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BACKGROUND Differentiating among cardiac diseases associated
with left ventricular hypertrophy (LVH) informs diagnosis and clin-
ical care.

OBJECTIVE To evaluate if artificial intelligence–enabled analysis of
the 12-lead electrocardiogram (ECG) facilitates automated detec-
tion and classification of LVH.

METHODS We used a pretrained convolutional neural network to
derive numerical representations of 12-lead ECG waveforms from
patients in a multi-institutional healthcare system who had car-
diac diseases associated with LVH (n 5 50,709), including car-
diac amyloidosis (n 5 304), hypertrophic cardiomyopathy (n 5
1056), hypertension (n 5 20,802), aortic stenosis (n 5 446),
and other causes (n 5 4766). We then regressed LVH etiologies
relative to no LVH on age, sex, and the numerical 12-lead rep-
resentations using logistic regression (“LVH-Net”). To assess
deep learning model performance on single-lead data analogous
to mobile ECGs, we also developed 2 single-lead deep learning
models by training models on lead I (“LVH-Net Lead I”) or
lead II (“LVH-Net Lead II”) from the 12-lead ECG. We compared
the performance of the LVH-Net models to alternative models fit
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on (1) age, sex, and standard ECG measures, and (2) clinical
ECG-based rules for diagnosing LVH.

RESULTS The areas under the receiver operator characteristic curve
of LVH-Net by specific LVH etiology were cardiac amyloidosis 0.95
[95% CI, 0.93–0.97], hypertrophic cardiomyopathy 0.92 [95% CI,
0.90–0.94], aortic stenosis LVH 0.90 [95% CI, 0.88-0.92], hyper-
tensive LVH 0.76 [95% CI, 0.76-0.77], and other LVH 0.69 [95%
CI 0.68-0.71]. The single-lead models also discriminated LVH etiol-
ogies well.

CONCLUSION An artificial intelligence–enabled ECG model is
favorable for detection and classification of LVH and outperforms
clinical ECG-based rules.

KEYWORDS Artificial intelligence; Electrocardiography; Hypertro-
phic heart disease; Hypertrophic cardiomyopathy; Cardiac
amyloidosis
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Introduction
Left ventricular hypertrophy (LVH) is defined as increased
left ventricular mass and is associated with cardiovascular
morbidity and mortality.1,2 LVH is caused by a spectrum of
cardiovascular diseases, including hypertension, aortic steno-
sis, hypertrophic cardiomyopathy, and cardiac amyloidosis,
among others. Discriminating among etiologies of increased
left ventricular mass has important implications for treatment
and prognosis.3–5

Deep learning models have shown promise in classifying
etiologies of ventricular hypertrophy, including cardiac
amyloidosis and hypertrophic cardiomyopathy, using 12-
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KEY FINDINGS

� A 12-lead electrocardiogram (ECG)-based artificial in-
telligence algorithm (“LVH-Net”) classified cardiac dis-
eases associated with left ventricular hypertrophy
(LVH), including cardiac amyloidosis, hypertrophic car-
diomyopathy, aortic stenosis, hypertensive heart dis-
ease, and other causes of LVH, with favorable
performance. LVH-Net outperformed comparison
models based on quantitative electrocardiogram (ECG)
measures, including heart rate and standard ECG mea-
sures, as well as traditional ECG-based rules for diag-
nosing LVH used in clinical practice.

� Single-lead versions of LVH-Net trained on 12-lead ECG
data from lead I (“LVH-Net Lead I”) and lead II (“LVH-
Net lead II”) also outperformed the comparison models
for classification of cardiac diseases associated with
LVH, suggesting that these models may be applicable
to mobile ECG data.

� LVH-Net may have clinical utility as a fully automated
ECG-based model for detection and classification of
LVH.
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lead electrocardiograms (ECGs).6,7 Developing models that
can differentiate cardiac diseases associated with LVH may
facilitate efficient diagnosis and treatment, and potentially
prevent morbidity. Given the increased availability of mobile
devices capable of recording single-lead ECGs, models that
accurately discriminate conditions associated with LVH on
single-lead ECGs may enable scalable detection of disease
in large populations. We sought to develop deep learning
models to detect LVH and classify cardiac diseases that cause
LVH using both 12-lead and single-lead ECG data.

Using a large retrospective sample of individuals
receiving longitudinal cardiology care, we identified
cardiovascular diseases that cause LVH, including cardiac
amyloidosis, hypertrophic cardiomyopathy, LVH owing to
hypertension, LVH owing to aortic stenosis, and LVH owing
to other causes. We assessed the extent to which a pretrained
deep learning model applied to both 12-lead and single-lead
ECG waveform data could detect LVH and discriminate
among etiologies of LVH. We compared the performance
of the deep learning models against alternative models using
structured ECG data, and to traditional ECG-based rules for
diagnosing LVH. We also evaluated potential associations
between deep learning model predictions and clinical
outcomes.
Methods
Study sample
We identified adult patients aged 18 years or older who
received longitudinal ambulatory cardiology care at a
multi-institutional academic healthcare system (Mass Gen-
eral Brigham). We identified 99,252 patients with at least 1
pair of cardiology clinic visits 1–3 years apart occurring be-
tween 2000 and 2019. We collected a broad range of elec-
tronic health record (EHR) data, including demographics,
anthropometrics, vital signs, narrative notes, laboratory re-
sults, medication lists, radiology and cardiology diagnostic
test results, pathology reports, and procedural and diagnostic
administrative billing codes, as previously described.8 We
refer to the retrospective dataset as the Enterprise Warehouse
of Cardiology (EWOC). For the present analysis, patients
without an ECG (n 5 6069) were excluded, resulting in
93,138 patients eligible for inclusion (Figure 1).
LVH ascertainment and classification
We identified potential patients with cardiac diseases associ-
ated with LVH based on clinical diagnoses, cardiac imaging,
and pathology data. Ascertainment and adjudication of car-
diac amyloidosis and hypertrophic cardiomyopathy diagno-
ses were performed by a clinical reviewer (Supplemental
Methods). Patients without a diagnosis of cardiac amyloid-
osis or hypertrophic cardiomyopathy after adjudication
were still considered for inclusion in the echocardiographic
LVH categories below. We established mutually exclusive
categories of LVH-related diseases for all analyses
(Supplemental Table 1). Study availability and diagnostic
modality sources for cardiac amyloidosis and hypertrophic
cardiomyopathy are presented in Supplemental Tables 2–5.

We included all individuals with cardiac amyloidosis and
hypertrophic cardiomyopathy identified by comprehensive
review of cardiac imaging and pathology data
(Supplemental Methods) in our definition of LVH regardless
of echocardiographic criteria for LVH (see below), given the
potential imperfect sensitivity of echocardiography for LVH
in these diseases.9,10 Although echocardiographic LVH was
not required for a cardiac amyloidosis or hypertrophic cardio-
myopathy diagnosis, 273 of 304 (89%) individuals with car-
diac amyloidosis and 874 of 1056 (83%) individuals with
hypertrophic cardiomyopathy met echocardiographic LVH
criteria prior to diagnosis.

After identification of individuals with cardiac amyloid-
osis or hypertrophic cardiomyopathy, we evaluated the re-
maining individuals with an echocardiogram to identify
those with echocardiographic LVH (Figure 1). We defined
echocardiographic LVH by a string-matching algorithm
applied to echocardiogram reports (Supplemental Table 6)
and an alternative definition of an average combined inter-
ventricular septal and posterior wall thickness .11 mm.11

We further delineated individuals with echocardiographic
LVH by likely etiology hierarchically, resulting in mutually
exclusive categories: LVH due to aortic stenosis (“aortic ste-
nosis LVH”), LVH due to hypertension (“hypertensive
LVH”), and LVH due to another cause (“other LVH”). We
first assessed for aortic stenosis LVH, defined as a concurrent
diagnosis of moderate or greater aortic stenosis on an echo-
cardiogram with LVH. Following identification of individ-
uals with aortic stenosis LVH, we identified individuals
with hypertensive LVH, defined as echocardiographic LVH



Figure 1 CONSORT diagram of Massachusetts General Hospital (MGH) derivation and Brigham and Women’s Hospital (BWH) validation samples.
ECG 5 electrocardiogram; EWOC 5 Enterprise Warehouse of Cardiology; LVH 5 left ventricular hypertrophy.
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with a prior diagnosis of hypertension (see clinical feature
ascertainment). Individuals with echocardiographic LVH
that did not meet criteria for an aortic stenosis or hypertension
etiology were grouped into the “LVH other” category.
Finally, remaining individuals were categorized as
“No LVH” if they had at least 1 echocardiogram report avail-
able that reported both posterior wall thickness and interven-
tricular septal thickness but did not meet echocardiographic
LVH criteria.
ECG acquisition
Study sample ECGs were performed during routine clinical
care by GE Healthcare machines (models MAC5500 and
MAC5000) and accessed via theMUSE Cardiology Informa-
tion System database of Mass General Brigham (GE Health-
care; “MUSE” software versions 8.0 and 9.0). ECG
waveforms contain voltage measurements for each of the
12 leads sampled at 240 (8%), 250 (41%), or 500 Hz
(51%) for a 10-second duration. ECGs were not excluded
based on sampling frequency. ECGs missing a complete
10-second tracing for each lead were excluded (n 5 131,
Figure 1). The MUSE database includes automated and
physician-entered diagnostic statements; tabular ECG mea-
sures including axes, intervals, and lead-specific voltage am-
plitudes; and raw ECG waveforms. Similar to prior studies,
and to facilitate comparison to clinical ECG LVH rules
(see below), we additionally excluded ECGs with physician-
or computer-entered diagnoses of electronically paced
rhythms and left bundle branch block (n 5 7290,
Figure 1).7,12

We selected an index ECG from each individual closest to
the date of hypertrophic cardiomyopathy or cardiac amyloid-
osis diagnosis, or closest to the date of the earliest echocar-
diogram demonstrating LVH. In the case of the “No LVH”
category, the date of the earliest echocardiogram was used.



Figure 2 Modeling overview. Modeling schema of comparison models (A) and deep learning models (B). A: The Age and Sex Model includes terms for
patient age and sex in a logistic regression model. The ECGMeasures Model includes quantitative electrocardiogram (ECG) measures along with patient age
and sex in a logistic regression model. B: In LVH-Net, the 12-lead ECG waveform is first converted into a 320-dimensional representation using PCLR
(Patient Contrastive Learning of Representations; see text). The representation, along with patient age and sex, are input into a logistic regression model
that is trained to classify left ventricular hypertrophy (LVH) etiology, including cardiac amyloidosis, hypertrophic cardiomyopathy, aortic stenosis LVH, hy-
pertensive LVH, other LVH, and no LVH. LVH-Net Lead I and LVH-Net Lead II models use PCLR representations derived only from ECGwaveform data of
ECG leads I and II, respectively.
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ECGs performed more than 3 years before or 30 days after
the date of diagnosis or echocardiogram were excluded
(n 5 15,688, Figure 1). The mean time from the index
ECG to the date of diagnosis was 75 6 191 days.
Clinical feature ascertainment
Age, sex, race, height, weight, and systolic blood pressure
were ascertained from the EHR. Patient age was defined at
the time of the index ECG. Vital sign data including height,
weight, and systolic blood pressure were ascertained from the
closest EHR entry prior to the date of the index ECG. Anti-
hypertensive use was determined via a medication list
(Supplemental Table 7).13 Additional patient characteristics,
also ascertained prior to the date of the index ECG, were
defined using previously published groupings of
International Classification of Diseases, 9th and 10th revi-
sion diagnosis codes.8 Definitions for clinical features used
in the analysis are provided in Supplemental Table 8.
Statistical analysis
Model derivation was performed among individuals for whom
an index ECG was performed at the Massachusetts General
Hospital (MGH), and model validation was performed among
individuals for whom the index ECG was performed at the
Brigham and Women’s Hospital (BWH) (Figure 1). Individ-
uals who had ECGs at both sites were prioritized for inclusion
in the MGH derivation sample. The partitioned datasets
comprised independent ECGs and patients.

For the deep learning model, we first transformed each in-
dex ECG into a 320-dimensional vector representation using a
previously described deep learning approach known as Patient
Contrastive Learning of Representations (PCLR), which is
optimized for training efficiency (Figure 2).14 We used a pub-
licly available PCLR convolutional neural network trained on
3 million inpatient and outpatient ECGs from MGH that cre-
ates numerical representations of ECGwaveforms that empha-
size differences between ECGs from different individuals and
similarities between ECGs from the same individual. Unlike
other ECG deep learningmodels, PCLR is designed not to pre-
dict a specific clinical outcome, but rather to produce 320-
dimensional numerical representations of ECG waveforms
that can be used as input into linear models such as logistic
regression. Linear interpolation is applied before neural
network preprocessing so that each input is 2500 voltage mea-
surements regardless, allowing for variability in sample
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frequency. The PCLR numerical representations, along with
patient age and sex, were then included in a multinomial logis-
tic regression model with Ridge regularization (“LVH-Net”),
trained to simultaneously classify cardiac amyloidosis, hyper-
trophic cardiomyopathy, aortic stenosis LVH, hypertensive
LVH, other LVH, and no LVH, where the “No LVH” group
served as the baseline comparator. Ridge regularization pa-
rameters were tuned by 5-fold cross-validation.We also devel-
oped 2 analogous single-lead deep learning models, “LVH-
Net Lead I” and “LVH-Net Lead II,” using 320-dimensional
PCLR representations derived from ECG waveform data
from only the respective leads (Figure 2). We selected leads
I and II for single-lead modeling based on their frequent avail-
ability among mobile ECG technology.15 The single-lead
model deep learning representations used as input into LVH-
Net Lead I and II were derived from separate PCLR convolu-
tional neural network models trained on waveform data from
only those leads.

We also trained comparator models, including an age and
sex model and an “ECGMeasures”model including age, sex,
heart rate, PR, QRS, and QT intervals, and voltage ampli-
tudes from the lead V1 S wave, aVL R wave, V3 S wave,
V5 R wave, and V6 R wave (Figure 2). The ECG measures
were selected based on previously described relations with
LVH-related diagnoses including hypertrophic cardiomyop-
athy and cardiac amyloidosis,16,17 and inclusion in traditional
ECG LVH criteria (see below).18,19 Where possible, we ex-
tracted maximum lead voltage from automated measure-
ments in MUSE and inferred missing maximum voltage
amplitudes where these values were missing (Supplemental
Methods). Automated voltage measurements were present
for 78% of ECGs in the derivation set and 88% of ECGs in
the validation set. The voltage inference model performed
with a mean absolute error of 0.05 mV in a separate valida-
tion set comprised of MGH ECGs.

We assessed model performance in the validation sample
using area under the receiver operating characteristic curve
(AUROC), and area under the precision-recall curve
(AUPRC) for classification of each LVH etiology vs no
LVH. We generated distributions of AUROC and AUPRC
from 1000-iteration bootstrapping with replacement.We esti-
mated 95% confidence intervals for AUROC and AUPRC
from these distributions. We also measured P values for
metric differences between pairs of models by applying the
2-sided Wilcoxon signed rank test to the bootstrapped distri-
butions. We compared test characteristics including positive
predictive value (PPV), negative predictive value (NPV),
positive likelihood ratio (LR1), and negative likelihood ratio
(LR-), and the number needed to screen (NNS) at probability
thresholds corresponding to model sensitivities and specific-
ities of 99%, 90%, and 80%.20 The number needed to screen
estimates the number of individuals a model must classify as
positive to detect 1 true positive. Confidence intervals for test
characteristics were calculated using an exact binomial
method. In sensitivity analyses, we used the last echocardio-
gram as the reference date of the “No LVH” category in the
validation sample, which resulted in an increase in the me-
dian year of the No LVH index ECGs from 2012 to 2015
with equivalent year ranges (2000–2019) compared to the
primary analysis. We also performed sensitivity analyses in
which we assessed deep learning model performance for 1
vs rest classification of each LVH etiology (ie, data from
the LVH etiology of interest is treated as positive, and all
other classes including no LVH are treated as negative). As
part of the 1 vs rest sensitivity analyses, we evaluated model
performance in the subgroup of individuals in the validation
set demonstrating echocardiographic LVH.

To gain clinical insight into how the deep learning model
classifies individuals, we evaluated differences in ECG
waveforms corresponding to individuals predicted to be at
the highest (395th) and lowest risk (£5th) percentiles of
LVH-Net predicted risk of cardiac amyloidosis and hypertro-
phic cardiomyopathy. We selected median waveforms from
leads I, II, V1, and V5 for evaluation, and aligned the median
waveforms at the onset of the P wave to facilitate comparison.

We also assessed whether commonly used clinical ECG
LVH rules can discriminate among cardiac diseases causing
LVH from those without LVH and compared performance of
clinical ECG LVH rules to the deep learning models. We
applied 3 commonly used ECG-based rules for diagnosing
LVH: Cornell voltage criteria (R wave in aVL 1 S wave in
V3 . 28 mm for males or . 20 mm for females), Modified
Cornell criteria (R wave in aVL . 11 mm), and Sokolow-
Lyon criteria (S wave in V1 1 tallest R wave in V5–V6 .
35 mm).18,19 An ECG was considered to demonstrate rule-
based LVH if any of the 3 criteria were met. The number
of patients that met clinical ECG LVH criteria by LVH etiol-
ogy is shown in Supplemental Table 9.

We compared the deep learning models to the clinical
ECG LVH rules by first calculating the specificity, sensi-
tivity, PPV, and NPV of the clinical ECG LVH rules for
detection of echocardiographic LVH and each LVH etiology
vs no LVH.We then found the threshold probability at which
the deep learning models yielded an equivalent specificity or
sensitivity to the clinical rules, and calculated the correspond-
ing sensitivity (or specificity) and PPV of the deep learning
models using this threshold. We then visualized the test char-
acteristics and associated 95% confidence intervals for LVH-
Net and the clinical ECG rules for comparison.

We evaluated potential associations between LVH-Net pre-
dicted probability of cardiac amyloidosis and hypertrophic
cardiomyopathy with incident heart failure, incident atrial
fibrillation, and mortality, after excluding individuals in the
validation sample with known cardiac amyloidosis or hyper-
trophic cardiomyopathy. We defined incident heart failure
and atrial fibrillation using previously described groupings
of diagnostic codes (Supplemental Table 8).21,22 For time-
to-event analyses, person-time began at time of the index
ECG and ended at the primary outcome, death, or last clinical
encounter. For each analysis, we omitted individuals with the
primary outcome occurring prior to, or on the same day as, the
index ECG. Incidence rates were calculated by dividing the
number of incident events by 100 person-years of follow-up.
We fit multivariable Cox proportional hazards models



Table 1 Characteristics of derivation (Massachusetts General
Hospital) and validation (Brigham and Women’s Hospital) samples

Derivation
sample
(MGH N 5 34,258)

Validation
sample
(BWH N 5 16,451)

Age, y 63.2 6 15.3 62.7 6 15.0
Female sex 13,622 (39.8) 7309 (44.4)
Height, in 66.8 6 7.8 66.8 6 11.1
Weight, lb 183.4 6 50.1 184.3 6 48.6
Systolic blood
pressure, mm Hg

128.7 6 18.5 132.0 6 19.8

Diastolic blood
pressure, mm Hg

74.4 6 10.9 75.7 6 12.5

Diabetes 6512 (19.0) 3665 (22.3)
Coronary artery disease 17,212 (50.2) 8052 (48.9)
Myocardial infarction 7444 (21.7) 5198 (31.6)
Valvular disease 5791 (16.9) 3053 (18.6)
Atrial fibrillation 10,615 (31.0) 5132 (31.2)
Obesity 2415 (7.0) 1361 (8.3)
Chronic kidney disease 5594 (16.3) 2959 (18.0)
Hypertension 24,926 (72.8) 11,342 (68.9)
Antihypertensive
medication

26,641 (77.8) 13,871 (84.3)

Ethnicity
White 29,888 (87.2) 13,315 (80.9)
Black 1125 (3.3) 1239 (7.5)
Asian 920 (2.7) 348 (2.1)
Hispanic 612 (1.8) 595 (3.6)
Other 971 (2.8) 482 (2.9)
Mixed 1 (0.0) 1 (0.0)
Unknown 745 (2.2) 472 (2.9)
Clinical ECG LVH rules
aVL 3154 (9.2) 1397 (8.5)
Sokolow-Lyon 1179 (3.4) 562 (3.4)
Cornell 2763 (8.1) 1278 (7.8)
Any† 5463 (15.9) 2459 (14.9)

Data are displayed as mean6 standard deviation or n (%) unless other-
wise noted.

BWH5 Brigham and Women’s Hospital; ECG5 electrocardiogram; LVH5
left ventricular hypertrophy; MGH 5 Massachusetts General Hospital.
†Clinical ECG LVH criteria “Any” category aggregates aVL, Sokolow-Lyon, and
Cornell criteria.
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adjusted for age and sex to assess the relations between LVH-
Net probabilities of cardiac amyloidosis and hypertrophic car-
diomyopathy with heart failure, atrial fibrillation, or mortality
as the outcomes. Prior to regression, LVH-Net probabilities
were first transformed to the logit scale using the logit transfor-
mation logit(x)5 log (x/[12 x]) to achieve an approximately
normal distribution of probabilities.23 Hazard ratios for LVH-
Net probabilities are reported per standard deviation on the
logit scale. We also calculated age- and sex-stratified cumula-
tive incidence rates for each clinical outcome.

All analyses were performed in Python v3.8 using pack-
ages “pandas,” “sklearn,” “tensorflow,” and “lifelines.”24–28
Results
Study sample
We included 50,709 individuals with a diagnosis of cardiac
amyloidosis, hypertrophic cardiomyopathy, echocardio-
graphic LVH, or no echocardiographic LVH in the modeling
sample (Figure 1). The MGH derivation sample included
34,258 individuals (68%), among whom 40% were female
and mean age was 63.1 6 15.3 years. The BWH validation
sample included 16,451 individuals (32%), among whom
44% were female and mean age was 62.7 6 15.0 years.
LVH etiologies in the derivation and validation samples
included the following: cardiac amyloidosis (n 5 147 vs
157), hypertrophic cardiomyopathy (n 5 825 vs 231), aortic
stenosis LVH (n 5 228 vs 218), hypertensive LVH (n 5
13,389 vs 7413), other LVH (n 5 2544 vs 2222), and no
echocardiographic LVH (n5 17, 125 vs 6210). Characteris-
tics of the derivation and validation samples are presented in
Table 1.
Model performance
When applied to the validation sample, LVH-Net signifi-
cantly outperformed the comparison models for classifica-
tion of each LVH etiology vs no LVH as judged by the
AUROC and AUPRC (Figure 3 and Supplemental
Figure 1). LVH-Net discrimination point estimates for clas-
sification of LVH etiologies were as follows: cardiac
amyloidosis (AUROC 0.96 [95% CI, 0.94–0.97]), hypertro-
phic cardiomyopathy (AUROC 0.92 [95% CI, 0.90–0.94]),
aortic stenosis LVH (AUROC 0.90 [95% CI, 0.88–0.92]),
hypertensive LVH (AUROC 0.76 [95% CI, 0.76–0.77]),
and other LVH (AUROC 0.69 [95% CI, 0.68–0.70])
(Figure 3). The AUPRCs for classification of LVH etiol-
ogies were as follows: cardiac amyloidosis 0.55 [95% CI,
0.48–0.63], hypertrophic cardiomyopathy 0.59 [95% CI,
0.53–0.66], aortic stenosis LVH 0.29 [95% CI, 0.24–
0.35], hypertensive LVH 0.76 [95% CI, 0.75–0.77], and
other LVH 0.44 [95% CI, 0.42–0.45] (Supplemental
Figure 1). LVH-Net performance remained consistent in
sex-stratified analyses (Supplemental Table 10), as well as
in additional analyses stratified by age and clinical ECG
rule positivity (Supplemental Table 11). Sensitivity ana-
lyses in which the No LVH group was defined by the last
available echocardiogram included an additional 1523 indi-
viduals in the No LVH group compared to the primary anal-
ysis owing to increased availability of ECGs meeting
inclusion criteria. In these analyses, LVH-Net model perfor-
mance remained significantly higher than the comparison
models (Supplemental Table 12).

When differentiating a specific cause of LVH (eg, cardiac
amyloidosis) from all other causes of LVH (including no
LVH), we found that LVH-Net also outperformed the other
comparison models, classifying cardiac amyloidosis and hy-
pertrophic cardiomyopathy with AUROCs of 0.93 [95% CI,
0.90–0.95] and 0.88 [95% CI, 0.85–0.91], respectively
(Supplemental Figures 2 and 3, Supplemental Table 13).
One vs rest performance remained consistent in age- and
sex-stratified analyses (Supplemental Table 14). We found
that in the subgroup of 10,174 (62%) individuals in the vali-
dation set demonstrating echocardiographic LVH, discrimi-
natory performance remained high for both cardiac
amyloidosis (AUROC 0.92 [95% CI, 0.90–0.95]) and



Figure 3 Receiver operating characteristic curves (ROC) of LVH-Net and comparisonmodels by left ventricular hypertrophy (LVH) etiology vs no LVH. ROC
curves of comparison models (age and sex, electrocardiogram [ECG] measures) and LVH-Net by LVH etiology vs no LVH comparator with corresponding area
under the ROC and 95% confidence interval shown in the legend. Dashed line shows expected performance of “no skill” random classifier at area under the curve
of 0.5.
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hypertrophic cardiomyopathy (AUROC 0.86 [95% CI, 0.83–
0.90]) (Supplemental Table 14).

Deep learning models trained on single-lead waveforms
(LVH-Net Leads I and II) also accurately classified LVH eti-
ology vs no LVH (Supplemental Figures 4 and 5). The
AUROCs for LVH-Net Lead I classification of cardiac
amyloidosis and hypertrophic cardiomyopathy were 0.90
[95% CI, 0.88–0.92] (P , .05 for comparison to ECG Mea-
sures AUROC), and 0.90 [95% CI, 0.88–0.92] (P , .05),
respectively, while the AUROCs for LVH-Net Lead II clas-
sification of cardiac amyloidosis and hypertrophic cardiomy-
opathy were 0.93 [95% CI, 0.91–0.95] (P , .05) and 0.85
[95% CI, 0.82–0.88] (P , .05), respectively. Performance
of the single-lead models was maintained in age- and sex-
stratified analyses (Supplemental Tables 15 and 16). Perfor-
mance of the single-lead models for 1 vs rest classification of
LVH etiology is shown in Supplemental Figures 2 and 3.
Calibration curves for the deep learning and comparison
models are presented in Supplemental Figures 6 and 7.

ECGwaveforms from individuals at highest predicted risk
(395th percentile) of cardiac amyloidosis had lower voltages
and wider QRS complexes compared to waveforms from in-
dividuals at lower risk (£5th percentile), whereas waveforms
from individuals at higher predicted risk of hypertrophic car-
diomyopathy had higher voltages and wider QRS complexes
compared to waveforms from lower-risk individuals
(Figure 4).

We compared test characteristics among the models
across a range of sensitivity and specificity thresholds for
LVH etiologies vs no LVH in Supplemental Tables 17–21.
At a set specificity of 99%, LVH-Net demonstrated a corre-
sponding PPV of 57.8% [95% CI, 50.1–65.5], positive likeli-
hood ratio of 53.8, and number need to screen of 2 for
detection of cardiac amyloidosis and a PPV of 65.8 [95%
CI, 50.6–71.9], positive likelihood ratio of 51.5, and number
need to screen of 2 for detection of hypertrophic cardiomyop-
athy (Supplemental Table 22). In 1 vs rest analyses, LVH-Net
had a corresponding PPV of 26.6% [95% CI, 19.7–33.5] and
32.8% [95% CI, 26.8–38.9] for detection of cardiac amyloid-
osis and hypertrophic cardiomyopathy, respectively, at a set
specificity of 99% (Supplemental Table 23).

LVH-Net outperformed the clinical ECG rules for classi-
fication of LVH etiology (Figure 5 and Supplemental
Figure 8). LVH-Net was also more sensitive than clinical
ECG-based rules for detecting echocardiographic LVH. Of
10,174 individuals with echocardiographic LVH in the vali-
dation sample, LVH-Net detected 3411 cases (LVH-Net
sensitivity 5 33.8%) compared to 1918 by the clinical
ECG rules (ECG rule sensitivity 5 18.9%) at the observed
clinical rule specificity of 90% (P , .05 for comparison).



A

B

Figure 4 Median waveforms of electrocardiograms (ECGs) predicted to be at low risk (5th percentile) (green) and high risk (95th percentile) (red) of LVH-Net
risk ofA: cardiac amyloidosis andB: hypertrophic cardiomyopathy. Grid measures correspond to standard ECG scaling (1 small box per 0.1 mm on y-axis, and 1
small box per 0.2 seconds on x-axis). Median waveforms are shown for leads I, II, V1, and V5.
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Association between predicted LVH-Net risk and
clinical outcomes
Greater LVH-Net predicted risk of cardiac amyloidosis and
hypertrophic cardiomyopathy was associated with incident
heart failure, atrial fibrillation, and mortality (Figure 6 and
Figure 5 Test characteristics of clinical electrocardiogram (ECG) rules vs dee
etiology vs no LVH at equivalent specificity. Grouped bar plot of sensitivity and p
cardiographic LVH vs no LVH by clinical ECG LVH rules (blue) and LVH-Net
that yielded a specificity equal to the specificity of the clinical ECG LVH rules.
with the number of cases in the validation sample. Error bars represent 95% confid
Supplemental Figure 9). For example, the cumulative inci-
dence of mortality at 10 years was 39% in the highest
LVH-Net predicted cardiac amyloidosis tertile vs 10% in
the lowest tertile, and 31% in the highest predicted cardiomy-
opathy tertile vs 13% in the lowest. In age- and sex-adjusted
p learning models for classification of left ventricular hypertrophy (LVH)
ositive predictive value (PPV) for classification of LVH etiology and echo-
(red). LVH-Net test characteristics were calculated at the probability cutoff
The specificity of the clinical ECG rules is shown above each facet, along
ence interval.



Figure 6 Cumulative incidence of clinical outcomes by predicted LVH-Net risk of cardiac amyloidosis and hypertrophic cardiomyopathy. Cumulative inci-
dence of heart failure, atrial fibrillation, and mortality by tertiles of increasing predicted LVH-Net risk of A: cardiac amyloidosis and B: hypertrophic cardiomy-
opathy in the validation sample, excluding individuals with known cardiac amyloid and hypertrophic cardiomyopathy. At-risk counts for each tertile are shown
below each plot. Error bars represent 95% confidence intervals.
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proportional hazards models, LVH-Net predicted cardiac
amyloidosis was associated with a 1.65-fold [95% CI,
1.58–1.72] increased hazard (per 1-unit standard deviation
increase on the logit scale) for mortality, whereas LVH-Net
predicted hypertrophic cardiomyopathy was associated with
a 1.12-fold [95% CI, 1.08–1.17] increased hazard. Age-
and sex-stratified cumulative incidence curves for each
outcome are presented in Supplemental Figures 10–13, and
age- and sex-adjusted proportional hazards model results
are presented in Supplemental Table 24.
Discussion
We report the results of LVH-Net and LVH-Net Leads I and
II, a collection of deep learning models for classification of
cardiac diseases associated with LVH using 12-lead and
single-lead ECG waveforms. We found that LVH-Net accu-
rately classifies diagnoses across a range of cardiac diseases
associated with LVH, including cardiac amyloidosis, hyper-
trophic cardiomyopathy, and aortic stenosis, with AUROCs
of 0.95, 0.92, and 0.90 respectively. LVH-Net, and single-
lead versions of LVH-Net, outperformed comparison models
fit on quantitative ECG measures, as well as commonly used
clinical ECG LVH rules, in the classification of LVH and
LVH etiologies. We also demonstrate that predicted LVH-
Net risk of cardiac amyloidosis and hypertrophic cardiomy-
opathy were associated with clinical outcomes including
heart failure, atrial fibrillation, and mortality, indicating that
model predictions are associated with expected cardiovascu-
lar outcomes.3,29 With strong performance across LVH and
LVH etiologies, LVH-Net may have potential clinical utility
as a fully automated point-of-care screening tool for LVH
and rare LVH etiologies with application to both 12-lead
ECGs and mobile single-lead ECG devices.

Prior work has demonstrated the capability of ECG-based
deep learning models for classification of hypertrophic cardio-
myopathy, cardiac amyloidosis, and echocardiographic
LVH.6,7,30 LVH-Net expands on this work by enabling simul-
taneous discrimination of echocardiographic LVH and multi-
ple cardiac diseases associated with LVH, including
hypertrophic cardiomyopathy and cardiac amyloidosis. We
demonstrate that the use of a pretrained, publicly available
contrastive learning model produces meaningful model inputs
that can be applied to other classification problems. Although
deep learning models have not yet been widely implemented
in clinical practice, expanding the range of diseases classified
by a single model such as LVH-Net could streamline imple-
mentation and, importantly, reduce the computational
complexity of applying individual deep learning models in
parallel. Our work also demonstrates the potential application
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of LVH-Net to single-lead ECG data equivalent to what is
currently available from mobile ECG devices.

Left ventricular hypertrophy is a common clinical entity
found in about 5%–15% of the general population, and is
associated with significant cardiovascular morbidity.1,2

Treatment and regression of LVH is associated with
improved cardiovascular outcomes, and therefore identifi-
cation of untreated individuals with LVH presents a public
health opportunity.31 Though the 12-lead ECG has been
used to screen for LVH, clinical ECG rules employed in
routine clinical practice are cumbersome and insensi-
tive.32,33 LVH-Net is fully automated and also demonstrated
significantly improved sensitivity for classification of echo-
cardiographic LVH and LVH etiologies when compared to
the clinical ECG LVH rules, and may therefore offer greater
utility in identifying individuals in the community at
increased cardiovascular risk. Individuals identified as hav-
ing a high probability of LVH may benefit from clinical
evaluation and echocardiogram. In addition, LVH-Net
may have application in the longitudinal management of pa-
tients such as those with hypertensive LVH by supplying
additional information on treatment effect marked by
LVH regression.

In addition to classifying individuals with LVH, LVH-Net
is also able to accurately classify LVH etiology. Cardiac
amyloidosis and hypertrophic cardiomyopathy are important
diseases associated with significant cardiovascular
morbidity, and expedient diagnosis of these diseases is essen-
tial for improving patient outcomes and identifying at-risk
relatives.3,5,34 Currently, there are no standardized screening
approaches for cardiac amyloidosis and hypertrophic cardio-
myopathy, and traditional ECG diagnosis of these diseases
relies on insensitive or nonspecific findings.35,36 At a speci-
ficity threshold of 99%, individuals classified as having
cardiac amyloidosis or hypertrophic cardiomyopathy by
LVH-Net had a greater than 1 in 2 chance of carrying either
of these critical diagnoses, while at the same time, over 99%
of individuals classified as negative did not have either of
these diagnoses. Furthermore, both models yielded a low
number needed to screen of 2 at a specificity of 99%, suggest-
ing that for every 2 individuals flagged as positive by LVH-
Net, 1 new disease diagnosis would be expected (assuming
full availability and 100% accuracy of confirmatory diag-
nostic testing for each positive LVH-Net prediction).
Although PPV, NPV, and NNS are affected by the disease
prevalence in our sample, our results nevertheless suggest
that LVH-Net could increase the yield of advanced diag-
nostic testing for these diseases.

Subgroup analyses restricted to individuals with echocar-
diographic LVH demonstrate that LVH-Net retains perfor-
mance for hypertrophic cardiomyopathy and cardiac
amyloidosis even among individuals already known to
have imaging evidence of LVH. In addition to screening
healthy individuals, LVH-Net may therefore hold additional
utility in facilitating discrimination of the etiology of echo-
cardiographic LVH and indicating the need for further testing
to confirm the diagnosis.
Results of LVH-Net models trained using single-lead data
show the potential application of our model to single-lead
ECG data. Prior work has shown that deep learning models
trained on 12-lead and single-lead ECG waveforms, which
leverage the relative ubiquity of ECG data compared to mo-
bile data, can be subsequently applied to mobile ECG device
data without retraining.37,38 Here, the single-lead deep
learning models demonstrated favorable performance, high-
lighting the ability of deep learning tools to extract meaning-
ful representations from limited ECG data in discriminating
LVH. Our findings may be applicable to mobile ECG de-
vices, which present an emerging opportunity for scalable
population-based cardiovascular screening. However, more
work must be done to evaluate the generalizability of the
LVH-Net models to wearable device data and the population
of device users.39,40

Our study must be interpreted in the context of its limita-
tions. Use of mutually exclusive LVH cardiomyopathy defi-
nitions may misclassify individuals with multiple LVH
etiologies. In addition, given our reliance on gold-standard
diagnostic data for identification of individuals with hyper-
trophic cardiomyopathy and cardiac amyloidosis, individuals
in our dataset may have a more pronounced phenotype of
these diseases, making classification an easier task. Further-
more, transthyretin amyloidosis is under-recognized, and so
undiagnosed individuals in our sample may be misclassi-
fied.41 Notably, owing to limitations in available data we
were unable to classify the athletic heart, as well as other
rare causes of LVH such as glycogen storage diseases. We
were also unable to subtype cardiac amyloid (light chain vs
transthyretin) present in our dataset. The study population
was largely composed of older white individuals (87%
white), and though age-stratified analysis showed consistent
performance, our results may not generalize to younger indi-
viduals or those with varying racial or ethnic compositions.
ECGs were performed during routine clinical care and indi-
viduals without an ECG (though few) were excluded,
limiting the study sample. Furthermore, LVH is associated
with sex-specific differences in cardiovascular risk and,
although our results were consistent across sex strata, further
study may be necessary to extend these results to larger sam-
ples.42,43 In addition, although the model was derived and
validated within 2 separate hospitals, these sites are mainly
referral centers and exist within the same healthcare system,
which may introduce selection bias and increases the preva-
lence of rare diseases such as cardiac amyloidosis compared
to the general population. Further work is required to show
that our results are generalizable to other healthcare-related
or community-based settings and to prospectively validate
our model and the observed associations with clinical out-
comes.

In conclusion, we demonstrate that deep learning models
using ECG-based representations offer favorable discrimina-
tion of LVH diagnoses, including cardiac amyloidosis and
hypertrophic cardiomyopathy. LVH-Net outperforms both
clinical ECG rules and more complex models that include
ECG-based measurements. Predicted LVH-Net risk of
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cardiovascular disease is strongly associated with observed
clinical outcomes. LVH-Net and single-lead versions of
LVH-Net may have clinical utility in point-of-care screening
for left ventricular hypertrophy, as well as rare diseases such
as cardiac amyloidosis and hypertrophic cardiomyopathy.
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