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BACKGROUND Accurately determining arrhythmia mechanism
from a 12-lead electrocardiogram (ECG) of supraventricular tachy-
cardia can be challenging. We hypothesized a convolutional neural
network (CNN) can be trained to classify atrioventricular re-entrant
tachycardia (AVRT) vs atrioventricular nodal re-entrant tachycardia
(AVNRT) from the 12-lead ECG, when using findings from the inva-
sive electrophysiology (EP) study as the gold standard.

METHODS We trained a CNN on data from 124 patients undergoing
EP studies with a final diagnosis of AVRT or AVNRT. A total of 4962
5-second 12-lead ECG segments were used for training. Each case
was labeled AVRT or AVNRT based on the findings of the EP study.
The model performance was evaluated against a hold-out test set
of 31 patients and compared to an existing manual algorithm.

RESULTS The model had an accuracy of 77.4% in distinguishing
between AVRT and AVNRT. The area under the receiver operating
characteristic curve was 0.80. In comparison, the existing manual
algorithm achieved an accuracy of 67.7% on the same test set. Sa-
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liency mapping demonstrated the network used the expected sec-
tions of the ECGs for diagnoses; these were the QRS complexes
that may contain retrograde P waves.

CONCLUSION We describe the first neural network trained to
differentiate AVRT from AVNRT. Accurate diagnosis of arrhythmia
mechanism from a 12-lead ECG could aid preprocedural counseling,
consent, and procedure planning. The current accuracy from our
neural network is modest but may be improved with a larger training
dataset.
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Introduction
Ablation for supraventricular tachycardia (SVT) is a highly
effective therapy, considered first line in patients with recur-
rent SVTs or who do not wish to take long-term medical ther-
apy.1 SVT in general refers to all tachycardias other than
ventricular tachycardia and atrial fibrillation, and includes
atrial tachycardia (AT), atrioventricular re-entrant tachycar-
dias (AVRT), and atrioventricular nodal re-entrant
r Lecturer in Cardiac Electrophysiology, National Heart and Lung Institute,
ental Medicine, Hammersmith Campus, Du Cane Rd, London W12 0NN,

CC BY license https://doi.org/10.1016/j.cvdhj.2023.01.004

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
http://creativecommons.org/licenses/by/4.0/
mailto:f.ng@imperial.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cvdhj.2023.01.004&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.cvdhj.2023.01.004


KEY FINDINGS

� A convolutional neural network can be trained to differ-
entiate atrioventricular re-entrant tachycardia from
atrioventricular nodal re-entrant tachycardia using
the 12-lead electrocardiogram (ECG).

� Accurate diagnosis of arrhythmia mechanism from a 12-
lead ECG could aid preprocedural counseling, consent,
and procedure planning.

� Saliency mapping demonstrated the neural network
used the primarily the QRS complexes to make classifi-
cation decisions.
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tachycardias (AVNRT). AT can usually be diagnosed where
there are more P waves than QRS complexes on the 12-lead
electrocardiogram (ECG) and where adenosine administra-
tion reveals underlying atrial wave activity with transient
high-grade atrioventricular-ventricular block.1 AVRT and
AVNRT, however, may be more difficult to differentiate,
as the RP interval may be suggestive but ultimately not defin-
itive for distinguishing the tachycardia mechanism.1 Several
additional ECG criteria have been described but are vulner-
able to interobserver and intraobserver variability.2–9

Although ablation for AVNRT and AVRT is highly effec-
tive,1 a definitive diagnosis is generally required at the time of
an electrophysiology (EP) study. Prior knowledge of the
tachycardia mechanism could aid preprocedural counseling,
consent, and procedure planning. Occasionally the SVT has
been previously documented, but cannot be induced in the
EP laboratory.10 In these cases, empirical ablation may be
performed—eg, ablation of an accessory pathway if one is
found, or slow pathway modification if dual atrioventricular
nodal physiology (DAVNP) is identified.11–13

Deep learning, particularly using convolutional neural net-
works (CNN), has beenusedextensively for classification tasks
using the 12-lead ECG, with great accuracy.14–16 Several deep
learning models have been built to identify SVT from the 12-
lead ECG,17 and 1 to predict the presence of SVT from a sinus
rhythm ECG.18 We hypothesized a CNN could be trained for
the specific task of differentiatingAVNRT fromAVRT, allow-
ing for automated preprocedural rhythm determination.
Methods
Patient selection
Patients were selected from a clinical database of all invasive
EP procedures at Hammersmith Hospital, Imperial College
Healthcare NHS Trust, United Kingdom. A search was per-
formed for any slow pathway modification or accessory
pathway ablations for the years 2012–2021. The patients
all had procedures using an EP recording system, LAB-
SYSTEM� PRO (Boston Scientific). The ECG and the intra-
cardiac electrogram recordings for each case (preablation)
were visually examined for lengths that contained sustained
tachycardias without diagnostic pacing maneuvers or exces-
sive noise. The intracardiac electrograms were inspected to
ensure the selected segments contained AVRT or AVNRT
and not another tachycardia (eg, sinus tachycardia or AT).
Using the EP recording system, digital 12-lead ECG record-
ings were exported (Figure 1).

Data labeling
For each case, the procedure report was reviewed to deter-
mine the diagnosis. Diagnoses were made by the clinical
team carrying out the ablation procedure and were based
on maneuvers performed during tachycardia. The final diag-
noses could have included all types of AVNRT (slow-fast,
fast-slow, slow-slow) or orthodromic AVRT. QRS com-
plexes in tachycardia could have been narrow or broad (eg,
owing to rate-related aberrancy). Antidromic AVRT was
not included. Atrial fibrillation, AT, and atrial flutter were
not included. Cases with little or no sustained arrhythmia,
or without a clear diagnosis, were not included.

12-lead ECG extraction
Digital 12-lead surface ECGswere extracted at a sampling rate
of 1000 Hz. For patients with multiple procedures, within
2012–2021, only 1 procedure was included. Patients were
randomly assigned to training and testing datasets. In the
training set, each patient had up to 5 minutes of data exported
in up to 1-minute segments. Each 1-minute segment was
further split into 5-second segments. Segmentation into
5-second segments was performed in an automated fashion,
with no visual inspection steps. Given the likely significant
similarities between consecutive 5-second recordings, the test
set used only one 5-second segment for each patient. The start-
ing 5-second segment was used. Importantly, no data from the
test dataset were used in training dataset and the patients in the
test set were distinct from those in the training set. Data flow
charts are shown in Supplemental Figures S1 and S2.

Data preprocessing
Multichannel exports from the EP recording system were
converted into time series data.19 Each ECG recording was
downsampled to 200 Hz. This allowed a reduction in the da-
taset size, thereby reducing model training time while main-
taining accuracy.

CNN structure, training, and testing
CNN are a type of deep learning based on biological neural
networks.20 The convolutional layers detect features on the
input data that can be used in subsequent layers of the neural
network to predict a classification for the input data.

In this work, a CNN was trained on 12-lead ECGs for
arrhythmia classification. Our approach to model develop-
ment has been previously described21 and is detailed in the
Supplemental Methods.

Our final network was selected based on performance in
the validation set; this was a modified version of that used
by Attia and colleagues22 (Supplemental Figure S3). The re-
maining tested networks, including those using residual



Figure 1 Electrocardiogram (ECG) class examples. Example 12-lead ECGs of the classes used to train the neural network. A: An ECG showing atrioventric-
ular re-entrant tachycardia. B: An ECG showing atrioventricular nodal re-entrant tachycardia.
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Figure 2 Study flowchart. Data from 155 patients were collected, 106
atrioventricular nodal re-entrant tachycardia cases and 49 atrioventricular
re-entrant tachycardia cases. Twelve-lead electrocardiograms (ECGs) were
segmented into 5-second recordings. For the training dataset, multiple re-
cordings were used per patient; the test set used only 1 recording per patient.
An ensemble model was created from the 10 models through cross-
validation. Model performance was evaluated on the unseen test set.
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blocks, were inferior to this network when evaluated using
the validation dataset. The complete architecture of the neural
network is detailed in Supplemental Figure S3.

The model input was 12-lead ECGs of 5-second duration.
The ECG data were zero padded to 1024! 12. The learning
rate was 0.01. The binary cross-entropy was minimized using
the Adam optimizer. The neural network was trained for a
maximum of 40 epochs with early termination set to when
there was no further improvement in validation set loss for
7 consecutive epochs. The training batch size was 16. During
hyperparameter tuning, the optimal value for dropout was
found to be 0; therefore the dropout layer was removed
from the final model architecture. The filter numbers and
sizes are detailed in Supplemental Figure S3. To create the
final model the whole training dataset (including the 20%
validation set used for hyperparameter tuning) was split
into 10 folds. Each patient’s data was assigned to only
1 fold to avoid training and validation against the same pa-
tient’s data. In order to use the whole training dataset for
model training, 10-fold cross-validation was performed. In
this process a model was trained on 9 folds of data and vali-
dated on the 10th fold. This is repeated 10 times so that each
fold is used as a validation fold once, to create 10models. The
10 models were then averaged to create an ensemble model
for use on the unseen test set.

To explore how the neural network arrived at each classi-
fication, we used the method of saliency mapping. We used
the vanilla gradient algorithm in tf-keras-vis (version 0.5.5)
package in Python (version 3.9),23 where each data point of
the ECG is mathematically tested to quantitatively determine
how much it contributes to the output produced. A map can
then be created where the highlighted sections are the most
significant, and salient, areas. This is important, as it can
allow us to understand the processes by which the network
chooses the class in the testing phase to ensure unexpected
factors are not influencing the network.24

Further information concerning the ECG preprocessing
and architecture selection process is detailed in the
Supplemental Methods.
Comparison to existing algorithm
We compared the performance of our CNN to an existing al-
gorithm, described by Jaeggi and colleagues5 and evaluated
in adults by Arya and colleagues2 (Supplemental
Figure S4). Given the differing inclusion criteria in their
studies and our own, the algorithm did not apply to some
ECGs in our dataset, owing to the presence of rate-related
aberrancy in 2 patients in our study test set. For these cases
a diagnosis of AVNRT was assigned, based on the higher
prevalence of AVNRT. The algorithm was applied to the
test set ECGs by a clinician blinded to the CNN and actual
diagnosis.
Statistical analysis
The performance of the neural network was evaluated using
the overall accuracy, F1 score, and area under curve (AUC)
metrics. Binomial proportion confidence intervals are re-
ported. Statistical analysis was carried out in Python (version
3.9). The McNemar test was used to compare model perfor-
mance with the ECG algorithm.
Results
There were 155 patients’ ECGs analyzed; 45% of patients
were male and the average age was 54 6 18.2 years.
There were 106 AVNRT cases and 49 AVRT cases. Patients
were randomly assigned to the training and test datasets (124
in the training dataset and 31 in the testing dataset; Figure 2).
There were 10 patients with atypical AVNRT, 9 fast-slow
and 1 slow-slow. In the AVRT cases there were 12 right-
sided accessory pathways and 37 left-sided. In the test dataset
there were 21 AVNRT cases and 10 AVRT.
Neural network performance
For the testing dataset, the accuracy was 77.4% (95% confi-
dence interval 0.63–0.92). The F1 score was 0.63 and Cohen
kappa 0.47. Figure 3A displays the confusion matrix. The
model correctly identified AVNRT 85.7% of the time and
AVRT 60% of the time. Figure 3B shows the receiver oper-
ating characteristic curve; the AUC was 0.82 for distinguish-
ing the classes. At the default threshold of 0.5, the sensitivity
and specificity for classifying AVNRT and AVRT were
85.7% and 60%, respectively. On the test set the processing
time for the trained model was a total of 5.37 seconds for



Figure 3 Model performance. A: Confusion matrix demonstrating the accuracy of the model in classifying between the 2 groups. Atrioventricular nodal re-
entrant tachycardia (AVNRT) and atrioventricular re-entrant tachycardia (AVRT) cases were correctly classified at 85.7% and 60%, respectively. B: Receiver
operating characteristic (ROC) curves for model performance; diagnosis of AVRT was considered a positive case. The area under the ROC (AUC) was 0.82.
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the total 31 ECGs in the test set; this equates to an average of
173 ms per 5-second ECG.
Comparison to existing algorithm
The accuracy of the algorithm by Jaeggi and colleagues5 was
67.7%. Two of the cases in the test set had rate-related
aberrancy and therefore Jaeggi and colleagues’ algorithm
did not apply. A diagnosis of AVNRT was therefore applied
based on the higher prevalence of AVNRT. The true diag-
nosis in these 2 cases was in fact AVNRT. Excluding the
2 cases with rate-related aberrancy yielded an accuracy of
65.5%; this was not statistically significantly different from
CNN accuracy (P 5 .29). The accuracy of Jaeggi and col-
leagues’ algorithm was 73.7% for AVNRT and 50% for
AVRT in our test set.
Saliency mapping
A saliency map can be used to help understand why a CNN
predicted a particular outcome. This is achieved by mapping
the outcome back to key areas of the input that most influ-
enced the network in producing the classification result.
Figure 4 presents the saliency mappings of an example
12-lead ECG for each class, AVNRT and AVRT. The
network used the expected sections of the ECGs for diagno-
ses; these were the QRS complexes that may contain retro-
grade P-wave activity.
Discussion
We report the first deep learning model trained to distinguish
AVRT from AVNRT using only the surface 12-lead ECG,
using the ground truth labels derived from the gold standard
of an invasive EP study. Although the accuracies we report
are modest, this proof of concept may allow future develop-
ment of a more accurate classification model. Incorporation
of artificial intelligence (AI)–enabled ECG may help guide
treatment in patients with AVNRT or AVRT.
Traditional ECG criteria for distinguishing AVRT
from AVNRT
There are several manual ECG criteria that may be used to
attempt to elucidate SVT mechanism from the 12-lead
ECG.9 Initiation and termination of tachycardia is particu-
larly helpful but may not always be captured.1 ECGs of sus-
tained tachycardia can be examined to determine the P/QRS
relationship and RP interval, and response to adenosine may
also be considered.1 Pseudo r deflection in lead V1 and
pseudo S in the inferior leads is particularly specific for
typical AVNRT (91%–100%) but lacks sensitivity (15%–

58%).9 Tai and colleagues8 also described a manual stepwise
approach. They use manual inspection for retrograde P-wave
morphology to differentiate AVRT and AVNRT and also
predict the location of concealed accessory pathways. They
report an accuracy of 97.8% in differentiating AVRT and
AVNRT; however, a major limitation was that clearly visible
P waves were required for inclusion in their study. Others
have reported modified criteria and algorithms,2–7 with
varying accuracies. Importantly, these studies have varying
exclusion criteria, making comparison challenging; some
exclude atypical forms of AVNRT or cases where the RP
interval is greater than the PR interval. Jaeggi and
colleagues5 originally described an algorithm in children.
Arya and colleagues2 subsequently evaluated the algorithm’s
performance in adults, reporting an accuracy of 81.4%, while
Di Toro and colleagues3 report AUC of 0.72 for their aVL
notch criteria. Additionally, a manual approach is likely to
depend on the reading clinician’s experience and lead to
interobserver and intraobserver variability. Depending on
the algorithm, interobserver agreement can be as low as
70% and even intraobserver agreement may be as low as
75%.7

In our study, the CNN had a numerically higher accuracy
than the algorithm approach, although this did not reach sta-
tistical significance in this small dataset. Interobserver vari-
ability and the differences in inclusion criteria in the
2 studies may explain the difference in performance of Jaeggi



Figure 4 Saliency maps of each electrocardiogram (ECG) class. Saliency maps showing the most prominent sections of ECG recordings in influencing the
output of the neural network for the ECG classes of A: atrioventricular nodal re-entrant tachycardia (AVNRT) and B: atrioventricular re-entrant tachycardia
(AVRT). Darker red indicates higher saliency. The QRS in each case appears to be salient; this may relate to the presence and timing of retrograde P waves
in the QRS complex and is biologically plausible.
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and colleagues’5 algorithm in our study compared to when
evaluated by Arya and colleagues.2
Automated analysis of the ECG to distinguish AVRT
from AVNRT
Perlman and colleagues25 have reported a tree scheme for the
classification of SVT diagnoses from the 12-lead ECG.
Through signal processing techniques, they extract features
of atrial electrical activity from the ECG and then apply a clin-
ically based tree algorithm. Additionally, they employ a 5-
nearest-neighbors classifier to specifically distinguish AVNRT
and AVRT. The advantage of this approach is explainability
regarding the features used to make each classification deci-
sion. The automated approach also removes the challenge of
interobserver and intraobserver variability present with human
interpretation. They also report very high accuracies of 93%
for correct classification of AVRT/AVNRT. However, their
report included only 11 patients with AVRT or AVNRT for
training and 19 in validation. Therefore, the performance of
their model is likely to be highly dependent on the patterns
found in the 11 patients used for algorithm training, with the
potential for very poor generalizability to other cohorts.
Potential clinical applications
Rapid and automated ECG interpretation with AI has the
potential to transform the care of patients with arrhythmia.
AI-ECG platforms are ready for prospective clinical evalua-
tion, with additional deep learning algorithms being added
regularly.26 In particular, for patients undergoing EP
procedures, AI-enabled ECG could be incorporated into
clinical workflows, complementing electrophysiologist ECG
interpretation.21

Catheter ablation for AVNRT is a highly effective therapy
that has been shown to be superior to antiarrhythmic drugs
for reducing hospitalizations while also avoiding antiar-
rhythmic drugs’ side effects.27 The treatment of choice for
recurrent AVRT is also catheter ablation.1 Orthodromic
AVRT is the cause of .90% of AVRTs and 20%–30% of
all sustained SVTs.1

Patients undergoing EP studies often have documented
SVT on an ECG. There may be some clues as to the rhythm;
however, particularly for AVNRT vs AVRT, the diagnosis is
often unclear. Accessory pathways may be concealed, which
adds to the diagnostic difficulty. Currently, it is only during
the EP study, if SVT is inducible, that the diagnosis can be
made.

Accurate knowledge of tachycardia mechanism prior to an
EP study may aid preprocedural counseling and consent. In
particular, where the likely diagnosis is AVNRT, a more
detailed discussion regarding the small but notable risk of
AV node damage could take place. Conversely, where
AVRT is the likely diagnosis, discussion regarding likely
need for trans-septal puncture (given that the majority of
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concealed accessory pathways are left sided28) and the
related risks of bleeding and thromboembolism may be dis-
cussed in more detail. Lastly, some operators may prefer to
map accessory pathways with the aid of 3D mapping.29–31

Preprocedural knowledge of tachycardia mechanism could
allow placement of 3D mapping patches in the appropriate
cases without wasting these on cases where AVNRT is likely.

In some cases, no tachycardia can be induced.10 Empirical
slow pathway modification has been considered a possible
approach where DAVNP can be demonstrated.11–13

However, this involves subjecting the patient to the risks of
ablation, in particular the risk of complete AV block, with
uncertainty regarding potential benefit.

We propose that a deep learning model could be
applied to the preprocedure SVT ECG and used to guide
empirical ablation when SVT cannot be induced on the
day of the EP procedure. This could take the form of
slow pathway modification when DAVNP is demonstrated
in a patient (who may or may not have a bystander acces-
sory pathway). An alternative scenario would be the pres-
ence of a concealed accessory pathway with no high-risk
features and DAVNP; identification of the rhythm on a
preprocedure SVT ECG could then allow the appropriate
ablation to be performed.
Limitations
Our model performance was modest, with specificity for
AVRT in particular being relatively low. This is likely to
be due to the small dataset in our study. However, we hope
this proof of concept will allow studies with larger datasets
to improve on model performance. Our data were addition-
ally from a single center and single recording system. Ideally,
external validation is required to ensure our model general-
izes to other populations and ECG recording systems. The
input to our model requires electrophysiologist involvement,
as only AVRT or AVNRT cases were included. This could
alternatively take the form of other, pre-existing models
(such as that proposed by Perlman and colleagues25) that
could be applied first to exclude other diagnoses. Lastly,
the input requires a digitized 12-lead ECG. In many health-
care settings ECGs are in paper or PDF format; however,
with the growing applications of AI-enabled ECGs we
hope ECG machines capable of recording the raw digital sig-
nals will become more prevalent.
Conclusion
We describe the first neural network trained to differentiate
AVRT from AVNRT. Accurate diagnosis of arrhythmia
mechanism from a 12-lead ECG could aid preprocedural
counseling, consent, and procedure planning. Additionally,
where AVNRT is diagnosed on the ECG, empirical slow
pathway ablation could be performed where sustained
arrhythmia cannot be induced during the EP study. The cur-
rent accuracy from our neural network is modest but may be
improved with a larger training dataset.
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