0.22 0.50 0 
Structure distance (BPD; average tie breaking) 406 0.25 0.50 0 
Structure distance (BPD; minimum tie breaking) 268 0.17 0.50 1 
Structure distance (HD; arbitrary tie breaking) 313 0.20 0.50 0 
Structure distance (HD; average tie breaking) 428 0.27 0.50 2 
Structure distance (HD; minimum tie breaking) 241 0.15 0.50 1 
Structure distance (INF; arbitrary tie breaking) 331 0.21 0.50 1 
Structure distance (INF; average tie breaking) 393 0.25 0.50 0 
Structure distance (INF; minimum tie breaking) 258 0.16 0.50 2 

Table 4. Results on synthetic structures of length 120. The ‘# correct’ is the number of correct solutions out of 1600. The ‘correct rate’ is the ratio of 
the number of correct solutions and 1600. The ‘unique solver’ column contains the number of structures for which a fitness function was the only fitness 
function to find a correct solution 

Fitness function # Correct Correct rate GC-percent Unique solver 

Ensemble defect 721 0.45 0.61 29 
Free energy 2 0.00 0.78 0 
Free energy (GC-controlled) 12 0.01 0.50 0 
Probability 1149 0.72 0.62 370 
Structure distance (BPD; arbitrary tie breaking) 128 0.08 0.50 0 
Structure distance (BPD; average tie breaking) 203 0.13 0.50 3 
Structure distance (BPD; minimum tie breaking) 111 0.07 0.50 0 
Structure distance (HD; arbitrary tie breaking) 137 0.09 0.50 0 
Structure distance (HD; average tie breaking) 213 0.13 0.50 1 
Structure distance (HD; minimum tie breaking) 87 0.05 0.50 0 
Structure distance (INF; arbitrary tie breaking) 136 0.09 0.50 0 
Structure distance (INF; average tie breaking) 197 0.12 0.50 0 
Structure distance (INF; minimum tie breaking) 110 0.07 0.50 0 

The thir d tab le contains results for the 120nt synthetic 
data set. We see similar results as in the 80nt but more exag- 
gerated. All fitness functions have lower performance, but 
probability is barely impacted, while the performance of 
other fitness functions falls precipitously. 

We tried se v eral variations of structur e distance. The r e- 
sults suggest that HD, BPD and INF are all comparable. 
Further, using an average to break ties is much better than 

arbitrary tie breaking (which is the norm in the literature) 
and minimum tie breaking. 

The GC-content of seed sequences was tested using 25% 

and 75% GC-content seeds in addition to our default seed- 
ing strategy, which pr oduces r oughly 50% GC-content. Ta- 
ble 5 summarizes the results. While there is some minor vari- 
ation, the seeds did not seem to have a significant effect on 

the number of solves or the final GC-content of the ARW 

f or an y fitness function. Note that Hamming distance with 

an average tie breaking strategy was used as r epr esentati v e 
for structure distance. 
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Table 5. Results on synthetic structures of all lengths with different GC-content percentages used for the seed sequences. For example, 80nt / 25% indicates 
the 80nt dataset was used and the seed sequence for the adapti v e w alk w as generated with 25% of the nucleotides as G or C. The r eported r esults ar e 
the number of correct solves and the find GC-content of the solution in brackets. For example, 512 (0.49) indicates 512 correct solutions and the average 
GC-content of the final sequences found by adapti v e walk using this fitness function was 49% 

Fitness function 40nt / 25% 40nt / 75% 80nt / 25% 80nt / 75% 120nt / 25% 120nt / 75% 

Ensemble defect 1522 (0.52) 1526 (0.52) 906 (0.59) 921 (0.58) 775 (0.61) 725 (0.61) 
Free energy 273 (0.74) 226 (0.75) 15 (0.76) 8 (0.78) 5 (0.77) 2 (0.79) 
Free energy (GC-controlled) 545 (0.49) 503 (0.49) 79 (0.50) 78 (0.50) 12 (0.50) 18 (0.50) 
Probability 1556 (0.52) 1561 (0.52) 1167 (0.59) 1195 (0.59) 1143 (0.62) 1152 (0.62) 
Structure distance (HD; average) 1412 (0.51) 1440 (0.51) 436 (0.50) 435 (0.50) 213 (0.50) 183 (0.50) 

Figure 1. Comparison between probability, ensemble defect, and structure 
distance on real RNA sequences with known structures. Shows the cumu- 
lati v e number of RNAs for which the true structure (or the closest ana- 
log) was at or under a certain percentile when ranked by a fitness function 
against other structures. 

Real RNAs 

We consider the ranks of the true structure (or the closest 
analog) as a percentage. Consider an example percentage 
of 30.2%. This means, on average, the true structure was 
ranked at the position 30.2% below the highest rank. Higher 
ranks and ther efor e lower per centages ar e better as they cor- 
respond to the true structure being seen more favorably by 

the fitness function. 
Probability achie v ed a mean rank of 21.2% with a stan- 

dar d de viation of 26.9% and a median of 8.0%. Ensemb le 
defect achie v ed a mean rank of 48.0% with a standar d de- 
viation of 34.5% and a median of 47.8%. Structure distance 
achie v ed and mean rank of 48.2% with a standard deviation 

of 33.6% and a median of 47.9%. 
Note that these results contain fewer solutions than on 

synthetic sequences. This is because the energy model used 

is imperfect, so natural sequence and structure pairs are not 
expected to be perfectly recognised as good designs. This 
is why we look at relati v e r anks r ather than unique MFE 

solutions. 
These results are reflected in Figure 1 where probability 

dominates the lower percentiles and ensemble defect and 

structure distance dominates the higher percentiles. It ap- 
pears as though natural sequences are designed in a way 

tha t correla tes with probability, but not ensemble defect or 
structure distance. 

A r epr esentati v e e xample RNA is considered to illustrate 
why ensemble defect performs poorly compared to proba- 
bility on natural RNAs. Consider the tRNA from Saccha- 
romy ces Cere visiae ( 59 ). Figure 2 shows a small but infor- 
mati v e sample of structures from this RNA. The top ranked 

structures by probability are di v erse with some three- and 

f our-wa y multiloops, including the true structure. The top 

ranked structures by ensemble defect have low diversity and 

are all three-way multibranch loops. Ensemble defect tries 
to find the probability weighted center of the structure space 
under its distance function. In this case, the ensemble defect 
structur es ar e a similar distance to the other structure clus- 
ters and ensemble defect picks this most central shape rather 
than the most accurate. 

A second example is provided in Figure 3 . It is a small 
SRP ( 60 ). This is another case where ensemble defect does 
poor ly. The top r anked structures for probability include 
some di v ersity and contain se v eral structures similar to the 
true structure. The top ranked by ensemble defect have 
low di v ersity. In this case, the top structures for ensem- 
ble defect are similar to the three-way multiloop structures 
found by probability. Ensemble defect prefers these struc- 
tures since they are relati v ely high probability in the en- 
semble, and they are also roughly equidistant (by proba- 
bility weighted defect) from the other two structural clus- 
ters (f our-wa y m ultiloops and no m ultiloop). Ensemble de- 
fect makes a mistake by trying to pick a structure clus- 
ter that is central under its distance function, but be- 
ing central does not appear to be correlated with being 

correct. 

DISCUSSION 

Ensemble defect did not perform the best in our experi- 
ments. Probability performed better. Dirks et al. reported 

that probability and ensemble defect both performed well 
( 50 ). In their tests, both solved every RNA design challenge, 
with other fitness functions falling behind. We see a sim- 
ilar result in our 40nt data set (Table 2 ), which we expect 
has a similar difficulty to that of Dirks et al. Howe v er, the 
larger data sets (Tables 3 and 4 ) show probability having 

much stronger results. The explanation for the differences 
in our findings is that we tested on harder structures to de- 
sign. If both fitness functions are solving e v ery design chal- 
lenge, then the challenges are not hard enough to properly 

distinguish the fitness functions. 
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Figure 2. A sample of the structures for a tRNA ( Sacchar om y ces cer evisiae tdbR00000083 ). Colors corr espond to nucleotides in the true structur e 
depicted on the left. The top row is ranked by probability and the bottom row is ranked by ensemble defect. 

Figure 3. A sample of the structures for a small SRP ( Deinococcus r adiodur ans Dein.radi. AE000513 ). Colors correspond to nucleotides in the true 
structure depicted on the left. The top row is ranked by probability and the bottom row is ranked by ensemble defect. 

We found the same pattern in real RNAs (Figure 1 ). Prob- 
ability outperformed ensemble defect and structure dis- 
tance. Our results seem to indicate that evolution has de- 
signed sequences in a way that correlates with probability, 
but not with ensemble defect or structure distance. Natu- 
ral RNA sequences generally have low structural entropy 

( 61 , 62 ). Maximising probability e v entually minimises en- 
tropy, so these observations may be linked. 

An examination of specific RNAs where ensemble de- 
fect performs worse than probability is re v ealing. If there 
is more than one cluster of similar structures that are high 

probability, ensemble defect will compromise between the 
two clusters, which can lead to unrealistic averaging as can 

be seen in Figures 2 and 3 . We belie v e that a better interpre- 
tation when ther e ar e clusters is that a structure that at the 
center of any single cluster is likely, but one that is equidis- 
tant between two or more clusters is not. Probability cap- 
tures this intuition. 

It is possible that the issues with ensemble defect can be 
rectified by changing the distance function used (see Equa- 
tion 1 ). Howe v er, a primary strength of ensemb le defect is 
that it can be efficiently computed. This is because of the 
intelligent choice of distance function ( 50 ). It may be diffi- 

cult to achie v e such an efficient algorithm with a different 
distance function. 

Tables 2 - 4 record GC-content. They suggest that free en- 
ergy has a strong bias, which was expected given GC pairs 
have the lowest free energy change in the model. We expect 
to see 50% if the sequence was chosen randomly. Using GC- 
controlled free energy as a fitness function did improve per- 
formance, but only a little. Probability and ensemble defect 
appear to have a slight bias in GC-content. The increase in 

GC-content seems to be correlated with increased perfor- 
mance on the test as well as increased difficulty. This may 

be explained by the thermodynamic model predicting GC 

pairs are more stabilizing than other pairs. Thus, harder de- 
sign challenges m ust rel y on using the most stabilizing pairs 
in some situations, increasing the required GC-content. We 
note that Dirks et al. reported similar GC-contents, albeit 
slightly ele vated, possib ly due to their data set having a bias 
( 50 ). Also, we found that changing the GC-content of the 
seed sequences for the ARW did not materially change our 
results (Table 5 ). 

Structure distance appears to be the most widely used fit- 
ness function in the literature as we noted previously. The 
issue of minimum free energy tie breaking is not addressed 
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in the existing literature. We address it here, and our results 
suggest that taking the average among the ties has the best 
result. We tested base pair distance, structural Hamming 

distance, and Interaction Network Fidelity. We did not ob- 
serve any significant differences in performance. Overall, no 

variant of structure distance came close to the le v el of prob- 
ability. As such, we recommend that probability is pr eferr ed 

in the future over structure distance despite its popularity. 
In Figure 1 , we see that structure distance performs sim- 

ilarly to ensemble defect when used to rank real RNAs. 
Howe v er, it is less effecti v e than ensemb le defect on syn- 
thetic RNAs as seen in Tables 3 and 4 . We speculate that 
it could be the case that the evolutionary pr essur es on natu- 
ral sequences are not captured by ensemble defect or struc- 
ture distance, but ensemble defect is still a better guide than 

structure distance. 
In the work presented here, we examined fitness func- 

tions in isolation. Howe v er, some e xisting techniques com- 
bine multiple fitness functions ( 31 , 39 ). Future work might 
test the performance of composite fitness functions. 

Probability is the best performing fitness function, but 
it has a theoretical weakness described previously: in short 
probabilities taken from different distributions may not be 
comparab le. Future wor k may show that, in practice, RNA 

sequences of the same length have similar probability distri- 
butions over the corresponding structure ensemble. If this is 
true, then it would explain why comparing probabilities be- 
tween different sequences works well in practice. Addition- 
ally, a better fitness function may be found that outperforms 
probability and does not have this issue. 

We gi v e three major components comprising an RNA de- 
sign algorithm: the computational model , the fitness func- 
tion , and the search algorithm . It is interesting that the 
choice of computational model informs the space of pos- 
sible fitness functions. For example, probability and ensem- 
ble defect r equir e that the model assigns the ensemble of 
structures probabilities. Howe v er, structure distance only 

r equir es a folding function. The choice of fitness function 

also constrains the search algorithm. To illustrate, ( 37 ) uses 
the properties of ensemble defect to weight mutations. A 

computational model based on the nearest neighbour ther- 
modynamic model and dynamic programming recursions 
from ( 16 ) is widely assumed in RNA design, but there are al- 
ternati v es ( 17 ). We wonder if using a different paradigm al- 
together may affect the choice of fitness function and search 

algorithm. 
The fitness function for design must lead the search algo- 

rithm toward good solutions. The goodness of those solu- 
tions is dependent on the computational model, which also 

has its own associated fitness function. Ther efor e, it must be 
the case that there is some relationship between the two fit- 
ness functions. The relationship between fitness functions 
for structur e pr ediction and fitness functions for design is 
indirect. For example, most successful folding algorithms 
minimize free ener gy ( 16 ), ho we v er we hav e demonstrated 

that doing the same for design is poor. Howe v er, some pre- 
diction algorithms maximize probability ( 17 ), and proba- 
bility also works well for design as we have demonstrated. 
The reason for the relationship being complex is likely be- 
cause the space of sequences is not comparable to the space 
of structures. In structure prediction, we must select from 

the space of all structures. For design, we must select from 

the space of all sequences, which is much larger. It is not 
clear tha t dif ferent fitness function hav e comparab le inter- 
pretations in both spaces. 
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and Barash,D. (2018) Design of RNAs: comparing programs for 
inverse RNA folding. Brief. Bioinform. , 19 , 350–358. 

19. Hofacker,I.L., Fontana,W., Stadler,P.F., Bonhoeffer,L.S., Tacker,M. 
and Schuster,P. (1994) Fast folding and comparison of RNA 

secondary structures. Monatsh. Chem. , 125 , 167–188. 

https://github.com/maxhwardg/fit-fns-for-rna-design


e40 Nucleic Acids Research, 2023, Vol. 51, No. 7 PAGE 10 OF 10 

20. Wachsmuth,M., Findeiß,S., Weissheimer,N., Stadler,P.F. and 
M ̈orl,M. (2013) De novo design of a synthetic riboswitch that 
regulates transcription termination. Nucleic Acids Res. , 41 , 
2541–2551. 

21. Chappell,J., Takahashi,M.K. and Lucks,J.B. (2015) Creating small 
transcription activating RNAs. Nat. Chem. Biol. , 11 , 214–220. 

22. Dotu,I., Garcia-Martin,J.A., Slinger,B.L., Mechery,V., Meyer,M.M. 
and Clote,P. (2014) Complete RNA inverse folding: computational 
design of functional hammerhead ribozymes. Nucleic Acids Res. , 42 , 
11752–11762. 

23. Wayment-Steele,H.K., Kim,D.S., Choe,C.A., Nicol,J .J ., 
Wellington-Oguri,R., Watkins,A.M., Parra Sperberg,R.A., 
Huang,P.-S., Participants,E. and Das,R. (2021) Theoretical basis for 
stabilizing messenger RNA through secondary structure design. 
Nucleic Acids Res. , 49 , 10604–10617. 

24. Anderson-Lee,J., Fisker,E., Kosaraju,V., Wu,M., Kong,J., Lee,J., 
Lee,M., Zada,M., Treuille,A. and Das,R. (2016) Principles for 
predicting RNA secondary structure design difficulty. J. Mol. Biol. , 
428 , 748–757. 

25. Schnall-Le vin,M., Chindele vitch,L. and Berger,B. (2008) Inv erting 
the Viterbi algorithm: an abstract frame wor k for structure design. In: 
Proceedings of the 25th International Conference on Machine learning . 
pp. 904–911. 
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and Waldispühl,J. (2012) A global sampling approach to designing 
and reengineering RNA secondary structures. Nucleic Acids Res. , 40 , 
10041–10052. 

43. Reinharz,V., Ponty,Y. and Waldispühl,J. (2013) A weighted sampling 
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