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Prostate cancer remains one of the most fatal malignancies in men in the United States. Predicting the
course of prostate cancer is challenging given that only a fraction of prostate cancer patients expe-
rience cancer recurrence after radical prostatectomy or radiation therapy. This study examined the
expressions of 14 fusion genes in 607 prostate cancer samples from the University of Pittsburgh,
Stanford University, and the University of WisconsineMadison. The profiling of 14 fusion genes was
integrated with Gleason score of the primary prostate cancer and serum prostate-specific antigen level
to develop machine-learning models to predict the recurrence of prostate cancer after radical prosta-
tectomy. Machine-learning algorithms were developed by analysis of the data from the University of
Pittsburgh cohort as a training set using the leave-one-out cross-validation method. These algorithms
were then applied to the data set from the combined Stanford/Wisconsin cohort (testing set). The
results showed that the addition of fusion gene profiling consistently improved the prediction accuracy
rate of prostate cancer recurrence by Gleason score, serum prostate-specific antigen level, or a com-
bination of both. These improvements occurred in both the training and testing cohorts and were
corroborated by multiple models. (Am J Pathol 2023, 193: 392e403; https://doi.org/10.1016/
j.ajpath.2022.12.013)
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Prostate cancer remains a leading cause of cancer-related
death in men in the United States. In 2021, 34,500 US men
died from prostate cancer, while 268,490 new cases were
diagnosed.1 Most prostate cancers develop slowly. Surgical
treatments such as radical prostatectomy are effective in
curing cancer. However, patients present with distal
metastasis or recurrence after surgical resection.

Some analyses of data from the Surveillance, Epidemi-
ology, and End Results database, maintained by the Na-
tional Cancer Institute, have shown that patients having
prostate cancer with distal metastasis had a high risk for
prostate cancererelated death.2,3 Thus, patients at a high
risk for prostate cancer recurrence at the time of diagnosis
may benefit from early radiotherapy or anti-androgen or
stigative Pathology. Published by Elsevier Inc
other adjunctive chemotherapy and thereby have a reduced
risk for mortality.
Currently, the Gleason score of the primary prostate cancer

at the time of diagnosis is the main criterion used for pre-
dicting the outcomes of patients with prostate cancer. A high
Gleason score (eg, 8 to 10) has been associated with an
. All rights reserved.
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Machine Learning Predicts PCa Recurrence
increased risk for prostate cancer recurrence after radical
prostatectomy, while a Gleason score of 6 has been associ-
ated with a low risk for recurrence.4 The contemporary initial
management of patients with a Gleason score of 6 is obser-
vation (active surveillance and watchful waiting). Using a
combination of Gleason score, prostate-specific antigen
(PSA) level, age, and other clinical factors, several nomo-
grams have been developed to gauge the risk for prostate
cancer recurrence. These tools have been used with variable
success in the predicting clinical outcomes in patients with
prostate cancer.5e7 However, these tools provide little insight
into the mechanisms of the disease.

Numerous mutations,8 gene fusions,9e12 chromosome
alterations,13,14 and epigenetic abnormalities15e18 have been
discovered in patients with prostate cancer. In particular,
gene fusion events appear widespread and frequent in pa-
tients with prostate cancer. Even though some fusion genes
such as TMPRSS2-ETS/ERG have been extensively studied,
the relationship between gene fusion events and clinical
outcomes in patients with prostate cancer remains unclear.
In previous studies, 14 fusion genes were detected in
prostate cancer samples, with various frequencies ranging
from 6% to 80%.10,11,19e21 Many of these fusion transcripts
were shed into the bloodstream and were readily detectable
in the blood or serum samples from patients.20,22 Among
these fusion genes, MAN2A1-FER, PTEN-NOLC1,
and SLC45A2-AMACR induce spontaneous liver cancer in a
short period of time when coupled with somatic Pten
knockout in mice.10,19,21 Yet their potential in predicting the
course of prostate cancer is not known. This study deter-
mined whether the presence of these fusion genes in prostate
cancer samples can be used for predicting the recurrence of
prostate cancer.

Materials and Methods

Tissue Samples

There was a total of 607 prostate cancer tissue specimens
from the University of Pittsburgh Medical Center (UPMC;
Pittsburgh, PA), Stanford University Medical Center
(Stanford, CA), and the University of WisconsineMadison
Medical Center (Madison, WI). The sample size was esti-
mated by power analysis (293 on 80% versus 70% com-
parison) and the availability of clinical specimens. Samples
from patients who received radiation or hormone therapy
prior to radical prostatectomy were excluded. The samples
from UPMC were obtained from the University of Pitts-
burgh Tissue Bank in compliance with institutional regula-
tory guidelines and comprised 301 prostate cancer samples,
including 271 prostate cancer samples with annotated clin-
ical information available (Supplemental Table S1). The
recurrence status of prostate cancer was defined as a serum
PSA level of >0.2 ng/mL on at least two consecutive tests
obtained after radical prostatectomy. All of the samples
were obtained in accordance with the guidelines approved
The American Journal of Pathology - ajp.amjpathol.org
by the Institutional Review Board of University of Pitts-
burgh. All methods were performed in accordance with
relevant guidelines and regulations. Informed-consent ex-
emptions were obtained from the University of Pittsburgh
Institutional Review Board. All cancer samples were mac-
rodissected. Samples with at least 50% cancer cells were
included in the study. Samples of prostate cancer tissues
obtained from other institutions included 112 from Stanford
University (Supplemental Table S2) and 194 from the
University of WisconsineMadison (191 samples annotated
with clinical information) (Supplemental Table S3). The
procedure of obtaining the tissue samples was in full
compliance with the guidelines of those institutions.

Quantitative Real-Time RT-PCR Methods

Total RNA was extracted from the cells using TRIzol
(InvitroGen, Carlsbad, CA). The quality of the extracted
RNA was assessed through 260:280 and 260:230 ratio ana-
lyses by NanoDrop spectrophotometer (Thermo Fisher Sci-
entific, Waltham, MA). The samples that passed quality
control were accepted for further analysis. The first stranded
cDNA was synthesized from approximately 2 mg of the total
RNA template from each sample. Random hexamers and
Superscript II (InvitroGen) were incubated with the RNA at
42�C for 2 hours. One microliter of each cDNA sample was
used for the TaqMan PCR reactions, with 50 heat cycles for
standard formalin-fixed paraffin-embedded samples, as fol-
lows: 94�C for 30 seconds, 61�C for 30 seconds, and 72�C
for 30 seconds, using the primers and probes listed in
Table 1. The PCR reactions were performed in the Quant-
Studio 3 real-time PCR thermocycler system (Thermo Fisher
Scientific) or the Mastercycler RealPlex2 system (Eppendorf,
Inc., Framingham, MA). A negative control with no DNA
template and a synthetic positive control were included in
each batch of reactions. Samples with a cycle threshold (CT)
of �45 were considered positive for fusion gene detection,
while those with a CT of >45 were considered negative. If a
negative control showed any CT, the results of the entire
batch were discarded. If a positive control failed, the results
of the batch of samples were abandoned. The results from
TaqMan quantitative real-time RT-PCRs were shown in
Supplemental Tables S1eS3. The PCR products from 18%
to 100% of the positive samples were sequenced to verify the
fusion genes using the Sanger sequencing method.

Prediction Model on Fusion Gene Profile

Fusion gene machine-learning methods were introduced to
predict the recurrence status of prostate cancer. These
machine-learning algorithms generally take in the fusion
gene status and generate a prediction probability per sample.
For fusion profiling, the semi-quantitative status of each
fusion gene based on CT cycles was tabulated across all of
the tumor samples. The optimal CT cycle of each fusion gene
was obtained based on the differentiation between the
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Table 1 Primers and Probes

Fusion gene Primers Probe

MAN2A1-FER F: 50-AGCGCAGTTTGGGATACAGCA-30

R: 50-CTTTAATGTGCCCTTATATACTTCACC-30
50-/56-FAM/TCAGAAACA/ZEN/
GCCTATGAGGGAAATT/3IABkFQ/-30

SLC45A2-AMACR F: 50-TTGATGTCTGCTCCCATCAGG-30

R: 50-CAGCTGGAGTTTCTCCATGAC-30
5’-/56-FAM/AAGAGGGCA/ZEN/TGGTAGTGGAGGC/
3IABkFQ/-30

CCNH-C5orf30 F: 50-AAAGTTATTTATCAGAGAGTCTGATGCTG-30

R: 50-CTGTTCTACTCCAGGTATTTTCATTATATC-30
5’-/56-FAM/ACAGGCAAG/ZEN/
TTCTGTTCTCTTTCAGCA/3IABkFQ/-30

MTOR-TP53BP1 F: 50-TGATAGACCAGTCCCGGGATG-30

R: 50-CCACTGACATTCCCAGAACAAG-30
5’-/56-FAM/TGTCAGCCT/ZEN/
GTCAGAATCCAAGTCAAG/3IABkFQ/-30

TRMT11-GRIK2 F: 50-CCCTTAACAGGTATCTGCTCC-30

R: 50-CCCATTGGGCCAGATTCCACA-30
5’-/56-FAM/CGGAACTCC/ZEN/AGATGCTCCTGCG/
3IABkFQ/-30

LRRC59-FLJ60017 F: 50-GTGACTGCTTGGATGAGAAGC-30

R: 50-GTTGATGAGCAGCCATTGAGC-30
5’-/56-FAM/CAGTGTGCA/ZEN/
AACAAGGTGACTGGAAG/3IABkFQ/-30

TMEM135-CCDC67 F: 50-GAGACCATCTTACTGGAAGTTCC-30

R: 50-TGGTACTCTTCCACCTGTTGG-30
5’-/56-FAM/TTTGCCCTT/ZEN/
GGTGAGTCTTAAAAGGAAC/3IABkF/-30

KDM4B-AC011523.2 F: 50-CACACCGAGGACATGGACCT-30

R: 50-CTCAGATCCAGGCTTGCTTAC-30
5’-/56-FAM/ACAGCATCA/ZEN/
ACTACCTGCACTTTGGG/3IABkFQ/-30

CLTC-ETV1 F: 50-CCTTCCTCCTACATGGAAGTTG-30

R: 50-CTTGATTTTCAGTGGCAGGCC-30
50-/56-FAM/CTGCCAATA/ZEN/CTAGTGTGGCTTTT/
3IABkFQ/-30

PCMTD1-SNTG1 F: 50-CTGGAGAGCTTCATCAAAAATAG-30

R: 50-CACTTCTCGGGCAATCTCAACA-30
50-/56-FAM/AGCTTTGAT/ZEN/
AAACTGCTCTCCAGAATGTTG/3IABkFQ/-30

ACPP-SEC13 F: 50-CCTCATGGCCACAAGGATTTG-30

R: 50-TGAGGCTTCCAGGTACAACAG-30
50-/56-FAM/CCAGATTGG/ZEN/CTGCAATGCCGTC/
3IABkFQ/3IABkFQ/-30

DOCK7-OLR1 F: 50-TAAAACAAGGGTCAATGTCACTCAT-30

R: 50-CAGTCTGGATCTTTAGGTCATCA-30
50-/56-FAM/AGACACAGC/ZEN/AGGATGCCAATG/
3IABkFQ/-30

ZMPSTE24-ZMYM4 F: 50-GAGGAAGAAGGGAACAGTGAAGA-30

R: 50-CTGGAATAGGGCTCAGTAAAAATGTTATC-30
50-/56-FAM/AGACACAGC/ZEN/AGGATGCCAATG/
3IABkFQ/-30

PTEN-NOLC1 F: 50-AAGCCAACCGATACTTTTCTCCA-30

R: 50-ATAGATGTCTAAGAGGGAAGAGG-30
5’-/56-FAM/AGACACAGC/ZEN/AGGATGCCAATG/
3IABkFQ/-30

ACTB F: 50-ACCCCACTTCTCTCTAAGGAG-30

R: 50-GCAATGCTATCACCTCCCCTG-30
5’-/56-FAM/CCAGTCCTC/ZEN/
TCCCAAGTCCACAC/3IABkFQ/-30

F, forward; R, reverse.
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recurrent and nonrecurrent status of the samples from the
UPMC cohort. Several machine-learning algorithms were
applied to the fusion gene profiling data, specifically: support
vector machine,23 random forest (RF) modeling,24,25 linear
discriminant analysis (LDA),26 and logistic regression.27 For
all of these methods, leave-one-out cross-validation
(LOOCV) was performed on the training cohort to evaluate
the prediction algorithms and select the best parameters of 14
fusion gene combinations. The best algorithms were then
applied to the whole training cohort to train a model and to
the testing cohort. Eventually, the training and testing cohorts
were pooled together to generate the model most accurate in
predicting recurrence based on LOOCV. All biostatistical
analyses were performed using R programming and available
R software packages (randomForest, MASS, and e1071; R
Foundation, https://www.r-project.org).

Prediction Model Integrating Fusion Genes, Gleason
Score, and Serum PSA

Clinical features such as Gleason score and serum PSA were
also available for the prediction of cancer recurrence. The
machine-learning algorithm was first applied to these clin-
ical features individually. With regard to Gleason score, the
394
combined Gleason score optimal for use in predicting
recurrence was selected. For serum PSA, the cutoff value
that best differentiated recurrence from nonrecurrence was
chosen. In order to integrate fusion gene profiling, Gleason
score, and serum PSA, the machine learning models
described in the Materials and Methods were applied to all
three of the features together to train the optimal model and
generate the prediction probability for the fusion þ Gleason
þ PSA model. If the probability was �0.5, it was predicted
as nonrecurrent. If the probability was >0.5, it was pre-
dicted as recurrent. Similarly, fusion gene status combined
with Gleason score generated probability for fusion þ
Gleason models, while fusion combined with serum PSA
prediction generated probability for fusion þ PSA models.
Similar to models involving only fusion gene data, the
models integrating fusion gene profiling, Gleason score, and
serum PSA were applied to the training cohort. The best
parameters selected by LOOCV were used as the final
model for the training cohort and were then applied to the
validation cohort for evaluation. Eventually, both cohorts
were pooled together to provide a final prediction model for
recurrent cases. All of the biostatistics analyses were per-
formed using R programming.
ajp.amjpathol.org - The American Journal of Pathology
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Results

Fusion Genes Are Frequently Present in Prostate Cancer
Samples

The role of fusion genes in promoting the metastasis/
recurrence of prostate cancer is still poorly understood.
Previous studies have shown that the fusion genes
MAN2A1-FER, TRMT11- GRIK2, MTOR-TP53BP1,
CCNH-C5orf30, KDM4B-AC011523.2, SLC45A2-AMACR,
TMEM135-CCDC67, LRRC59-FLJ60017, CLTC-ETV1,
PCMTD1-SNTG1, ACPP-SEC13, DOCK7-OLR1, ZMPS
TE24-ZMYM4, and PTEN-NOLC1 are present in prostate
cancers, with various frequencies.10,11 Herein, data from a
multi-institutional cohort that included 271 samples of
radical prostatectomy with adequate clinical information
from UPMC, 191 from University of WisconsineMadison,
and 112 from Stanford Medical Center were analyzed to
determine whether these fusion genes were accurate in
predicting the clinical outcomes in patients with prostate
cancers. Eligible patients with nonrecurrent samples had
clinical follow-ups at least 5 years after surgical treatment.

As shown in Supplemental Table S4, all 14 fusion genes
were detected in the prostate cancer samples from the
combined cohorts. SLC45A2-AMACR had the highest
detection rate (86.8%) of all fusion genes in the combined
cohorts, ranging from 80.1% in the UPMC cohort to 93.2%
in the Wisconsin cohort. This was followed by MAN2A1-
FER (76.5%), ZMPSTE24-ZMYM4 (70.7%), and PTEN-
NOLC1 (66.4%), while TMEM135-CCDC67 had the lowest
frequency, only 1.2% of the samples were positive for this
fusion gene. In general, the frequencies of the fusion genes
were comparable among the three cohorts, except CCNH-
C5orf30, which was detected with a significantly higher
frequency in the Wisconsin cohort (78% versus 29.5% and
33.9% in the UPMC and Stanford cohorts, respectively).

Fusion Gene Expressions Associated with Clinical and
Pathologic Features of Prostate Cancer

Association analysis in the UPMC cohort showed that the
presence of MTOR-TP53BP1 (P Z 0.0028), KDM4B-
AC011523.2 (P Z 0.02), ACPP-SEC13 (P Z 0.007), and
DOCK7-OLR1 (P Z 0.03) in the prostate cancer samples
was associated with an increased risk for a high combined
Gleason score (8 to 10), while CCNH-C5orf30 (P Z 0.01)
was associated with a low combined Gleason score (6 or 7).
In addition, the presence of MAN2A1-FER (P Z 0.046),
MTOR-TP53BP1 (P Z 0.0018), KDM4B-AC011523.2
(P Z 0.025), and PCMTD1-SNTG1 (P Z 0.021) was
associated with a high Gleason score, while CCNH-C5orf30
was associated with a low Gleason score (P Z 0.0027). The
presence of MAN2A1-FER (P Z 0.01) and MTOR-
TP53BP1 (P Z 0.007) in a prostate cancer sample was also
associated with a more advanced pathologic cancer stage
(T3/4), while the presence of CCNH-C5orf30 was
The American Journal of Pathology - ajp.amjpathol.org
associated with cancers of a less invasive stage (T2)
(PZ 0.027). Strong expression of MAN2A1-FER (CT � 35,
P Z 0.0008) and the presence of MTOR-TP53BP1
(P Z 0.0007) were associated with a higher preoperative
serum PSA level. Six fusion genes were associated lymph
node involvement: MAN2A1-FER (P Z 0.0036), TRMT11-
GRIK2 (P Z 0.025), MTOR-TP53BP1 (P Z 0.0088),
SLC45A2-AMACR (P Z 0.028), PCMTD1-SNTG1
(P Z 0.033), and DOCK7-OLR1 (P Z 0.0031). Similar to
lymph node involvement, six fusion genes were associated
with an increased risk for biochemical recurrence of prostate
cancer: MAN2A1-FER (P Z 9.4 � 10�6), TRMT11-GRIK2
(P Z 0.007), MTOR-TP53BP1 (P Z 4.97 � 10�6),
PCMTD1-SNTG1 (P Z 0.00018), ACPP-SEC13
(P Z 0.0019), and DOCK7-OLR1 (P Z 0.0017).

Interestingly, the presence of CCNH-C5orf30 was asso-
ciated with a decreased risk for the recurrence of prostate
cancer (P Z 0.00026).

To investigate whether fusion genes were also associated
with similar clinical characteristics of prostate cancer sam-
ples in independent cohorts, association analyses were
performed on the Stanford and Wisconsin cohorts. In the
Wisconsin cohort, 17.3% of prostate cancer cases were
recurrent, while in the Stanford cohort, 62.5% were recur-
rent. To make the analyses balanced and comparable, the
Wisconsin and Stanford cohorts were combined into one
external cohort, with sample number and clinical charac-
teristics similar to those from UPMC (39.5% cases from 271
samples were recurrent). The combined cohort had a total of
303 prostate cancer samples, including 297 samples with
available clinical follow-up information. Thirty-four percent
of the samples (102/297) from the combined cohort had
known prostate cancer recurrence. Association analyses of
the combined external cohort showed that the presence of
MTOR-TP53BP1 (P Z 0.03), LRRC59-FLJ60017
(P Z 0.02), and CLTC-ETV1 (P Z 0.006) was associated
with a higher Gleason score. Strong expressions of
MAN2A1-FER (CT � 34, P Z 0.006) and PTEN-NOLC1
(CT � 33, P Z 0.04) were also associated with a higher
Gleason score. The presence of PTEN-NOLC1 was associ-
ated with a higher preoperative serum PSA level
(P Z 0.03). The expressions of DOCK7-OLR1 and
ZMPSTE24-ZMYM4 were associated lower PSA-free sur-
vival (both, P Z 0.04). In contrast, good expression of
CCNH-C5orf30 (CT � 37) was associated with a lower
Gleason score (P Z 0.005), lower PSA level
(P Z 4.1 � 10�5), a lower recurrence rate (P Z 0.0006),
and better PSA-free survival (P Z 0.0002).

Fusion GeneeBased Machine-Learning Models to
Predict Prostate Cancer Recurrence in the UPMC Cohort

To investigate whether individual fusion genes or combi-
nations of fusion genes were predictive of outcomes in pa-
tients with prostate cancer recurrence, multiple machine-
learning models utilizing various combinations of fusions
395
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with optimal intensity cutoffs were employed to analyze the
UPMC prostate cancer cohort based on the LOOCV
method. A total of 764 models were constructed, of which
457 had prediction accuracy rates above 70% (Supplemental
Table S5). The support vector machine model, which
combined the detection of six fusion genes [MAN2A1-FER
(CT � 34), TRMT11-GRIK2 (CT � 43), MTOR-TP53BP1
(CT � 42), CCNH-C5orf30 (negative), PCMTD1-SNTG1
(CT � 38), and ACPP-SEC13 (CT � 40)], produced an
accuracy of 81.9%, with a sensitivity of 76.6% and a
specificity of 85.4%. The model also generated a Youden
index of 0.62 (Figure 1 and Supplemental Table S5). The
PSA-free survival analysis of the six-fusion support vector
machine model showed that 24.3% of patients survived 5
years PSA-free if the cancer was predicted as recurrent,
while 85% of patients had no recurrence for at least 5 years
if the cancer was predicted as nonrecurrent
(P Z 4.2 � 10�25) (Figure 1).

Incorporation of Fusion Gene Detection Enhances
Gleason Score Prediction of Prostate Cancer Recurrence
in the UPMC Cohort

The prediction analysis based on Gleason scores showed
that a cutoff of the Gleason score at 8 in the UPMC cohort
had the best prediction: 77.9% accuracy, with a sensitivity
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of 57% and a specificity of 91.5% (Figure 1 and
Supplemental Table S6). To investigate whether the com-
bination of fusion gene profiling and Gleason score
enhanced the prediction of prostate cancer recurrence,
Gleason score was incorporated into the machine-learning
LOOCV analysis. A total of 442 models of different
combinations showed an accuracy above 80% when fusion
gene profiling was combined with Gleason score
(Supplemental Table S7). As shown in Figure 2 and
Supplemental Table S7, a support vector machine model
using the detection of six fusions [MAN2A1-FER
(CT � 34), TRMT11-GRIK2 (CT � 43), MTOR-
TP53BP1 (CT � 42), CCNH-C5orf30 (negative),
PCMTD1-SNTG1 (CT � 38), and ACPP-SEC13 (CT � 40)]
þ Gleason score accurately predicted prostate cancer
recurrence in 85.2% of cases, with a sensitivity of 72% and
a specificity of 94%. The survival analysis showed that only
12.8% of patients had recurrence-free survival of 5 years
after surgery if the cancer was predicted as recurrent. In
contrast, 84.6% of patients had recurrence-free survival of 5
years after surgery if the cancer was predicted as nonre-
current. These results represented an improvement over the
use of Gleason score alone, with 20.5% having recurrence-
free survival for 5 years after surgery if Gleason score was
8 or above, and 76.9% having no recurrence if Gleason
score was 7 or less (Figures 1 and 2).
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Figure 2 Fusion genes enhance predictions by Gleason score, serum PSA level, and the combination of both in the UPMC cohort. Top panels: Receiver
operating characteristic curves from a support vector machine model that detects six fusion genes [MAN2A1-FER (CT � 34), TRMT11-GRIK2 (CT � 43), MTOR-
TP53BP1 (CT � 42), CCNH-C5orf30 (negative), PCMTD1-SNTG1 (CT � 38), and ACPP-SEC13 (CT � 40)] þ Gleason score (left), a support vector machine model
that detects five fusion genes [MAN2A1-FER (CT � 34), MTOR-TP53BP1 (CT � 42), CCNH-C5orf30 (negative), PCMTD1-SNTG1 (CT � 38), and ACPP-SEC13
(CT � 40)] þ PSA (second from the left), Gleason score þ PSA logistic model (third from the left), and a random forest model that uses the detection of
three fusion genes [MAN2A1-FER (CT � 34), CCNH-C5orf30 (negative), DOCK7-OLR1 (CT � 41)] þ Gleason score þ PSA (right). Bottom panels: Kaplan-Meier
analyses of PSA-free survival in prostate cancer patients predicted by a support vector machine model that uses the detection of six fusion genes [MAN2A1-FER
(CT � 34), TRMT11-GRIK2 (CT � 43), MTOR-TP53BP1 (CT � 42), CCNH-C5orf30 (negative), PCMTD1-SNTG1 (CT � 38), and ACPP-SEC13 (CT � 40)] þ Gleason score
(left), a support vector machine model that uses the detection of five fusion genes [MAN2A1-FER (CT � 34), MTOR-TP53BP1 (CT � 42), CCNH-C5orf30
(negative), PCMTD1-SNTG1 (CT � 38), and ACPP-SEC13 (CT � 40)] þ PSA (second from the left), Gleason score þ PSA logistic model (third from the left), and
a random forest model that uses the detection of three fusion genes [MAN2A1-FER (CT � 34), CCNH-C5orf30 (negative), DOCK7-OLR1 (CT � 41)] þ Gleason þ
PSA (right).

Machine Learning Predicts PCa Recurrence
Fusion Gene Detection Improves PSA Prediction of
Prostate Cancer Recurrence in the UPMC Cohort

The use of serum PSA alone was moderately effective in
predicting the recurrence of prostate cancer. A high serum
PSA level was correlated with the risk for prostate cancer
recurrence. Indeed, a PSA of >9.77 ng/mL correctly pre-
dicted 73.5% of cases of prostate cancer recurrence in the
UPMC cohort, with a sensitivity of 50% and a specificity of
90.4% (Figure 1 and Supplemental Table S8). When fusion
gene profiling was combined with the PSA prediction
analysis, 265 models of different combinations showed
prediction accuracy rates above 75%. The top predictor was
a support vector machine model that incorporated a serum
PSA level cutoff of 9.77 ng/mL and the presence of five
fusion genes, MAN2A1-FER (CT � 34), MTOR-TP53BP1
(CT � 42), CCNH-C5orf30 (negative), PCMTD1-SNTG1
(CT � 38), and ACPP-SEC13 (CT � 40) (Figure 2 and
Supplemental Table S9), which produced 82.3% accuracy,
with 80% sensitivity and 84% specificity. Survival analyses
showed that 23.3% of patients survived 5 years PSA-free if
the cancer was predicted as recurrent, while 85.4% of pa-
tients survived 5 years PSA-free if the cancer was predicted
The American Journal of Pathology - ajp.amjpathol.org
as nonrecurrent (P Z 2.2 � 10�21) (Figure 2). This finding
represented a moderate improvement over the use of PSA
used alone: 21.8% PSA-free survival for 5 years if PSA was
above 9.77 ng/mL, and 72.2% PSA-free survival if PSA was
below 9.77 ng/mL (P Z 1.46 � 10�13) (Figure 1).

Combination of Fusion Gene Profiling, Serum PSA, and
Gleason Score in Predicting the Recurrence of Prostate
Cancer in the UPMC Cohort

To investigate whether a combination of serum PSA,
Gleason score, and fusion gene profiling improved the
prediction of prostate cancer recurrence further, 385 models
with various combinations based on the best intensity cut-
offs using LOOCV were constructed. A total of 317 models
yielded prediction accuracy rates of 80% or better
(Supplemental Table S10). The RF model, which combined
Gleason score, serum PSA, and the detection of three fusion
genes [MAN2A1-FER (CT � 34), CCNH-C5orf30 (nega-
tive), and DOCK7-OLR1 (CT � 41)], produced the highest
Youden index, with 84.7% accuracy, 84.4% sensitivity, and
84.8% specificity (Figure 2 and Supplemental Table S10).
These results represented an improvement over the use of
397
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Gleason score þ serum PSA: 78.6% accuracy, with 64.4%
sensitivity and 88.8% specificity (Figure 2 and
Supplemental Table S11). Survival analyses showed that
21.3% of prostate cancer patients survived 5 years PSA-free
after surgery if the cancer was predicted as recurrent by the
RF model, while 89.1% of patients experienced no recur-
rence for 5 years after surgery if the cancer was predicted as
nonrecurrent (P Z 1.3 � 10�26) (Figure 2). On the other
hand, the best Gleason score þ serum PSA model (logistic)
generated a 21.1% PSA-free survival for 5 years if the
cancer was predicted as recurrent, and 78.2% PSA-free
survival for 5 years if the cancer was predicted as nonre-
current (P Z 9.6 � 10�17) (Figure 2).

Stanford/Wisconsin Cohort Validation of Fusion Gene
Profiling Enhances the Prediction of Prostate Cancer
Recurrence

Next, 764 machine-learning models trained using data from
the UPMC cohort were applied to the Stanford/Wisconsin
cohort. However, none of the models had a prediction ac-
curacy rate reaching 70% (Supplemental Table S12). The
optimized cutoff of Gleason score based on data from the
Stanford/Wisconsin validaƟon Stanford/Wis
Gleason P
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Figure 3 Fusion gene algorithms from UPMC cohort improve PSA-free survival
Stanford/Wisconsin cohort. Top panels: Kaplan-Meier analyses of PSA-free surviva
Gleason (cutoff Z 8, left), PSA (cutoff Z 9.77 ng/mL, middle), or Gleason score
survival in prostate cancer patients in the Stanford/Wisconsin cohort, predicted by
genes [TRMT11-GRIK2 (CT � 43), CCNH-C5orf30 (negative), CLTC-ETV1 (CT � 37), an
detection of three fusion genes [TRMT11-GRIK2 (CT � 43), CCNH-C5orf30 (negative
detection of four fusion genes [TRMT11-GRIK2 (CT � 43), CCNH-C5orf30 (negative)
(right).
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UPMC cohort was then applied to predict the outcomes of
prostate cancer patients from the Stanford/Wisconsin cohort
(combined Gleason score of >8 as recurrent). The results
produced a Youden index of 0.27 and yielded 72.4% ac-
curacy, with 34.3% sensitivity and 92.3% specificity
(P Z 4.4 � 10�17) (Supplemental Table S13 and
Supplemental Figure S1). To investigate whether fusion
gene detection enhanced the prediction of prostate cancer
recurrence by Gleason score, 764 model algorithms devel-
oped from the UPMC cohort were applied to the Stanford/
Wisconsin cohort for cross-validation, with 52 models
yielding prediction accuracy rates exceeding 72.5%
(Supplemental Table S14). One was an LDA model that
integrated two fusion genes [TRMT11-GRIK2 (CT � 43)
and CCNH-C5orf30 (negative)] with Gleason score, which
yielded the highest Youden index, 0.3, and a prediction
accuracy of 75%, with 32.3% sensitivity and 96.9% speci-
ficity (Supplemental Table S14 and Supplemental
Figure S1). The same model also accurately predicted
79% of cases in the UPMC cohort (Supplemental Table S7).
Survival analysis showed that 70.6% of patients survived 5
years without the recurrence of prostate cancer when the
cancer was predicted as nonrecurrent, while only 15.4% of
consin validaƟon Stanford/Wisconsin validaƟon
SA Gleason+PSA
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Machine Learning Predicts PCa Recurrence
patients survived 5 years when the cancer was predicted as
recurrent by the model (P Z 8.6 � 10�15) (Figure 3). These
findings represented a moderate improvement over Gleason
score alone: 70.2% survived 5 years without recurrence if
Gleason score was 7 or lower, while 28.7% survived a
similar period without recurrence if Gleason score was 8 or
above (P Z 3.7 � 10�9) (Figure 3).

PSA used as the sole criterion for predicting prostate
cancer recurrence in the Stanford/Wisconsin cohort based
on the training data from the UPMC cohort yielded 74.7%
accuracy, with 67.6% sensitivity and 78.5% specificity
(Supplemental Table S15 and Supplemental Figure S1).
Among 56 models of fusion gene profiling þ serum PSA,
the prediction accuracy rate exceeded 75% (Supplemental
Table S16). A logistic model using the detection of three
fusion genes [TRMT11-GRIK2 (CT � 43), CCNH-C5orf30
(negative), and ACPP-SEC13 (CT � 40)] integrated with
PSA yielded 78.9% accuracy, with 56% sensitivity and
90.8% specificity (Supplemental Table S16 and
Supplemental Figure S1). The same model predicted 80% of
recurrence correctly in the UPMC cohort (Supplemental
Table S9). Survival analysis showed that 77% of patients
survived 5 years without cancer recurrence when the cancer
was predicted as nonrecurrent, while only 17.8% of patients
had no recurrence in 5 years if the cancer was predicted as
recurrent (P Z 3.0 � 10�28) (Figure 3). These findings
represented a moderate improvement over survival predic-
tion by PSA alone: 78.8% of patients survived 5 years
without recurrence if PSA was <9.77 ng/mL, while 38.8%
of patients survived 5 years without recurrence if PSA was
>9.77 ng/mL (P Z 3 � 10�16) (Figure 3).

Combining PSA and Gleason score improved the pre-
diction of prostate cancer recurrence to 76.8%, with a
Youden index 0.45 (Supplemental Table S17). This model
was more accurate than the use of either PSA or Gleason
score alone. To investigate whether the integration of fusion
gene profiling, PSA level, and Gleason score further
improved the prediction accuracy rate, 764 algorithms
developed from the UPMC training cohort were applied to
the Stanford/Wisconsin cohort for validation analysis.
Seventy-three algorithms produced an accuracy exceeding
77% (Supplemental Table S18). Among them, an LDA
model that integrated the detection of four fusion genes
[TRMT11-GRIK2 (CT � 43), CCNH-C5orf30 (negative),
ACPP-SEC13 (CT � 40), and DOCK7-OLR1 (CT � 41)]
with Gleason score and serum PSA level generated a pre-
diction accuracy of 79.5%, with 53.9% sensitivity and
92.8% specificity and a Youden index of 0.47
(Supplemental Figure S1 and Supplemental Table S18). The
same model had 82.3% prediction accuracy in the UPMC
cohort (Supplemental Table S10). Survival analyses showed
that 78% of patients survived 5 years without recurrence if
the cancer was predicted as nonrecurrent by the model using
four fusion genes þ Gleason þ PSA LDA, while only
11.6% of patients experienced no recurrence in the same
period if the cancer was predicted as recurrent
The American Journal of Pathology - ajp.amjpathol.org
(P Z 6.4 � 10�32) (Figure 3). These results represented an
improvement on the optimal Gleason þ PSA model: 78% of
patients survived 5 years without recurrence if the cancer
was predicted as nonrecurrent, while 26.7% of patients
experienced no recurrence if the cancer was predicted as
recurrent (P Z 2.5 � 10�19) (Figure 3). In general, these
results indicated that the addition of the fusion gene algo-
rithm improved the prediction accuracy rate of PSA and/or
Gleason score on prostate cancer recurrence in two inde-
pendent cohorts.

Combining UPMC, Stanford, and University of
Wisconsin Cohorts for Cross-Validation Prediction

With all of the cohorts combined (574 cases), Gleason score
alone (cutoff Z 8, optimal) yielded 75% accuracy
(Supplemental Table S19). Most (440) of the fusion
geneecontaining algorithms combined with Gleason score
exceeded an accuracy of 76% based on LOOCV
(Supplemental Table S20). One of the models called five
fusion genes [MAN2A1-FER (CT � 34), TRMT11-GRIK2
(CT � 43), MTOR-TP53BP1 (CT � 42), CCNH-C5orf30
(negative), and ACPP-SEC13 (CT � 40)].

The RF model improved the Gleason prediction accuracy
from 75% to 78% (Figure 4 and Supplemental Table S20).
Serum PSA also yielded a prediction accuracy of 74.2%
when using the optimal cutoff (9.77 ng/mL) (Figure 4 and
Supplemental Table S21). When serum PSA was incorpo-
rated into an RF model that used the detection of five fusion
genes [MAN2A1-FER (CT � 34), MTOR-TP53BP1
(CT � 42), CCNH-C5orf30 (negative), CLTC-ETV1
(CT � 37), and ACPP-SEC13 (CT � 40)], the accuracy of
predicting prostate cancer recurrence was improved to
78.7% (Figure 4 and Supplemental Table S22). With an RF
model of Gleason score, serum PSA, and the detection of
five fusion genes [MAN2A1-FER (CT � 34), TRMT11-
GRIK2 (CT � 43), MTOR-TP53BP1 (CT � 42), CCNH-
C5orf30 (negative), and ACPP-SEC13 (CT � 40)], the
prediction accuracy improved to 82.4%, with 68.8% sensi-
tivity and 90.6% specificity, and a Youden index of 0.59
(Figure 4 and Supplemental Table S23). These results rep-
resented an improvement in prediction accuracy over the
use of combined serum PSA þ Gleason score: 77.1% ac-
curacy, 55.8 sensitivity, 90% specificity, and a Youden
index of 0.46 (Figure 4 and Supplemental Table S24).

The survival analysis showed that 76% of patients sur-
vived 5 years recurrence-free if the cancer was predicted as
nonrecurrent by the fusion þ Gleason RF model, while
18.4% of patients were prostate cancer-free if the cancer was
predicted as recurrent by the same model (PZ 2.3 � 10�44)
(Figure 5). This combination yielded an improvement over
the use of Gleason score alone: 73.8% PSA-free survival if
the Gleason score was 7 or lower, and 23.9% PSA-free
survival if the Gleason score was 8 or above
(P Z 1.4 � 10�32). When PSA and fusion algorithms were
combined, 76.5% of patients were prostate cancer free for 5
399
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Figure 4 Fusion gene algorithm improves prediction of prostate cancer recurrence in combined cohorts of UPMC, Stanford, and Wisconsin, by Gleason
score, serum PSA level, or the combination of both. Top panels: Receiver operating characteristic curves from Gleason (left), PSA (middle), or Gleason þ PSA
(right) logistic models. Bottom panels: Receiver operating characteristic curves from a random forest model using the detection of five fusion genes
[MAN2A1-FER (CT � 34), TRMT11-GRIK2 (CT � 43), MTOR-TP53BP1 (CT � 42), CCNH-C5orf30 (negative), and ACPP-SEC13 (CT � 40)] þ Gleason score (left), a
random forest model using the detection of five fusion genes [MAN2A1-FER (CT � 34), MTOR-TP53BP1 (CT � 42), CCNH-C5orf30 (negative), CLTC-ETV1 (CT � 37),
and ACPP-SEC13 (CT � 40)] þ PSA (middle), and a random forest model using the detection of five fusion genes [MAN2A1-FER (CT � 34), TRMT11-GRIK2
(CT � 43), MTOR-TP53BP1 (CT � 42), CCNH-C5orf30 (negative), and ACPP-SEC13 (CT � 40)] þ Gleason þ PSA (right).
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years if the cancer was predicted as negative for recurrence,
and 17.9% of patients were prostate cancer free for 5 years if
the cancer was predicted as positive for recurrence
(P Z 1.05 � 10�42) (Figure 5). These results compared
favorably against prediction by PSA alone: 76% of patients
survived 5 years recurrence-free if serum PSA was <9.77
ng/mL, and 30.5% of patients had cancer recurrence in 5
years if serum PSA was above 9.77 ng/mL. When fusion
gene profiling, Gleason score, and PSA algorithm were
combined, the prediction results were further improved:
81.9% of patients were prostate cancer recurrence free for 5
years after surgery if the cancer was predicted as nonre-
current by the fusion þ Gleason þ PSA RF model, while
only 17.2% patients were cancer recurrence free if the
cancer was predicted as recurrent by the same model
(P Z 1.1 � 10�56) (Figure 5). On the other hand, with the
Gleason þ PSA logistic model, 78.3% of patients had no
cancer recurrence for 5 years if the cancer was predicted as
nonrecurrent by the model, and 26.2% of patients had no
cancer recurrence for 5 years if the cancer was predicted as
recurrent (P Z 3.7 � 10�35).
400
Learning Models Most Consistent Among Cohorts

The models that worked well in the Stanford/Wisconsin
validation appeared the most consistent models for clinical
application: the LDA model integrating Gleason score,
serum PSA level, and the detection of four fusion genes
[TRMT11-GRIK2 (CT � 43), CCNH-C5orf30 (negative),
ACPP-SEC13 (CT � 40), and DOCK7-OLR1 (CT � 41)]
yielded 79.5% accuracy in the Stanford/Wisconsin cohort,
82.3% in the UPMC cohort, and 81.8% in the combined
UPMC/Stanford/Wisconsin cohorts. Similarly, the LDA
model that integrated Gleason score with the detection of
two fusion genes [TRMT11-GRIK2 (CT � 43) and CCNH-
C5orf30 (negative)] yielded 75% accuracy in the Stanford/
Wisconsin cohort, 79% in the UPMC cohort, and 77.8% in
the combined UPMC/Stanford/Wisconsin cohort. When
only serum PSA was available, the logistic model using
PSA integrated with the detection of three fusion genes
[TRMT11-GRIK2 (CT � 43), CCNH-C5orf30 (negative),
and ACPP-SEC13 (CT � 40)] yielded 78.9% accuracy in the
Stanford/Wisconsin cohort, 80% in the UPMC cohort, and
ajp.amjpathol.org - The American Journal of Pathology
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Figure 5 Fusion geneecontaining algorithms enhance PSA-free survival prediction by Gleason score, serum PSA level, or the combination of both, in the
combined cohorts of UPMC, Stanford, and Wisconsin. Top panels: Kaplan-Meier analyses of PSA-free survival of prostate cancer patients in the combined
cohorts by Gleason (cutoff Z 8, left), PSA (cutoff Z 9.77 ng/mL, middle), Gleason þ PSA (logistic model, right). Bottom panels: Kaplan-Meier analyses of
PSA-free survival of prostate cancer patients in the combined cohorts by random forest model using the detection of five fusion genes [MAN2A1-FER (CT � 34),
TRMT11-GRIK2 (CT � 43), MTOR-TP53BP1 (CT � 42), CCNH-C5orf30 (negative), and ACPP-SEC13 (CT � 40)] þ Gleason score (left), random forest model using
the detection of five fusion genes [MAN2A1-FER (CT � 34), MTOR-TP53BP1 (CT � 42), CCNH-C5orf30 (negative), CLTC-ETV1 (CT � 37), and ACPP-SEC13.
(CT � 40)] þ PSA (middle), and a random forest model using the detection of five fusion genes [MAN2A1-FER (CT � 34), TRMT11-GRIK2 (CT � 43), MTOR-
TP53BP1 (CT � 42), CCNH-C5orf30 (negative), and ACPP-SEC13 (CT � 40)] þ Gleason score þ PSA (right).

Machine Learning Predicts PCa Recurrence
76% in the RF combined UPMC/Stanford/Wisconsin
cohort.
Discussion

Prediction of the clinical course of prostate cancer remains
challenging. Most cases of organ-confined prostate cancer
are curable by radical prostatectomy or radiation therapy. A
fraction of prostate cancer patients experience recurrent
cancer and die from the disease. Gleason score and serum
PSA level have been widely used as the basis for predicting
clinical outcomes in prostate cancer patients. The results
from this study showed that fusion gene models were
important contributing factors in the prediction of the
recurrence of prostate cancer. The enhancement of PSA and/
or Gleason grading by fusion gene status was quite robust.
The use of detecting several hundred combinations of fusion
genes in different algorithmic models improved the accu-
racy over predicting prostate cancer recurrence by Gleason
score, serum PSA, or the combination of both.

This enhancement appeared in different cohorts with
highly variable clinical characteristics. The wide variety of
models that improved prediction may also be useful in
The American Journal of Pathology - ajp.amjpathol.org
overcoming the heterogeneity issue of the cancer samples in
which different fusion gene patterns may appear in different
loci. These machine-learning models can be utilized in
several scenarios: in a patient with prostate cancer diag-
nosed using a Gleason score and a recent serum PSA level,
the fusion gene þ Gleason þ PSA model may be useful in
predicting the risk for prostate cancer recurrence, with an
accuracy ranging from 79.5% to 84.7%. If serum PSA is not
available, the fusion gene profiling þ Gleason model can be
useful in predicting the recurrence of prostate cancer, with
an accuracy of 74% to 85.2%. In the absence of a Gleason
score, the fusion gene profiling þ PSA model yielded a
prediction accuracy from 78.9% to 82.3%. In a patient with
radical prostatectomy, these models may be useful in
determining whether additional adjuvant therapy is needed.
It is also possible to combine these fusion geneeprediction
models with other methods, such as prostate imaging
reporting and data system28 or prostate genome decipher
classifier,29 to improve the prediction further.

Overfitting is a potential problem associated with
machine-learning methods. Indeed, significant variations in
both clinical features and fusion gene detection were pre-
sent among cases from the UPMC, Stanford, and Wis-
consin cohorts. Despite these variations, the addition of
401
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fusion gene profiling to models using Gleason score and/or
serum PSA consistently improved the accuracy of pre-
dicting prostate cancer recurrence in all of the cohorts.
Some fusion genes were consistently associated with
clinical features in both the UPMC and Stanford/Wiscon-
sin cohorts: The presence of MTOR-TP53BP1 and strong
expression of MAN2A1-FER (CT � 34) were associated
with a higher Gleason score in both cohorts. The expres-
sion of DOCK7-OLR1 was associated with prostate cancer
recurrence. However, the presence of CCNH-C5orf30
signaled a lower Gleason score, lower cancer recurrence,
and better PSA-free survival in all of the cohorts. CCNH-
C5orf30 fusion features a truncated cyclin H protein and an
intact independent C5orf30. Cyclin H protein (CCNH) is
an important regulator of cell cycle progression to
mitosis30,31 and basal RNA transcription.32 The truncated
CCNH from the gene fusion lacks H50 and HC domain, and
is defective in binding cyclin-dependent kinase (CDK)-7
protein.33 Such defects may prevent CCNH from promot-
ing cell mitosis and RNA transcription. The truncated
CCNH protein due to the gene fusion may have a negative
impact on prostate cancer progression.

This study reported a new tool for predicting clinical
outcomes in patients with prostate cancer. In comparison
with Gleason score and PSA, fusion gene profiling has
added value for clinical patient management because some
gene fusions are important molecular processes in gener-
ating prostate cancer. These fusion genes are readily
detectable in blood samples from prostate cancer patients.
Thus, it is possible to build similar prediction models based
on the fusion gene status of blood/serum samples from
prostate cancer patients. Some of these fusion genes are
proven cancer drivers,10,19,21 while some others are func-
tional knockouts of tumor suppressors.34 Thus, the detec-
tion of fusion genes provides new mechanistic insight into
prostate cancer progression. In patients whose samples are
positive for MAN2A1-FER, the fusion gene sensitizes the
cancer cells to crizotinib and canertinib because of the
ectopic tyrosine kinase activity of the fusion protein.21

Cancer cells positive for PTEN-NOLC1 are sensitive to
cyclopropanecarboxylic acid-(3-[6-(3-trifluoromethyl-phe-
nylamino)-pyrimidin-4-ylamino]-phenyl)-amide, a potent
epidermal growth factor receptor (EGFR) inhibitor,
because PTEN-NOLC1 promotes the expression of EGFR
and its downstream signaling molecules,10 while cancer
cells positive for SLC45A2-AMACR are sensitive to
SCH772984, an inhibitor of ERKs, due to the direct acti-
vation of ERK2 by the translocated a-methyl-
acylecoenzyme A racemase (AMACR) protein.19 Cancer
cells harboring any of these gene fusions can be targetable
by gene-editing technology through the insertion of a
suicide gene into the breakpoints of their recombinant
genome.35 Thus, the incorporation of fusion gene detection
into the prostate cancerediagnostic scheme benefits pa-
tients with regard to diagnosis, prognosis, cancer pro-
gression surveillance, and treatment.
402
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