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Abstract

Plant growth-promoting bacteria (PGPB) may be of use for increasing crop yield and

plant resilience to biotic and abiotic stressors. Using hyperspectral reflectance data to

assess growth-related traits may shed light on the underlying genetics as such data can

help assess biochemical and physiological traits. This study aimed to integrate hyper-

spectral reflectance data with genome-wide association analyses to examine maize

growth-related traits under PGPB inoculation. A total of 360 inbred maize lines with

13,826 single nucleotide polymorphisms (SNPs) were evaluated with and without

PGPB inoculation; 150 hyperspectral wavelength reflectances at 386–1021 nm and

131 hyperspectral indices were used in the analysis. Plant height, stalk diameter, and

shoot dry mass were measured manually. Overall, hyperspectral signatures produced

similar or higher genomic heritability estimates than those of manually measured phe-

notypes, and they were genetically correlated with manually measured phenotypes.

Furthermore, several hyperspectral reflectance values and spectral indices were identi-

fied by genome-wide association analysis as potential markers for growth-related traits

under PGPB inoculation. Eight SNPs were detected, which were commonly associated

with manually measured and hyperspectral phenotypes. Different genomic regions

were found for plant growth and hyperspectral phenotypes between with and without

PGPB inoculation. Moreover, the hyperspectral phenotypes were associated with

genes previously reported as candidates for nitrogen uptake efficiency, tolerance to

abiotic stressors, and kernel size. In addition, a Shiny web application was developed to

explore multiphenotype genome-wide association results interactively. Taken together,

our results demonstrate the usefulness of hyperspectral-based phenotyping for study-

ing maize growth-related traits in response to PGPB inoculation.
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1 | INTRODUCTION

Sustainably increasing food production is required considering growing

demands, especially in developing nations (Laurance et al., 2014). Recent

studies found that plant growth-promoting bacteria (PGPB) are a viable

option for increasing plant resilience to biotic and abiotic stressors, with

the potential to increase food production (Batista et al., 2018; Compant

et al., 2005; Yassue et al., 2021). PGPB can promote morphological

(Mantelin, 2003) and functional (Di Benedetto et al., 2017) changes in

plants. Reported effects include increased uptakes of nutrients, such as

nitrogen, phosphate, potassium, and iron (Egamberdiyeva, 2007; Pii

et al., 2015), and activation of responses to pathogens and abiotic

stressors (Olanrewaju et al., 2017; Singh et al., 2018).

One of the challenges associated with assessing the possible ben-

efits of PGPB is identifying plant response. Hyperspectral image data

can be used to assess biochemical or physiological attributes of plants;

thus, such data have been increasingly applied in plant genetics and

management studies because of their associations with target pheno-

types, such as water content (550–1750 nm) (Ge et al., 2016), plant

nutrient status (350–2500 nm) (Mahajan et al., 2014; Nigon et al.,

2021), disease susceptibility (Thomas et al., 2017), yield (400–900 nm)

(Yang et al., 2021), and biomass (380–850 nm) (Krause et al., 2019).

For example, hyperspectral patterns genetically correlated with target

phenotypes can potentially aid genomic prediction (Krause et al.,

2019; Sandhu et al., 2021). In addition, hyperspectral phenotypes can

be used for genetic inference studies, such as genome-wide associa-

tion (GWA), heritability, and genetic correlation analyses, to investi-

gate associations between hyperspectral bands and genome (Barnaby

et al., 2020; Feng et al., 2017; Sun et al., 2019; Wu et al., 2021).

Bayesian whole-genome regression models are useful for GWA

studies because they implicitly account for population structure and

the multiple-testing problem of classical single-marker linear mixed

models by simultaneously fitting all markers (Fernando et al., 2017;

Wolc & Dekkers, 2022). Despite the increasing use of high-

throughput phenotyping through the compilation of hundreds or

thousands of phenotypes, a limited number of whole-genome regres-

sion studies have integrated hyperspectral data into genetic inference

research (Barnaby et al., 2020; Sun et al., 2019; Yoosefzadeh-

Najafabadi et al., 2021). Moreover, how hyperspectral wavelength

data are associated with PGPB responses in maize remains elusive

because it is challenging to interpret changes in hyperspectral reflec-

tance patterns with regard to plant biological processes. The objec-

tives of this study were (1) to investigate whether hyperspectral

reflectance values are under genomic control, (2) to determine

whether variations in hyperspectral reflectance values are correlated

with growth-related traits at the genomic level, (3) to identify specific

genomic regions associated with wavelengths that can be used to

study maize growth-related traits under PGPB inoculation, and

(4) develop an open-source a Shiny web application to explore multi-

phenotype GWA results interactively. We employed Bayesian whole-

genome GWA methods to identify possible candidate genes associ-

ated with growth-related traits and hyperspectral reflectance bands.

2 | MATERIALS AND METHODS

2.1 | PGPB experiment

A public tropical maize association panel comprising 360 inbred lines

was used to examine genetic basis of PGPB responses under green-

house conditions. The inbred lines were evaluated under nitrogen

stress with (B+) and without (B�) PGPB inoculation. Each experi-

mental unit consisted of one pot containing one plant. Maize seeds

were co-inoculated with the PGPB strains Bacillus thuringiensis

RZ2MS9, Delftia sp. RZ4MS18 (Batista et al., 2018, 2021), Pantoea

agglomerans 33.1 (Quecine et al., 2012), and Azospirillum brasilense

Ab-v5 (Hungria et al., 2010). Each of the PGPB species was

adjusted to the concentration of 108 colony-forming units/mL. B�
management constituted treatment with liquid Luria–Bertani

medium only. A plot, including three seeds in an individual plastic

bag, was inoculated with 1 mL of the respective management (B+

or B�), homogenized, and seeded. Irrigation, weed control, and

application of fertilizer (excluding nitrogen) were carried out accord-

ing to crop requirements. After germination, each plot was thinned

to only one plant per plot. The plants were evaluated when most

had six expanded leaves, that is, approximately 33 days after sow-

ing. Manually measured phenotypes included plant height (PH), stalk

diameter (SD), and shoot dry mass (SDM). A total of 1512 plots

(plants) were evaluated under B+ and B� conditions (756 B+ and

756 B�). Detailed information on the experimental design can be

found in Yassue (2021, 2022).

2.2 | Genomic data

The genomic data used in this study have been previously published

(Fritsche-Neto et al., 2020; Yassue et al., 2021). In brief, the

360 inbred lines were genotyped using the genotyping-by-sequencing

method, followed by a two-enzyme (PstI and MseI) protocol (Poland

et al., 2012; Sim et al., 2012). Deoxyribonucleic acid was extracted

from leaves using cetyltrimethylammonium bromide (Doyle &

Doyle, 1987). Single nucleotide polymorphism (SNP) calling was per-

formed using TASSEL 5.0 (Bradbury et al., 2007) with B73

(B73-RefGen_v4) as a reference genome. SNP markers were removed

if the call rate was < 90%, nonbiallelic, or if the minor allele frequency

was < 5%. Missing marker codes were imputed using Beagle 5.0 soft-

ware (Browning et al., 2018). Markers with pairwise linkage disequilib-

rium > 0.99 were removed using the SNPRelate R package (Zheng

et al., 2012). The average of linkage disequilibrium decay was 185 kbp

considering a conservative cutoff of 0.10. In total, 13,826 SNPs were

retained after quality control. Of the 360 inbred lines, 179 and

181 were collected from the plant breeding program from the Luiz de

Queiroz College of Agriculture-University of São Paulo (ESALQ-USP)

and from the Instituto de Desenvolvimento Rural do Paraná (IAPAR),

respectively. Admixture analysis identified the presence of 18 groups

(Yassue et al., 2022).
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2.3 | Hyperspectral imaging and processing

Leaves of B+ and B� plants were collected, and hyperspectral images

were recorded using a benchtop Pika L. camera system (Resonon,

Bozeman, MT, USA). The middle portion of the last completely

expanded leaf was used as the region of interest for hyperspectral

imaging. A dark room with an additional light supply was used to mini-

mize light variation. Radiometric calibration was performed according

to the manufacturer’s instructions. For each plant, a hyperspectral

cube image was produced, which contained 150 bands with wave-

lengths in the 386–1021 nm range. Image processing through the

Spectral Python (Boggs, 2014) module was performed by applying a

mask to remove the background from the image, and the mean reflec-

tance of each pixel was used for further analysis. Hyperspectral imag-

ing and processing details are described in Yassue et al. (2022). In

addition, 131 hyperspectral indices (mathematical band combinations)

were calculated based on the mean reflectance value for each wave-

length using the R package hsdar (Lehnert et al., 2019). These hyper-

spectral indices have been reported to be associated with a variety of

phenotypes, such as nutrient and chlorophyll content, pigments, pho-

tosynthesis, and water content (Gitelson et al., 2014; Ranjan et al.,

2012; Zarco-Tejada et al., 2004, 2005). A summary of the hyperspec-

tral indices and their correlations are presented in the supporting

information Table S1 and Figure S1, respectively. In total, 281 hyper-

spectral phenotypes were used in the analysis. Of these, 150 were

single-band reflectance and 131 were hyperspectral indices.

2.4 | Univariate BayesC

BayesC (Kizilkaya et al., 2010) was applied to estimate the markers

effect and variance components using the following model.

ykli ¼ μþ rkþblðkÞ þ
Xm

j¼1
wijαjþϵkli,

where ykli is the vector of phenotypes (manually measured or hyper-

spectral phenotypes) for the kth replication, lth block nested within

replication, and ith genotype; μ is the overall mean; r and b are the

fixed effects for replication and block nested within replication,

respectively; wij is the incidence matrices of marker covariates for

each SNP coded as 0, 1, or 2; and αj is the jth marker effect. The prior

of αj was as follows:

αjjπ,σ2α ¼
0 with probability π

�Nð0,σ2αÞ with probability 1�π

�
,

where σ2α is the common marker genetic variance, π is a mixture pro-

portion set to 0.99, and ϵ is the vector of residuals. A Gaussian prior

Nð0,σ2ϵ Þ was assigned to the vector of residuals, and a flat prior was

assigned to μ, r, and b. The scaled inverse χ2 distribution was assigned

to σ2α and σ2ϵ with the degrees of freedom equal to 4 and choosing the

scale parameter such that the prior mean of the variance equals half

of the phenotypic variance. The variance components obtained

from univariate BayesC were used to estimate genomic heritability

h2g ¼
σ2g

σ2gþ
σ2e
nr

, where h2g is the genomic heritability, σ2g and σ2e are the

additive genomic and residual variances, respectively, and nr is the

number of replication (2).

2.5 | Bivariate BayesC

A recent study showed that hyperspectral image data can be used to

perform phenomic prediction for PH, SD, SDM with reasonable accu-

racy (Yassue et al., 2022). In the current study, we investigated if

these hyperspectral reflectance values are under genetic control and

whether they are associated with PH, SD, and SDM. Bivariate BayesC

was used to investigate whether they are controlled by the same

genomic regions by estimating the genetic correlation between manu-

ally measured and hyperspectral phenotypes. The model description

follows that of univariate BayesC with some modification. Here, y is

the vector of manually measured and hyperspectral phenotypes, and

the marker effect of trait t for locus j followed

αjt jπt,σ2αt ¼
0 with probability πt

�Nð0,σ2αt Þ with probability 1�πt:

(

The jth marker effect can be reparameterized as αj ¼Djβj, where Dj is

a diagonal matrix with elements diagðDjÞ¼ δj ¼ðδj1,δj2Þ indicating

whether the jth marker effect for trait t is zero or nonzero and βj fol-

lows a multivariate normal distribution with null mean and covariance

matrix Σα ¼
σ2α1 σα12

σα21 σ2α2

" #
, where α1, α1, and α12 (α21) are marker

genetic variance for trait 1, marker genetic variance for trait 2, and

marker genetic covariance between traits 1 and 2, respectively, and

the residuals were assumed independently and identically distributed

multivariate normal vectors with null mean and covariance matrix Σϵ

(Cheng et al., 2018). The covariance matrices, Σα and Σϵ, were

assigned an inverse Wishart prior distribution with W�1ðSα,ναÞ and

W�1ðSϵ,νϵÞ, respectively. We assumed all possible combinations for δj,

namely, (0,0), (0,1), (1,0), and (1,1) having nonzero probability.

2.6 | Bayesian GWA analysis

The aforementioned BayesC was used to perform GWA analyses of

hyperspectral reflectance values and manually measured phenotypes.

Candidate markers were selected based on their posterior inclusion

probabilities. The posterior inclusion probability indicates the proba-

bility of inclusion of a given marker in the model (Fernando &

Garrick, 2013). According to a previous study (Fan et al., 2011), a pos-

terior inclusion probability threshold of 0.10 was used for manually

measured phenotypes, and 0.50 was used as a more conservative

threshold for hyperspectral GWA. All Bayesian analyses were fit using

60,000 Markov chain Monte Carlo samples, 6000 burn-ins, and a thin-

ning rate of 60 implemented in JWAS (Cheng et al., 2018). Model
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convergence was assessed using trace plots of the posterior means of

the parameters. For each selected SNP associated with hyperspectral

patterns, genes within an interval of 50 kilobase pair (kbp) upstream

and downstream of the SNP were explored using the MaizeMine V1.3

server (Shamimuzzaman et al., 2020). One challenge was the large

number of generated Manhattan plots owing to the three manually

measured phenotypes, 150 hyperspectral wavelengths, and

131 hyperspectral indices. Instead of including all Manhattan plots as

supporting information, we developed a Shiny web application using

the R package shiny (Chang et al., 2021), which provides functions for

constructing interactive web applications. This application allows

users to interactively explore all possible genome-to-phenome associ-

ation combinations that are not elaborated here.

3 | RESULTS

3.1 | Estimates of genomic heritability and
correlation

The averages of PH were 15.38 and 14.52 cm, SD were 10.70 and

10.11 mm, and SDMwere 2.18 and 1.94 g for B+ and B�, respectively.

The genomic heritability estimates of manually measured PH, SD, and

SDM were 0.61, 0.60, and 0.30 in B+ plants and 0.57, 0.39, and 0.28 in

B� plants, respectively. PH had the highest genomic heritability esti-

mates, whereas SDM had the lowest. The means (and standard devia-

tions) of genomic heritability estimates for hyperspectral wavelengths

and indices were 0.45 (0.06) and 0.40 (0.08) for B+ and 0.44 (0.04) and

0.43 (0.08) for B�, respectively (Figure 1). The individual hyperspectral

wavelengths that explained the largest genomic heritability estimates

were 645 and 649 nm (B+) and 512 and 507 nm (B�), respectively.

The estimates of genomic heritability showed a decreasing tendency as

wavelength increased. Among the hyperspectral indices, NDNI and

NPQI for B� and EVI for B+ showed the highest genomic heritability

estimates. Although the mean of genomic heritability estimates of

hyperspectral indices was lower than that of hyperspectral wave-

lengths, some indices explained more of the genetic variance than indi-

vidual wavelengths. Overall, similar genomic heritability estimates were

observed in B+ and B� plants for most wavelengths or indices.

The genomic correlation estimates between hyperspectral wave-

lengths and manually measured traits were largely positive (Figure 2).

Genomic correlation estimates of PH ranged from �0.34 to 0.34. Pos-

itive correlations were observed for both B� and B+ at wavelengths

from 400–700 nm, whereas negative correlations were observed only

F I GU R E 1 Genomic heritability for 150 hyperspectral reflectance values and 131 hyperspectral indices without (B�) and with (B+) plant
growth-promoting bacteria inoculation.
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F I GU R E 2 Genomic correlations between manually measured phenotypes and hyperspectral reflectance values and hyperspectral indices
under without (B�) and with (B+) plant growth-promoting bacteria inoculation.
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for B+ > 700 nm. In absolute terms, the hyperspectral wavelengths

that provided the largest genomic correlation estimates were 578 nm

(0.286) and 398 nm (0.193) for B� and B+, respectively. The extent

of genomic correlation estimates was low in SD. The estimates were

mostly positive, except for the beginning (<400 nm) and end (>900

nm) of wavelengths. The hyperspectral wavelengths showed positive

correlations throughout the entire spectral range, except at the start

of the SDM wavelength. In particular, higher correlations were

observed at 700–1000 nm for B�. The hyperspectral wavelengths

that provided the largest genomic correlation estimates with SDM

were 817 nm (0.392) and 734 nm (0.235) for B� and B+, respectively.

In contrast, genomic correlation estimates varied markedly across

hyperspectral indices. The extent of the correlation estimates was

lower regarding SD, compared with those of PH and SDM. The hyper-

spectral indices that provided the largest genomic correlation esti-

mates with PH were D2 (0.339) and RDVI (�0.292) for B� and B+,

respectively, whereas those with SDM were RARSb (�0.357) and

NPQI (�0.340) for B� and B+, respectively.

3.2 | GWA analyses for growth-related and
hyperspectral traits

A total of 86 SNPs were selected from the BayesC analysis using the

posterior inclusion probability threshold of 0.10 for PH, SD, and SDM

(Figure 3 and supporting information Tables S2–S6). This number was

higher than a previous study (Yassue et al., 2022) that used a non-

Bayesian whole-genome regression model likely because BayesC has

a higher statistical power to detect genetic signals. There were eleven

common SNPs between the current study and Yassue et al. (2022)

(Table S7). PH showed the highest number of selected markers

(21 and 24 for B+ and B�, respectively), whereas SDM had the low-

est (5 for B+); no SDM markers were detected in B�. No overlapping

SNPs were identified across manually measured phenotypes, whereas

only four SNPs were selected for both PGPB inoculation conditions

(B� and B+), indicating that PGPB may alter plant growth patterns

and the genomic regions controlling them. A conservative posterior

inclusion probability threshold of 0.50 was used to find SNPs associ-

ated with the hyperspectral-derived phenotypes and candidate genes.

Of the 25 detected SNPs, five SNPs were associated with at least five

different hyperspectral phenotypes. Gene annotation of each selected

SNP within an interval of 100 kbp showed the presence of genes that

have been previously reported as related to growth-related pheno-

types or responses to abiotic stressors (Table 1). The hyperspectral

indices Chlg, CRI2, CRI3, CRI4, Datt6, GMI1, PARS, SD, and SR3 were

associated with genes nrt2, nrt2.2, and Zm00001d054060 on chro-

mosome 4. The index CRI1 was associated with gene

Zm00001d012924 on chromosome 5, and the EVI index was associ-

ated with genes Zm00001d029820 and Zm00001d007843 on chro-

mosomes 1 and 2, respectively, and 100275163 on chromosome 6. In

addition, hyperspectral wavelengths from 398 to 434 nm were associ-

ated with gene Zm00001d012719 on chromosome 8.

3.3 | Integration of GWA analyses

Eight SNPs influenced both the manually measured and hyperspectral

phenotypes, which were visualized in a phenome-wide association plot

(Figure 4). In general, most SNPs were identified in B+ plants. Two

SNPs, Chr4_181569268 and Chr6_108027757, exhibited a strong

association with a wide range of hyperspectral phenotypes, along with

PH and SDM in B+ management. A list of candidate genes influencing

F I GU R E 3 Genome-wide association analysis of manually measured phenotypes without (B�) and with (B+) plant growth-promoting
bacteria inoculation. Plant height (PH), stalk diameter (SD), and shoot dry mass (SDM).
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both manually measured and hyperspectral phenotypes revealed that

they may play an important role in nitrogen uptake and plant responses

to biotic and abiotic stressors (Table 2). A Shiny web application was

developed to explore the multiphenotype GWA results interactively

(https://github.com/vt-ads/ShinyGWASPheWAS).

4 | DISCUSSION

The utility of hyperspectral imaging technology for phenotyping has

recently gained increasing attention in genetic studies because such

data can capture the resonance of certain physicochemical compounds

in plants and associated with genomic regions (Barnaby et al., 2020;

Feng et al., 2017; Sun et al., 2019; Wu et al., 2021). Growth-related

traits, such as PH, SD, and SDM, are complex traits controlled by many

genes with small individual effects. Therefore, we expected that hyper-

spectral imagery-based data would shed light on the underlying genetic

factors and help assess the variability of maize to aid in identifying can-

didate genes. However, translating hyperspectral reflectance values or

indices into a biological context, such as metabolic, morphological, or

functional changes, can be difficult and time-consuming.

This study used GWA analysis of manually measured phenotypes,

single-band reflectance, and hyperspectral indices to investigate the

genetic basis of responses to PGPB. BayesC, which performs variable

selection, was applied for GWA analysis. The posterior inclusion prob-

ability of each marker was used to identify the relevant SNPs. The

preference for using posterior inclusion probability instead of window

posterior probability of association (Fernando et al., 2017) was due to

T AB L E 1 Selected single nucleotide polymorphisms markers based on BayesC using the posterior inclusion probability threshold of 0.50 for
281 hyperspectral phenotypes under with (B+) or without (B�) plant growth-promoting bacteria inoculation.

Management Chra Marker IDb Phenoc MAFd PIPe NGf Candidate gene

B� 4 Chr4_164335549 1 0.27 0.508 2

B� 8 Chr8_174418506 5 0.17 0.551 9

B+ 1 Chr1_69298773 1 0.06 0.981 6

B+ 1 Chr1_80258452 1 0.36 0.820 3

B+ 1 Chr1_88464412 1 0.18 0.661 7 Zm00001d029820

B+ 1 Chr1_113763491 1 0.13 0.894 5

B+ 1 Chr1_173938755 1 0.06 0.966 5

B+ 2 Chr2_181732219 1 0.27 0.549 8

B+ 2 Chr2_240687544 1 0.08 0.851 4 Zm00001d007843

B+ 2 Chr2_214786010 14 0.46 0.602 9

B+ 4 Chr4_245633076 9 0.38 0.585 22 nrt2, nrt2.2

Zm00001d054060

B+ 4 Chr4_206259028 1 0.06 0.559 8

B+ 5 Chr5_2005858 1 0.32 0.581 15 Zm00001d012924

B+ 5 Chr5_213988333 1 0.33 0.604 7

B+ 6 Chr6_108027757 5 0.48 0.519 10

B+ 6 Chr6_9906627 1 0.07 0.633 12 100275163, 100192849

B+ 7 Chr7_22239405 1 0.15 0.570 2

B+ 8 Chr8_177771765 1 0.05 0.826 13

B+ 8 Chr8_179214567 10 0.48 0.593 11 Zm00001d012719

B+ 9 Chr9_127613348 1 0.32 0.510 3

B+ 10 Chr10_88567864 1 0.10 0.954 6

B+ 10 Chr10_118526736 1 0.27 0.569 3

B+ 10 Chr10_122822696 1 0.13 0.969 12

B+ 10 Chr10_137486546 1 0.08 0.996 9

B+ 10 Chr10_145821750 1 0.16 0.544 6

aChromosome number.
bEach marker ID is comprised of chromosome ID and marker location that are separated by the underscore sign.
cThe number of phenotypes influenced by the marker.
dMinor allele frequency.
eAverage of posterior inclusion probability for the selected phenotypes.
fNumber of genes within the gene interval.
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the low marker density and unequal distribution of SNPs across the

genome in the maize population. There is a major difference between

the current study and Yassue et al. (2022). The objective of Yassue

et al. (2022) was to use hyperspectral data to compare phenomic and

genomic prediction and investigate the potential use of hyperspectral

information to classify inoculation status. Overall, the main focus was

placed on predictive modeling. In contrast, the objective of the cur-

rent study was to understand the genetic basis of hyperspectral phe-

notypes. The novelty of the current work is the integration of

hyperspectral phenotypes in GWA analysis in maize under different

PGPB inoculation status. In other words, Yassue et al. (2022) used

hyperspectral data as predictors to perform prediction and classifica-

tion tasks, whereas the present work used hyperspectral data as phe-

notypes for inferential tasks.

4.1 | Estimates of genomic heritability and
correlation

The hyperspectral phenotypes showed a similar range of genomic her-

itability estimates relative to that of manually measured phenotypes.

For most hyperspectral-derived phenotypes, the heritability estimates

F I GU R E 4 Phenome-wide association analysis plot of selected eight markers having influence on both manually measured and hyperspectral
phenotypes without (B�) and with (B+) plant growth-promoting bacteria inoculation. Plant height (PH), stalk diameter (SD), shoot dry mass
(SDM), hyperspectral bands (Bands); hyperspectral index (Index); and manually measured (MM). The abbreviations of hyperspectral indices are
defined in Table S1.

T AB L E 2 List of candidate genes influencing both manually measured phenotypes and hyperspectral phenotypes.

Management Chra Marker IDb Phenotypes MAFc NGd Candidate gene

B� 9 Chr9_28676437 PH 0.23 8

B+ 2 Chr2_219293526 SD 0.36 11 103647869

B+ 4 Chr4_181569268 SDM 0.33 19 Zm00001d052164,

Zm00001d052165

B+ 5 Chr5_75194167 PH 0.18 9

B+ 6 Chr6_108027757 PH 0.49 10

B+ 7 Chr7_41779617 SD 0.26 12 Zm00001d006916

B+ 8 Chr8_167863049 SD 0.44 10 LOC100216557

B+ 9 Chr9_18547071 SD 0.20 10 100274563

Note: Selected single nucleotide polymorphisms markers and their candidate genes influencing both manually measured phenotypes and hyperspectral

phenotypes under with (B+) or without (B�) plant growth-promoting bacteria inoculation.
aChromosome number.
bEach marker ID is comprised of chromosome ID and marker location that are separated by the underscore sign.
cMinor allele frequency.
dNumber of genes within the gene interval.
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varied from 0.30 to 0.50, indicating that hyperspectral data can cap-

ture genetic variation. In addition, the genetic correlation between the

manually measured and hyperspectral phenotypes indicated that the

same sets of genes probably influenced these responses.

The relatively higher genomic correlation estimates for PH in the

spectral range of 400–700 nm (visible spectrum) of B� plants may

indicate an association between PH and leaf pigments, such as carot-

enoids, chlorophyll a and b, and nitrogen concentrations

(Ayala-Silva & Beyl, 2005; Zhao et al., 2003). PH and other early

growth traits are positively associated with the final dry matter yield

and hyperspectral reflectance values (Capolupo et al., 2015; Freeman

et al., 2007; Prey et al., 2018; Strigens et al., 2012; Williams et al.,

2017; Xie et al., 2020) because more vigorous plants tend to be

higher. Our previous work demonstrated that SDM, SD, and PH could

be predicted with reasonable accuracy using hyperspectral image data

(Yassue et al., 2022). The ability of the hyperspectral phenotypes to

predict growth-related phenotypes is likely due to some shared

genetic association between them. It is known that hyperspectral phe-

notypes are related to other types of phenotypes, such as photosyn-

thesis, nutrient uptake, and morphological traits (Krause et al., 2019;

Ge et al., 2016; Mahajan et al., 2014; Nigon et al., 2021; Sandhu et al.,

2021; Thomas et al., 2017) that were not evaluated in this study but

are correlated with plant growth and vigor.

Similarly, higher genomic correlation estimates were observed for

SDM at 700–1000 nm (near-infrared). The association between near-

infrared spectra and plant biomass in maize was reported in maize in a

previous study (Ma et al., 2020). Wavelengths in this range have also

been reported to indicate nitrogen content in rapeseed (Müller et al.,

2008) and wheat (Hansen & Schjoerring, 2003).

4.2 | GWA analysis

Overall, more SNP associations were observed in B+ than in B�
plants. However, the genomic heritability estimates were similar

between the two managements. This suggests that the genetics

underlying hyperspectral responses differ between the two manage-

ments. GWA analysis showed that SNP Chr4_245633076 was associ-

ated with nine hyperspectral phenotypes pointing to three candidate

genes (nrt2, nrt2.2, and Zm00001d054060). These genes have been

previously reported as part of NO�
3 transporter gene families and as

candidates for nitrate uptake along the primary maize root (Liu et al.,

2009; Sorgonà et al., 2011; Wang et al., 2020). The genes

Zm00001d029820 and Zm00001d012924 are involved in plant devel-

opment and environmental stress conditions (Zhang et al., 2020; Zhu

et al., 2021). The candidate gene Zm00001d007843 may affect kernel

size (Zhou et al., 2021), and gene Zm00001d012719 is a candidate tran-

scription factor mediating plant responses to abiotic stressors

(Vendramin et al., 2020). We did not directly evaluate the phenotypes

related to previously reported candidate genes. Nevertheless, hyper-

spectral signatures may be of use for indirectly assessing these pheno-

types. Furthermore, eight SNPs were detected in both the manually

measured and hyperspectral phenotypes. Genes Zm00001d052164 and

Zm00001d052165 on chromosome 4 regulate nitrogen assimilation

(Wang et al., 2020), and Zm00001d006916 is a candidate gene respon-

sible for autophagy, which may play a role regarding responses to abiotic

stressors (Tang & Bassham, 2018). The LOC100216557 gene is associ-

ated with resilience of maize to aphids and may be responsible for plant

defense responses and stress tolerance (Srivastava et al., 2018), and

103647869 is a candidate gene for resistance to Aspergillus flavus infec-

tion or aflatoxin contamination (Liu et al., 2021). The gene 100274563

is associated with ear weight per plant (Zhou et al., 2020). The results

found in this study must be interpreted with caution because of the low

density of SNPs and the relatively small number of lines used.

The Shiny web application with an interactive interface is a power-

ful tool for the visualization and interpretation of GWA analysis of multi-

ple phenotypes. Two-way Manhattan plots can be used to investigate

all associations across traits and managements, including nonsignificant

results that are not elaborated on here. In addition, phenome-wide asso-

ciation plots can be used to identify and visualize markers with mutual

influence across hundreds or thousands of phenotypes. The Shiny appli-

cation can be easily extended to other high-throughput phenotyping

data, such as longitudinal, fluorescence, and thermal data.

5 | CONCLUSIONS

The hyperspectral signatures captured some genetic variability in the

maize diversity panel and were associated with growth-related traits

under PGPB inoculation. GWA analysis of hyperspectral data identi-

fied genomic regions that influenced both manually measured pheno-

types and hyperspectral bands. In addition, a Shiny web application

for multiple-phenotype GWA was developed.
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