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a b s t r a c t

Computational models in cardiac electrophysiology are notorious for long runtimes,
restricting the numbers of nodes and mesh elements in the numerical discretisations
used for their solution. This makes it particularly challenging to incorporate structural
heterogeneities on small spatial scales, preventing a full understanding of the critical
arrhythmogenic effects of conditions such as cardiac fibrosis. In this work, we explore the
technique of homogenisation by volume averaging for the inclusion of non-conductive
micro-structures into larger-scale cardiac meshes with minor computational overhead.
Importantly, our approach is not restricted to periodic patterns, enabling homogenised
models to represent, for example, the intricate patterns of collagen deposition present
in different types of fibrosis. We first highlight the importance of appropriate boundary
condition choice for the closure problems that define the parameters of homogenised
models. Then, we demonstrate the technique’s ability to correctly upscale the effects
of fibrotic patterns with a spatial resolution of 10µm into much larger numerical mesh
sizes of 100-250µm. The homogenised models using these coarser meshes correctly pre-
dict critical pro-arrhythmic effects of fibrosis, including slowed conduction, source/sink
mismatch, and stabilisation of re-entrant activation patterns. As such, this approach
to homogenisation represents a significant step towards whole organ simulations that
unravel the effects of microscopic cardiac tissue heterogeneities.
©2022 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Computational simulation plays a critical role in our understanding of the functioning of the heart, in particular
he complex manifestations of its excitable media dynamics into dangerous arrhythmias [1]. Cardiac fibrosis, the
athological formation of scar tissue in the heart [2], is an important contributor to many types of arrhythmias. Fibrosis’
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arrhythmogenic impacts depend on its spatial organisation on both microscopic [3] and macroscopic [4] scales. However,
owing both to limitations of computational feasibility and the resolution of clinical imaging approaches, anatomically-
accurate meshes used in the simulation of electrical signalling in the heart typically have spacings of a minimum of 100
micrometres [5]. This is at least an order of magnitude too large to resolve the complex and varied microscopic structures
of fibroblast-deposited collagen that interfere with wave propagation [6]. It is therefore vital that such ‘‘sub-mesh scale’’
effects of fibrotic obstacles be incorporated into simulations without altering the mesh spacing. Upscaling these small-
scale effects into a larger-scale mesh also represents a significant computational time saving more generally, and one that
may be used alongside other acceleration approaches such as improved numerical techniques [7,8] or advanced hardware
architectures [9].

The incorporation of small-scale fibrotic structures into larger-scale cardiac electrophysiology simulations has seen
ome consideration. Through a clever node re-labelling, Costa et al. were able to incorporate disconnections between
eighbouring elements due to strands of collagen [10], although such an approach does not necessarily account for
he effects of obstacles within mesh elements. An alternative approach is based on the mathematical technique of
omogenisation, which explicitly seeks to represent micro-scale effects as modifications to macro-scale problems [11].
n cardiac electrophysiology, homogenisation can be used to derive the well-known bidomain model [8,12–16], as well as
ts modification for less ordered arrangements of cells [17] or non-Ohmic tissue conduction [18]. Homogenisation for the
nclusion of fibrotic obstructions has been almost solely limited to spatially periodic structures [19,20]. Austin et al. [21]
sed multigrid-based homogenisation to upscale arbitrarily arranged obstacles, but only considered performance in terms
f activation maps. Some of the authors have also recently explored an alternative homogenisation using the eikonal
pproximation [22,23]. However, none of these works have considered how well homogenised cardiac electrophysiology
odels can capture the mechanisms through which microscopic obstacles can act as arrhythmia precursors, arguably the
rimary aspect of interest.
In this work, we use a volume averaging approach for the incorporation of arbitrary structures of microscopic obstacles

nto a larger-scale problem. In contrast to the above approaches towards upscaling, volume averaging naturally derives
omogenised models that modify more than just the conductivity tensor, improving the capture of dynamics such as
ave die-out due to electrotonic loss. We also explore the issue of boundary condition choice for homogenisation sub-
roblems in terms of practical performance in this challenging homogenisation context, involving both sharp-fronted
ravelling wave dynamics and completely non-conductive regions. Finally, we demonstrate successful capture of several
mportant pro-arrhythmic effects of cardiac fibrosis by block homogenised models with at least one order of magnitude
ewer nodes than the corresponding fine-scale models.

Our homogenisation approach represents a significant advance over other upscaling techniques that have been
resented for cardiac electrophysiology, owing to its ability to capture the effects of heterogeneity in excitable tissue and
o deal with non-periodic patterns of obstruction. The formulation we present is applicable to all types of meshes and any
umber of dimensions, and we provide full implementation details and MATLAB code for the case of two-dimensional
egular grids. The approach represents an important step towards full-scale (chamber or organ level) simulations that
espect the fine-scale arrangement of fibrotic obstacles, such as those seen in histological sections [6] or obtained through
ecently demonstrated techniques for computational generation of realistic patterning of fibrosis [24,25].

. Methodology

.1. The monodomain model in fibrotic myocardium

The dynamics of cardiac excitation are governed by the monodomain model [7], a simplification of the bidomain model
hat offers similar quality of predictions in many contexts [26–28]. The monodomain model is a reaction–diffusion partial
ifferential equation, coupled to a set of ordinary differential equations that describe the behaviour of the reaction term.
n the presence of non-conductive obstacles, the monodomain model may be expressed in the form

∂v

∂t
= ∇ ·

(
D∇v

)
−

1
Cm

(Iion(v, s) + Istim) within conducting tissue

ds
dt

= f(v, s) within conducting tissue

0 = (D∇v) · n̂ on boundaries (incl. obstructions).

(1)

Here v is the membrane potential (lower case used to denote a micro-scale variable), Cm the membrane capacitance and
D the conductivity tensor. Istim refers to externally supplied stimulus current, and Iion describes the flow of ions in/out of
ardiac cells, which depends on both the membrane potential and a set of state variables s.
There are many different models describing the voltage-dependent nature of cell ion channels, to varying levels of

iophysical detail, that provide a definition for Iion and f [29]. Broadly, however, Iion produces relaxation oscillation
ehaviour (such as that of the well-known Fitzhugh–Nagumo model [7]) that results in sharp-fronted travelling waves in
onductive media. Here, our simulations use the reduced version of the ten Tusscher et al. ionic model presented in [30].
his model represents action potentials in human ventricular epicardium with formulations for all of the major Na+, K+,
2
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Fig. 1. The mesh and sub-mesh involved with homogenisation. An example pattern of collagenous obstructions due to fibrosis (dark red) defined
on a small-scale mesh, and the larger mesh on which effective conductivity tensors are defined. A single averaging volume (Ω) is marked in black,
long with its associated conductive region, Ωm , in blue. The black dotted line shows the region on which the closure problem associated with Ω

s solved when a layer of skin is included around the averaging volume (see Methodology). An example control volume used by the finite volume
pproach used for numerical discretisation is also pictured, in red.

a2+ channels, but fixes several ion concentrations and makes quasi-steady-state assumptions for rapidly varying gating
ariables in order to significantly reduce computational cost.
We take the common approach of representing fibrosis-afflicted tissue as a combination of conductive myocardium and

on-conductive, collagenous material deposited by fibroblasts [31,32]. These fibrotic obstructions are defined on a fine-
cale grid of spacing ∆x = 10µm, a similar order to the pixels in histological images indicating the spatial arrangement of
ollagenous obstacles in cardiac fibrosis [6]. The homogenised models we construct represent the effects of these obstacles
n a regular, coarser grid as visualised in Fig. 1. For simplicity, our homogenised models use regular grids with the edges
f mesh elements aligned with the finescale grid, although the theory presented later does not depend on these choices.

.2. A volume-averaged monodomain model

Collagenous obstructions are found in a variety of spatial arrangements in cardiac fibrosis [6] that vary throughout the
issue [33]. As such, we are unable to define an appropriate representative volume element, and instead turn to block
omogenisation [34]. Block homogenisation calculates effective properties separately for each element of the large-scale
roblem, as we now describe.
We derive homogenised models via the method of volume averaging, detailed in [35]. Volume averaging, in the case

here non-conductive material is present, makes use of a pair of averaging operators that average a quantity over the
onductive myocyte portion, Ωm, of an averaging volume, Ω (Fig. 1). The two averaging operators are

⟨·⟩ =
1

|Ωm|

∫
Ωm

· dΩm, intrinsic average

⟨·⟩sup =
1

|Ω|

∫
Ωm

· dΩm, superficial average,

nd are thus linked by the volume fraction of conductive material, φ = |Ωm|/|Ω|, as

⟨·⟩ = φ⟨·⟩.
sup

3
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The intrinsic average is practically appealing, as its value is calculated only using the conductive material and is thus
unaffected by the proportion of collagen in the averaging volume. On the other hand, the superficial average does not
possess this property but is mathematically useful as the averaging volume retains consistent size and shape through
space. We present a brief, simplified derivation of how these operators can be used to formulate a homogenised version
of (1).

Taking the superficial average of the spatially-varying equation in (1), and defining J(v, s) = (Iion(v, s) + Istim)/Cm to
simplify notation, we have⟨

∂v

∂t

⟩
sup

=

⟨
∇ ·

(
D∇v

)⟩
sup

−

⟨
J(v, s)

⟩
sup

. (2)

Treating the obstacles as static in time, we may move the averaging operator inside the time derivative. Via the spatial
averaging theorem [35, Ch. 1] we may also move the averaging operator inside the divergence operator by including a
correction term. This gives

∂ ⟨v⟩sup

∂t
= ∇ ·

⟨
D∇v

⟩
sup

+
1

|Ω|

∫
σm

(D∇v) · n̂ dσm −

⟨
J(v, s)

⟩
sup

here σm denotes the surface of the interface between the conductive and non-conducting regions. Due to the no-flux
oundary condition on obstacles, this integral correction term in fact goes to zero, but carefully applying the spatial
veraging theorem is necessary as this is what necessitates the use of the superficial average and ensures the volume
raction, φ, features correctly in the homogenised model. Converting now to the intrinsic average, we obtain

φ
∂⟨v⟩

∂t
= ∇ ·

(
φ

⟨
D∇v

⟩)
− φ

⟨
J(v, s)

⟩
. (3)

We wish to express (3) solely in terms of a macroscopic variable, V = ⟨v⟩, which we can achieve by choosing to define
he effective conductivity tensor such that

Deff∇V =

⟨
D∇v

⟩
, (4)

and making the simplifying approximation⟨
J(v, s)

⟩
≈ J(V , s). (5)

This approximation may seem questionable in this context, where J(v, s) is a strongly nonlinear function and the sharp
fronts of travelling waves mean that v can also vary significantly over some averaging volumes. However, we point out that
any increase of mesh spacing in solving the monodomain equation (that is, independent of any homogenisation) implicitly
makes a similar approximation in that it too replaces finer-scale dynamics with some smoothed representation at lower
resolution. We also choose our numerical scheme to minimise the impact of this approximation, discussed subsequently.

Substituting Eqs. (4) and (5) into (3) gives the homogenised monodomain model describing the large-scale behaviour
of the system,

φ
∂V
∂t

= ∇ ·

(
φDeff∇V

)
− φJ(V , s) within tissue

ds
dt

= f(V , s) within tissue

0 = (Deff∇V ) · n̂ on problem boundaries.

(6)

Note that obstacles no longer act through the boundary conditions, but instead through their effect on Deff and φ.
We briefly note that a separate technique, the smoothed boundary method, also shifts such boundary conditions

into the governing equation to arrive at the formulation (6) [36,37]. Volume averaging theory thus serves as a robust
means of deriving the smoothed boundary approach. The key difference between the two approaches is their use
cases. Smoothed boundary methods use especially fine grids at boundaries in order to accurately resolve their effects,
whereas homogenisation by volume averaging instead seeks to represent these effects only on a larger scale, reducing
computational demand.

2.3. Determination of effective conductivities

Eq. (4) relates the macroscopic gradient of potential ∇V to the fine-scale gradient, ∇v. These gradients will change
through the course of a simulation of (1) or (6), but fixed conduction tensors can be set by instead solving separate
subproblems in which a macroscopic gradient is artificially applied [38]. Imposing a macroscopic unit gradient in the ith
direction (∇V = ei) over the averaging volume, the ith column of the effective conductivity tensor is then given by

D e =

⟨
D∇v

⟩
, i = 1, . . . , d, (7)
eff i i

4
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with ei the standard basis vectors in the d-dimensional space. Eq. (7) applies regardless of the shape of the averaging
olume used, or, phrased differently, any set of d applied gradients may be used to calculate the elements of Deff so long
s they are in linearly independent directions [38].
Each of the micro-scale potential fields for different imposed gradients, vi, are given by solving the diffusive portion

f the monodomain equation on the micro-scale, (1), on the averaging volume Ω . The imposed macroscopic gradient is
ost naturally included by decomposing the potential fields vi into their macro-scale and micro-scale components,

vi = wi + Vi ∇vi = ∇wi + ei. (8)

Then, we can solve the diffusive flow over the averaging volume in terms of wi,

0 = ∇ ·

(
D(∇wi + ei)

)
within conductive tissue

0 =

(
D(∇wi + ei)

)
· n̂ on boundaries with obstructions.

(9)

These equations are typically known in the homogenisation literature as closure problems.
Solutions of (9) for each different elementary basis vector ei define the vi’s through Eq. (8), which can then be

numerically averaged to calculate the columns of the effective conductivity Deff. In some scenarios (depending on the
choice of boundary conditions for (9) and the existence of disconnected islands of conductive tissue), wi will be defined
only to within a constant, but this has no effect on the effective tensors calculated as they depend only on ∇wi. In our
implementation, we use the minimum norm solution of the linear systems obtained by discretising (9) in these degenerate
cases.

In this section, we have presented an accessible derivation of the homogenised model (6) and the closure problems (9)
that define the effective conductivity values it uses through Eq. (7). In the following section, we demonstrate that under
assumption of periodicity across the averaging volume, these equations may be more rigorously derived by an asymptotic
scale separation approach. Readers uninterested in this derivation may skip to Section 2.5.

2.4. Derivation via scale separation

Here, we demonstrate how the homogenisation approach we take may be asymptotically derived via scale separation.
The derivation follows [39, Ch.5], but is generalised to allow for tensor conductivity on the micro-scale and the presence
of non-conductive inclusions.

The scale separation approach begins by splitting the space variable x into two parts that are then treated as
independent, a macro-scale variable x and a micro-scale variable y = x/ϵ. Here ϵ ≪ 1 is a small parameter indicating
the difference in scale. Under this scale separation, the gradient operator becomes

∇ → ∇x +
1
ϵ
∇y.

We assume that the averaging volume Ω is representative, that is, the substructure (occlusions as well as D) is periodic
utside of Ω . Under this assumption, the conductivity D depends only on y. In practice, we are only pretending this is
rue for the calculation of the current volume Ω ’s effective conductivity, and the x-dependence is then represented by
pplying the approach separately to each macroscopic mesh element composing the domain.
We take an asymptotic expansion for v,

v = v0 + ϵv1 + ϵ2v2 + · · · .

ubstituting this and the scale-separated gradient operator into the monodomain model (1), we arrive at the following
ets of equations:

Within conducting phase,

O(1) : 0 = ∇y ·

(
D∇yv0

)
O(ϵ) : 0 = ∇x ·

(
D∇yv0

)
+ ∇y ·

(
D
(
∇xv0 + ∇yv1

))
O(ϵ2) :

∂v0

∂t
= ∇x ·

(
D
(
∇xv0 + ∇yv1

))
+ ∇y ·

(
D
(
∇xv1 + ∇yv2

))
− J

Boundaries with non-conducting phase,

O(1) : 0 =

(
D∇yv0

)
· n̂

O(ϵ) : 0 =

(
D
(
∇xv0 + ∇yv1

))
· n̂

O(ϵ2) : 0 =

(
D
(
∇ v + ∇ v

))
· n̂
x 1 y 2

5
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The O(1) equations simply state that v0 depends only on x, and is thus our macro-scale variable of interest. The O(ϵ)
quation, after using ∇yv0 = 0, reduces to

∇y ·

(
D
(
∇xv0 + ∇yv1

))
= 0. (10)

his motivates the choice of a form for v1,

v1 = w(y) · ∇xv0 + k(x), (11)

o that the O(ϵ) equation can be satisfied independent of the form of v0. Substituting (11) into (10) and the O(ϵ) boundary
ondition, we see that we must have

0 = ∇y ·

(
D(∇ywi + ei)

)
in tissue

0 =

(
D(∇ywi + ei)

)
· n̂ on boundaries with collagen.

hese are the closure problems (9) presented in the main document, where again we have reserved discussion of the
oundary conditions applied to the edges of Ω for later.
The O(ϵ2) equation is simplified by averaging. However, in the presence of non-conductive occlusions, we must use

he superficial average over only the conductive portion of Ω , here again denoted as Ωm. We first consider the superficial
verage of the second divergence term,

1
|Ω|

∫
Ωm

∇y ·

(
D
(
∇xv1 + ∇yv2

))
dΩm.

his may be rewritten using the divergence theorem as a pair of surface integrals, one over the boundaries of Ω , denoted
b and one over the internal boundaries with occlusions, denoted σm,

1
|Ω|

∫
σm

(
D
(
∇xv1 + ∇yv2

))
· n̂ dσm +

1
|Ω|

∫
σb

(
D
(
∇xv1 + ∇yv2

))
· n̂ dσb. (12)

The first integral is precisely zero, due to the O(ϵ2) boundary condition on occlusions. The second integral is zero due to
the y-periodicity of D, v1 and v2.2

Setting that integral to zero, the averaged form of the O(ϵ2) equation is⟨
∂v0

∂t

⟩
sup

=

⟨
∇x ·

(
D(∇xv0 + ∇yv1)

)⟩
sup

−
⟨
J
⟩
sup.

his demonstrates the importance of using the superficial, as opposed to the intrinsic average, as only the former may be
aken inside of the divergence operator when the substructure is not periodic (in this case, |Ω| has no dependence on x,
hereas |Ωm| does). Performing this reversal of order of operations, and substituting (11) for v1, we obtain⟨

∂v0

∂t

⟩
sup

= ∇x ·

⟨
D
(
I + ∇wT )

∇xv0

⟩
sup

−
⟨
J
⟩
sup,

with ∇wT denoting an outer product (the transpose of the Jacobian of w).
Converting now to intrinsic averages and using the fact that v0 is constant with respect to y to move it outside of the

averaging operator, we obtain

∂v0

∂t
= ∇x ·

(
φ

⟨
D(I + ∇wT )

⟩
∇xv0

)
− φ

⟨
J
⟩
.

This is Eq. (6) expressed in terms of v0 instead of V , and with the macroscopic nature of the gradient operators made
explicit. The effective conductivity tensor is given by

Deff =
⟨
D(I + ∇wT )

⟩
,

which is easily seen to be equivalent to (7) after multiplying both sides by ei.
Our approach may thus be rigorously derived via a scale separation approach, so long as the substructure is assumed

to be periodic, and periodic boundary conditions are applied to the closure variables (v1) on the (unoccluded) edges of
the representative volume. Homogenisation errors are incurred both by the truncation of the perturbation series, and the
assumption that the averaging volume Ω is truly representative.

2 Although it may seem as though this periodicity argument could break when a segment of σb has no matching component on the opposite side
f Ω to cancel it out (because the opposite side is occluded), these segments are in fact then segments of σm due to the assumption of periodic
ubstructure, and thus sent to zero by the occlusion boundary condition instead.
6
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2.5. Closure problem boundary conditions

We have not yet discussed the boundary conditions (BCs) applied on the boundaries of the averaging volume in Eq. (9).
lthough periodic BCs are most common and best supported by theory, in practice a variety of BCs have seen use in
aplacian homogenisation [38,40]. As we demonstrate and further discuss in Results, the choice of BCs is non-trivial in
he context of upscaling collagenous microstructures in cardiac fibrosis, and so we consider the performance of several
f the most commonly seen choices here.
For a (hyper)rectangular averaging volume with side lengths Li, these different BCs are expressed

Periodic: wi(x + Ljej) = wi(x) ∀j ∈ 1, . . . , d
Linear: wi = 0 x ∈ σ

Confined: wi = 0 x ∈ σ , ei · n̂ ̸= 0
(∇wi + ei) · n̂ = 0 x ∈ σ , ei · n̂ = 0.

(13)

Recalling that the closure problems calculate the resulting flow through the averaging volume due to an imposed
macroscopic gradient, linear boundary conditions may be interpreted as holding all boundaries fixed according to the
imposed gradient. Confined conditions, where two opposing boundaries are fixed to maintain the imposed gradient while
the remaining boundaries are treated as no-flux, make Eqs. (7) and (9) a numerical recreation of Darcy’s experiments that
first derived hydraulic conductivity [41].

As each choice of BCs imposes one assumption or another on the microscopic flow problems defining the large-scale
effective conductivities, it can be appealing to try to reduce the effects of these assumptions. One approach includes a
layer of ‘‘skin’’ around the averaging volume, extending the domain on which (9) is solved as shown in Fig. 1 [42,43].
Eq. (7) still only calculates averages over the averaging volume Ω , and so inclusion of skin has the effect of moving the
boundaries away from the region used to calculate Deff. Extending the domain for closure problems like this also allows
for periodic and confined BCs to be applied to irregularly-shaped mesh elements. The use of skin is related to the concept
of ‘‘oversampling’’ seen in the numerical homogenisation literature [44]. Following [42], the homogenisation experiments
in this work use a skin layer of width equal to half the width of the averaging volumes.

Including skin around averaging volumes incurs the loss of the guarantee that effective conductivity tensors are
symmetric for linear or periodic BCs [38]. To account for this, as well as asymmetric tensors that may be derived by
confined BCs, we use the algorithm of Higham [45] to find the symmetric semipositive definite tensor that is closest (in
terms of Frobenius norm) to the calculated tensor. Briefly, this approach works by calculating the eigendecomposition of
the symmetric portion of the initial tensor, (Deff + DT

eff)/2, setting any negative eigenvalues to zero, and then rebuilding
it using this modified eigendecomposition.

2.6. Numerical approach

We solve the monodomain model (1) and its homogenised version (6), as well as the closure problems (9), via a cell-
centred control volume finite element method. Considering Eq. (6) as an example, we integrate the transport equation
over the control volume ΩCV. Using the Gauss law and the temporally fixed nature of ΩCV, we obtain

∂

∂t

∫
ΩCV

φV dΩCV =

∫
σCV

(
φDeff∇V

)
· n̂ dσCV −

∫
ΩCV

φJ(V , s) dΩCV, (14)

with σCV denoting the control volume’s surface.
To improve accuracy, in particular helping to minimise the influence of approximation (5), we evaluate these integrals

by exactly integrating interpolants constructed over each mesh element using the V and J values at their vertices. Denoting
the set of elements a control volume touches by N (ΩCV), we may write Eq. (14) as

∂

∂t

∑
i∈N (ΩCV)

φi

∫
ΩCV,i

Vi dΩCV,i =

∑
i∈N (ΩCV)

φi

(∫
σCV,i

(
Deff∇Vi

)
· n̂ dσCV,i −

∫
ΩCV,i

Ji dΩCV,i

)
. (15)

Here subscript i refers to quantities corresponding to the ith mesh element, and V and J are the interpolations for V
and J , respectively. For (bi)linear interpolants, each integrated quantity may be expressed as a linear combination of the
full sets of nodal V and J values, here denoted v and j. This permits the equation for an individual control volume to be
expressed

d
dt

∑
i∈N (ΩCV)

φimT
i v =

∑
i∈N (ΩCV)

φi
(
kT
i v + mT

i j
)
, (16)

ith the forms of mi and ki (which are defined differently for each control volume) given in Appendix A for the
wo-dimensional regular rectangular grids used here.

Taking the equations for each control volume together results in the finite element-like formulation
d
Mv = Kv + Mj, (17)
dt
7
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with mass matrix M and stiffness matrix K, the rows of which are defined by Eq. (16). This mass matrix formulation is
important, as standard finite difference/volume approaches (and similarly mass lumped finite element approaches) for
the monodomain model have been demonstrated to exhibit considerable error as the grid spacing increases [5].

Eq. (17) is integrated through time via the semi-implicit scheme proposed by Perego and Veneziani [46], which uses
a Crank–Nicholson approach for the diffusive term and a second-order generalisation of the Rush–Larsen method for the
reaction term. This takes the form(

M −
∆t
2

K
)
vn+1

=

(
M +

∆t
2

K
)
vn + M

(
3
2
jn −

1
2
jn−1

)
sn+1
j = s

n+ 1
2

j,∞ −

(
sn+1/2
j,∞ − snj

)(
1 − e−∆t/τ

n+ 1
2

j
)

s
n+ 1

2
j,∞ =

3
2
sj,∞(vn) −

1
2
sj,∞(vn−1)

τ
n+ 1

2
j =

3
2
τ j(vn) −

1
2
τ j(vn−1),

(18)

here sj refers to the vector of values for the jth state variable at all nodes, and sj,∞(v) and τ j(v) are, respectively, the
unctions defining the voltage-dependent steady state value and time constant of the jth state variable. The equations for
n+1
j represent exact integration of the gating variable equation

dsj
dt

=
sj,∞(V ) − sj

τj(V )

after using a second-order Adams–Bashforth type approximation to set sj,∞ and τj at constant values for the timestep (all
state variables are gating-type variables in the model used here). We choose a timestep ∆t = 0.05ms.

The sensitivity of the monodomain model to the spatial discretisation poses a serious issue for both the evaluation and
utilisation of homogenisation, as converting to a homogenised large-scale problem of course incurs a significant change
in node spacing. As such, we further correct for the effect of the grid spacing by multiplying all conductivity tensors in
our homogenised problems by a constant, such that the conduction velocity in a one-dimensional (non-fibrotic) fibre
is consistent with that predicted using the finescale grid spacing (10µm). This correction factor is selected before, and
entirely independent from, the homogenisation process and thus does not act to inflate the perceived performance of
the homogenisation itself. Indeed, owing to the extreme sensitivity of cardiac electrophysiology models to the mesh
spacing used, conductivity tuning to attain physiological conduction values on a given mesh is common practise (for
example [4,47]).

3. Results

3.1. Appropriate boundary condition selection is critical for upscaling of cardiac fibrosis

Consisting of non-conductive collagenous regions occurring in a variety of patterns of deposition, cardiac fibrosis is
challenging to represent using upscaled tensors. For example, isthmuses through regions of scarring are of particular
interest as potential substrates for arrhythmia [48], here represented on the fine scale by a thin channel(s) of conductive
material passing through an otherwise non-conductive domain. However, where the ends of such channels do not
align with each other at the edges of the upscaled element, the periodic assumptions underlying homogenisation then
incorrectly imply a non-conductive structure [11] (see also Fig. 2 for a visual demonstration). On the other hand, where
collagen is deposited in thin strands along fibres as per interstitial fibrosis [6], it is important that these strands correctly
restrict conduction in the transverse direction no matter how thin they may be. As we now explore, these two scenarios
represent extreme cases that demonstrate separate challenges for homogenisation in this context. As correct values for
the upscaled tensors are available, and the tensors produced by the different BCs in the two scenarios are sufficiently
demonstrative, we do not yet simulate any cardiac activity.

Conductive channels through scar tissue
We represent this scenario using a pair of thin, diagonally-oriented channels placed in otherwise non-conductive

(scarred) tissue, as pictured in Fig. 2. This configuration provides a known expression for the effective conductivity tensor.
Specifically, as flow is unimpeded in the direction of the channel and zero in the perpendicular direction, rotational
arguments then give

Deff (true) =

(
cos θ − sin θ

sin θ cos θ

)(
D 0
0 0

)(
cos θ sin θ

− sin θ cos θ

)
= D

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)
. (19)

We note that as we take an intrinsic formulation, the width of the channel does not appear in this result (instead
represented implicitly by the value of φ in Eq. (6)). In a sense, the effect of obstructions on the macroscopic amount
of possible transport is controlled by φ, while D describes the effect of obstructions on the character of the transport.
eff

8
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Fig. 2. Performance of different homogenisation boundary conditions (BCs) for an averaging volume with only thin channels of conductive tissue.
Conductive tissue is shown in yellow, and fibrotic obstruction in dark red (dark grey in the visualisation of the closure problem solution). Pictured
is the solution to the closure problem (9) for the variable w1 , and schematic diagrams that explain the failure of the other types of boundary
conditions in this scenario. The solution to the closure problem with linear boundary conditions exhibits clear patterning, with some disruption
at the boundaries. The effective conductivity Deff is found, but only approximately, due to this disruption. With confined boundary conditions, no
flow can pass from left to right when the top and bottom boundaries are blocked (and analogously for when a vertical gradient is imposed), and
the calculated tensor is the zero tensor. For periodic conditions, a zero tensor is obtained because the periodic extension of the pattern is seen
to be a non-conducting structure. The effects of skin are considered by calculating Deff for only the dashed blue rectangle (but still solving the
losure problem over the full domain). This allows linear boundary conditions to attain Deff correct to three decimal places, as the disruption at the
oundaries has no significant effect inside the region of integration.

In Fig. 2, we demonstrate how the different choices of BCs for Eq. (9) behave in terms of the upscaled tensor they
roduce for a section of tissue in this thin channel scenario. The issues with periodic and confined BCs for this scenario are
mmediately observed from their corresponding schematic diagrams. As the channel starts and ends do not perfectly align,
he periodically extended structure is non-conductive and Eq. (9) then predicts zero effective conductivity, accordingly.
eanwhile, the nature of confined BCs allows them to identify only that flow which passes through opposing boundaries
f the averaging volume. As the schematic demonstrates, diagonal channels that do not connect opposing boundaries
esult again in the macroscopic element being incorrectly treated as non-conductive.

In contrast, linear BCs represent the propagation of signal through conductive isthmuses quite well, returning a result
or this test problem that matches approximately with the desired Deff given by Eq. (19). The reasons for discrepancy are
evealed by visualising the solution for w of one of the closure problems under these BCs (Fig. 2). The condition w = 0
on the boundaries disrupts the pattern otherwise taken by w that produces the correct tensor when averaged. Including
‘‘skin’’ around the averaging volume, as discussed in Methodology, successfully shifts these boundary effects to outside
of the region used to calculate Deff, at which point it then matches to three decimal places.

Fibrous collagen strands
Thin strands of fibrotic obstruction, oriented with cardiac fibres, arise in interstitial fibrosis (also known as reactive

fibrosis) [49]. Characterised by fibrosis between cells, as opposed to replacing damaged cells, interstitial fibrosis discon-
nects neighbouring cells and has been represented macroscopically in computational studies by similarly disconnecting
neighbouring mesh elements [10]. Here, we consider this scenario by placing a thin strand of collagenous obstruction
along the length of a single large-scale element, as pictured in Fig. 3.

As with the previous case, if all conductive tissue is treated as isotropically conductive with conductivity D, the effective
conductivity for the element is known. The vertical band of collagen blocks horizontal propagation across the element,
and vertical propagation is unaffected, giving

Deff (true) =

(
0 0
0 D

)
.

Again, under the intrinsic definition of conductivity used here the width of the fibrotic strand affects only the volume
fraction φ and does not appear in this result.

In Fig. 3 we present Deff as predicted by the different choices of boundary conditions, with and without including a
layer of skin. Also presented are the corresponding solutions of (9) when the macroscopic gradient is imposed in the x
direction (w ). Confined and periodic conditions produce w solutions with a constant gradient from left to right, and this
1 1

9
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Fig. 3. Performance of different homogenisation boundary conditions (BCs) for an averaging volume occupied by a thin strand of fibrotic obstruction.
Conductive tissue is shown in yellow, and fibrotic obstruction in dark red (dark grey in visualisations of the closure problem solution). Pictured are
the solutions to the closure subproblem (9) for the variable w1 , which when averaged together with the w2 solutions (not pictured) result in the
conductivity tensors given in the table. Confined and periodic conditions result in a constant gradient solution, such that

⟨
D(e1 +∇w1)

⟩
= 0 and zero

horizontal flow is correctly predicted. Linear boundary conditions result in a degradation of that solution near the boundaries, and this results in
an effective tensor that still permits some horizontal flow. The effects of skin are considered by calculating Deff for only the dashed blue rectangle
(but still solving the closure problem over the full domain). Use of skin to shift averaging away from the boundaries helps reduce this effect but
falls far short of eliminating it.

gradient has the appropriate magnitude such that the quantity
⟨
D∇v1

⟩
=

⟨
D(∇w1 + e1)

⟩
= 0. Hence, (7) results in the

correct conductivity tensor, with zero macroscopic flow in the horizontal direction.
On the other hand, when linear boundary conditions fix w1 = 0 along all boundaries, the constant gradient solution

is lost (Fig. 3). This results in an incorrect effective conductivity tensor that permits considerable flow in the horizontal
direction. By avoiding averaging over the boundaries where the solution is most degraded, including skin has a significant
positive effect on the conductivity tensor calculated using linear boundary conditions. Even still, a considerable amount
of horizontal flow is permitted, and the effect of the vertical barrier on conduction is essentially lost.

Together with the results from the previous section regarding thin barriers, we see that when the arrangement of non-
conducting obstacles is arbitrary, there exist scenarios for which each type of boundary condition we have considered
produces a poor estimate of macroscopic conductivity. As such, we cannot select a consistently superior choice and
instead now consider their performance for practical use of homogenisation in the context of cardiac electrophysiology.
Specifically, we explore the potential of homogenised models to capture several key pro-arrhythmic effects of cardiac
fibrosis, as represented by the presence of non-conductive fibrotic deposits.

3.2. Homogenised monodomain models capture macroscopic excitation propagation in obstructed tissue

Fibrotic obstructions slow the propagation of cardiac excitation through afflicted tissue, a key component of fibrosis’
pro-arrhythmic effect [50] as it decreases the ‘‘wavelength’’ that governs the survival of dangerous re-entries [51]. We
therefore use the wavespeed through obstructed tissue as the first test of our homogenisation approach, specifically
two-dimensional slices of cardiac tissue measuring 5 cm × 0.5 cm with an anisotropic conductivity tensor,

D =

[
3 0
0 1

]
.

These conductivity values are taken from [7] and reflect the faster conduction along cardiac fibres in the heart. Conduction
velocities in barely-fibrotic tissue are about 55 cm s−1 (Fig. 4), a physiologically reasonable value for ventricular tissue. In
each tissue slice, we place non-conductive obstructions at random, either 10µm× 10µm or 90µm× 10µm in size, with
the latter oriented both parallel and perpendicular to the direction of propagation (depicted in Fig. 4). The effect of these
three types of fibrosis on conduction has also been recently considered, separate from the context of homogenisation [52].

Wavespeeds predicted by the homogenised models match well with fine-scale wavespeeds, but begin to deviate as
the amount of fibrotic obstruction increases and paths of conduction become more torturous (Fig. 4). The performance of
different choices of boundary conditions for closure subproblems is comparable, with the superior choice also depending
on the size of the averaging volume used. This is a result of the interaction between the error due to the homogenisation,
10
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Fig. 4. Prediction by homogenised models of conduction speeds in different types of obstructed tissue. Top Row: Representative sections of the 5 cm
0.5 cm tissue slices showing the patterns of obstruction considered (obstacles in red). Pictured examples are the case of 25% obstacles. Waves of

xcitation move from left to right. Bottom Rows: Performance of the different types of boundary conditions on the three types of obstruction, for
ifferent choices of averaging volume size and boundary conditions for closure subproblems (9). Where a dot does not appear for a given level of
bstruction, this corresponds to a failure to propagate the length of the tissue. Both boundary condition selection and averaging volume size have an
mportant effect on homogenisation performance, with periodic conditions most accurate for smaller averaging volumes (∆x ≤ 100µm) and linear
conditions most accurate for the larger (∆x = 250µm). Homogenised models with ∆x = 500µm are universally poor for the more challenging,
highly obstructed problems. Best overall performance is obtained by using linear boundary conditions and a 25×25 averaging volume (10µm up to
250µm). Particularly notable is the case of ‘‘perpendicular’’ obstructions, where homogenised models using boundary conditions other than linear
are prone to over-predicting conduction block.

and the numerical consequences of changing the grid spacing (which is exacerbated by the smaller conductivity tensors
in highly-obstructed tissue). Error is consistently worst for the largest averaging volumes (∆x = 500µm), the case in
which homogenisation error is expected to be lowest as the ratio between characteristic length scales grows smaller [35].
This implies that the effect of changing the grid spacing is the predominant source of error. We also note that wavespeed
does serve as an appropriate means of comparing the finescale and homogenised models, as this measure effectively
summarises almost all of the error due to upscaling (see example activation maps given in Figure S1).

Perpendicularly aligned fibrosis presents a particularly interesting scenario, as it results in significant reduction in
velocity even for small amounts of obstruction, eventually culminating in complete block of conduction when the
proportion of obstructive material reaches 50%. Homogenised models will only be able to predict this block if they feature
conductivities small enough to halt conduction, as all path information is lost. The results for this perpendicular fibrosis
case mirror those seen in the diagonal channel example we consider in detail (Fig. 2). Specifically, homogenised models
attained using linear boundary conditions can potentially over-predict successful conduction, as a connection between any
averaging volume boundaries will result in a weakly conductive element (Fig. 3) even when the fine-scale structure in
fact creates a dead end. On the other hand, confined and periodic boundary conditions result in homogenised models that
significantly over-predict conduction block as the homogenisation process can only ‘‘see’’ conductive paths that fit with
the assumptions that underlie them. Overall, best performance is seen using linear boundary conditions and ∆x = 250µm,
a choice that performs very well across all of the different patternings of fibrosis tested.

In order to further explore the interaction between homogenisation and numerical error, we also separately consider
the results of fine-scale models that have their conductivity fields D(x) replaced with the effective fields Deff(x) and
volume fractions φ(x) obtained through the different block homogenisation approaches. This removes the numerical
effects of changing the grid spacing and allows homogenisation error to be more directly examined, but of course does
not represent a practical use of homogenisation as there is no computational saving. The results of these tests (Fig. 5)
present two important conclusions. Firstly, homogenised models perform very well overall, confirming that it is their
11
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Fig. 5. Performance of homogenisation for propagation through obstructed tissue when separated from numerical effects. Displayed conduction
velocities are those predicted by homogenised models (6) with different choices of boundary conditions (BCs) and averaging volume size, but
solved on the original finescale grid to remove the effects of changing the numerical discretisation. All homogenised models perform well, with
best performance obtained using the largest averaging volumes to maximise the difference in length scales between finescale features and the
homogenised model. Periodic BCs perform best overall, as the medium is of consistent property and hence admits a representative volume element.
When obstacles are aligned perpendicular to the direction of propagation, periodic and confined BCs pre-emptively predict conduction block for high
proportions of obstruction. Linear BCs instead predict conduction even in the case where the finescale simulation blocks.

changed gridsize that produces most of their discrepancy from the equivalent finescale model. Secondly, the overall
best-performing boundary conditions now switch to periodic boundary conditions. This is not so surprising, as the tissue
slices here have a consistent patterning of obstacles throughout, and it is therefore reasonable to take a representative
volume element and treat the medium as periodic [35]. This shows that in the context of the monodomain model (or
other models sensitive to the spatial discretisation used to simulate them), the potentially compensatory balance between
homogenisation and grid error must be considered in selecting the parameters of the homogenised model.

We also use this scenario to demonstrate the benefits of homogenisation in terms of computational cost savings.
Although the finescale model is feasible to simulate in the two-dimensional setting we have considered here, this still
required approximately three hours (intelligently terminating the simulation at 110µs of cardiac activity, that is, after
ll accessible sites were activated). In contrast, the lowest amount of homogenisation trialled (upscaling from 10µm to
0µm) required less than four minutes to simulate cardiac activity over the same period, including both the one-off cost
f constructing the homogenised model, and then its simulation (Table 1). The fastest homogenisation level (upscaling to
50µm) required less than half a minute. These timing tests did leverage the ability to easily parallelise across individual
losure subproblems (using six cores), but even without doing this the speed gains are clearly evident.

.3. Volume averaging allows prediction of source/sink mismatch events

A critical component of the pro-arrhythmic effects of fibrosis is so-called source/sink mismatch, in which spatial
ariation in the amount of excitable tissue can create structures that permit conduction in one direction and not
nother [2]. Unlike the other homogenised models that have been used to represent the impacts of obstacles in cardiac
lectrophysiology [19–21], the explicit representation of the local proportion of conductive tissue (φ) in the homogenised
odels we construct provides them the potential to capture this important electrophysiological dynamic. We examine

his potential using a set of small-scale nozzle-like structures (Fig. 6a) that produce a delay in activation, or outright block,
hen activation reaches the end of the structure and attempts to emerge out into unobstructed tissue. These simulations
se an isotropic conductivity tensor with the same baseline conductivity as before, D = 3I.
12
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Table 1
Homogenisation represents significant time savings for cardiac electrophysiology. Runtimes for the generation of a single activation map for an
example 2D tissue slice of fibrotic tissue (20% of sites marked obstructed at random). As expected, reducing the number of nodes and elements
represents a huge reduction in computation time, and the time required to construct homogenised models (solving (9) for each coarse grid element)
is minor compared to the time required for simulating on the finescale. Time required to homogenise is non-monotonic with respect to gridsize
owing to a balance between the size of each closure problem, and the number of closure problems to be solved.
Mesh spacing Homogenisation time Simulation time Total time Speedup factor

10 µm – 10 594.2 s 10 594.2 s –

50 µm 29.4 s 186.8 s 216.2 s 49.0
100 µm 16.6 s 39.5 s 56.1 s 188.8
250 µm 21.6 s 5.8 s 50.5 s 209.8
500 µm 28.9 s 2.1 s 31.0 s 341.7

Propagation success is seen to depend predominantly on the width of the exit opening, r , while the width of the
entrance, l, is expected to only effect borderline cases. Both widths together control the extent of activation delay
(calculated by comparing the activation time at the opposite end of the tissue to the activation time when no obstacle
is present). We explore how well our homogenised models predict these dynamics, and highlight the fact that the sizes
of the averaging volumes trialled are certainly large enough to obscure the fine detail of the structure, and in most cases
alter the effective width of the entrance and exit.

Homogenisation performance depends strongly on both the choice of boundary conditions, and the size of the
averaging volume. Homogenisation using periodic or confined boundary conditions was found to mispredict conduction
success or failure, regardless of the homogenised model’s new length scale (Figures S2–S3). This is most likely due to
the poor handling of diagonal transport seen for these choices in our test case (Fig. 2). The nozzle structure considered
here also clearly violates the assumption of periodicity. Linear boundary conditions, however, perform well providing the
averaging volume is not made too large (Fig. 6b). In particular, homogenisation by a factor of ten (resulting in a mesh
spacing of 100µm, consistent with high-fidelity anatomic meshes) proved capable of perfectly predicting the success or
failure of propagation for all combinations of l and r values trialled (Fig. 6c), and predicted delay accurately in the majority
f cases.
Two example activation time maps using this best-performing homogenisation are presented in Fig. 6d. As any

veraging volume that contains even a small amount of conductive material will become a non-obstructed element
n the homogenised model, this results in a complete loss of the precise shape of the nozzle structure. Nevertheless,
he pattern and timing of activation is well recovered. Through its choice of effective tensors and incorporation of the
olume fraction, the homogenised model is seen to compensate for this effect. Where the channel is widened artificially
y homogenisation, activation noticeably lags (highlights in Fig. 6d) , resulting in additional sink to slow propagation.
he homogenised model thereby captures the increasing sink experienced by a wavefront travelling through a widening
tructure, albeit in a phenomenological fashion as it does not explicitly represent the details of that structure. In the
pposite case of a narrowing channel, these regions activate more rapidly than in the centre of the channel, and thus
eplicate the source-favoured balance for a wavefront moving through a narrowing structure.

.4. Spiral wave anchoring can be predicted by homogenised models

A primary cause of arrhythmia are spiral waves, where cardiac tissue falls into a self-sustaining pattern of continuous
e-activation. Depending on both electrophysiological and structural conditions, these spirals may stay fixed rotating about
single region of the tissue or wander about it (with a chance of self-annihilation upon collision with a tissue boundary).
ibrosis can act to stabilise these spiral waves, with even small amounts of diffusely placed obstacles shown to reduce
piral core wander [31]. Larger non-excitable obstacles can also act as fixed locations to which a spiral wave anchors, and
s thus more likely to persist [53]. We explore here whether a homogenised model can still produce this latter behaviour,
n important component of fibrosis’ pro-arrhythmic effect.
Spiral waves were simulated in two-dimensional, 6 cm × 6 cm slices of isotropic (D = 3I) tissue, with a ‘‘finescale’’ grid

spacing of ∆x = 100µm used for reasons of computational cost. Spiral waves were initiated using the common cross field
stimulus protocol [54], with a travelling wave initiated at one edge of a two-dimensional slice of tissue, and then a second
stimulus triggered in one quadrant of the domain, timed to coincide with the repolarisation front from the first wave.
We use the ‘‘steep restitution’’ set of parameter values provided by ten Tusscher et al. [30], which cause spiral waves to
break up and devolve into irregular patterns of activation. However, then including a region of scarring represented by
60% of elements being occupied by fibrotic obstruction causes the spiral wave to anchor to the scar’s location. This causes
re-entrant activity to be sustained apparently indefinitely without wave breakup. Activation maps corresponding to a
rotation of the spiral wave before dynamics completely stabilise, and two subsequent rotations of the spiral wave after
stabilisation, are given in Fig. 7.

Inside the scar region, propagation of activation follows tortuous paths of conductive tissue (see left column of Fig. 7,
and accompanying supplementary movies). Perfect capture of these very complexly conducting structures with upscaled
regions of a single effective conductive property is of course not feasible. However, following their good performance in
13
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Fig. 6. Homogenisation for the capture of source/sink mismatch. (a) The nozzle structures used to evaluate the performance of homogenisation.
ctivation delay (AD) is measured at the location indicated, and calculated by comparing activation times to those seen when simulating the same
omain but with no obstruction present. (b) AD and conduction block as predicted by homogenised models using linear boundary conditions for
losure subproblems (9), for a range of exit widths r (l = 200µm). Failure to activate the measure point (conduction block) is marked by an ×

laced at the top of the vertical axis. Good agreement with the finescale model is achieved for homogenised models with grid spacing ∆x ≤ 100µm.
c) AD (dot colour) and conduction block (×) in the finescale model, and the best-performing homogenised model using linear boundary conditions
∆x = 100µm), for multiple combinations of l and r . Delay is well estimated by the homogenised model, and block is perfectly predicted in all
rialled scenarios. (d) Maps of activation time (AT) for two finescale problems (top row) and the equivalent homogenised models (bottom row).
espite changes to the effective channel width in the homogenised models, the timing of activation is well recovered. Noticeable delay in activation
s seen where the homogenised model’s larger grid size results in a sudden change in channel width (light blue circles)..

he previous scenarios considered here, we explore whether such upscaled tensors can at least capture the meaningful
ffects of the scar region, in particular the stabilisation of spiral wave patterns of re-entry.
We create homogenised models using linear boundary conditions, and averaging volumes of size 10×10 and 25×25

lements. As the base grid in these simulations is already 100µm, we avoid the numerical effects of significantly larger
rid spacings by retaining the base grid but overlaying the tensors obtained by block homogenisation. This approach
llows for feasible simulation of sufficient tissue to support spiral waves on the finescale, to which the predictions of
14
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Fig. 7. Anchoring of spiral waves in the 10×10 homogenised model. Activation time (AT) maps for the finescale and 10×10 homogenised models
n a 6 cm×6 cm slice of tissue. Pictured are an activation before dynamics have stabilised (‘‘early’’) and two subsequent activations after stabilisation
‘‘loop 1’’ and ‘‘loop 2’’). Light grey sites are those that were not activated in the 210ms time window, and dark grey sites are those fully occupied by
ibrosis. Values of ∆t indicate the difference in timing between the finescale and homogenised models for the same activation event. The scar region
auses a spiral wave that would otherwise break up to instead anchor and persist indefinitely. The homogenised model successfully predicts this
nchoring despite losing the detailed structure of the obstructed region, but slightly underpredicts re-entrant frequency (here 5.45Hz in finescale
ersus 5.32Hz in homogenised). Precise paths of tortuous conduction (and conduction block) are lost in the homogenised model, but the resultant
atterns of activation are similar after stabilisation (bottom two rows). Before dynamics stabilise, the over-prediction of conduction due to linear
oundary conditions can allow activation to traverse the scar region, resulting in premature activation of the opposing side (light blue arrow in top
ight panel).

omogenised models can be directly compared. We stress, however, that the most practical use case of homogenisation
emains incorporating very fine scale (∼ 10µm) structures into typical cardiac meshes (∼100–250µm).

Most immediately, the homogenised models are seen to correctly predict the anchoring of spiral waves to a region
f obstruction (Figs. 7 and S4). Although the tortuous structures inside the scar region are lost in the homogenisation
rocess, the homogenised models still produce an approximation to the resultant patterns of activation, both inside and
specially outside of the scar region. As previously observed, linear BCs tend towards overprediction of conductivity,
nd so discrepancies between the two models take the form of activations in the homogenised model of locations that
o not activate in the finescale. In particular, this can result in premature activation of tissue opposite the scar region
n the homogenised model, when excitation spuriously propagates all the way through it (Fig. 7, top right, and also
ee supplemental movie). A similar effect is almost observed for the 25×25 homogenised model, however in that case
onduction blocks when the wave attempts to emerge back into the non-fibrotic tissue (Figure S4, top right).
15
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After many rotations, as the dynamics of the spiral wave re-entry become more similar from rotation to rotation, the
greement between the finescale and homogenised models also improves. The timings with which different sections of
he scar activate in the finescale model are then also generally well represented when using upscaled tensors, which
apture some of the patterns of conduction block inside the scar and generate near equivalent maps of activation outside
he scar. Frequencies of rotation averaged over the last four complete rotations are very similar, 5.45Hz for the finescale
odel, 5.31Hz for the 10×10 homogenised model, and 5.29Hz for the 25×25 homogenised model. Thus, the upscaled

ensors successfully predict both the anchoring of the spiral wave, and the dominant frequency of the resultant arrhythmia.
owever, the precise timings of each activation event are not matched (values of ∆t in Figs. 7 and S4), primarily due to
he more significant discrepancies between the two models before dynamics fully stabilise.

Finally, the combination of upscaled tensors but a finescale grid creates an interesting artefact, particularly noticeable
n the 25×25 homogenised model (Figure S4, but especially the accompanying movie). Very low conduction in the scar
egion, but appropriately combined with a small value for the volume fraction, allows ‘‘pockets’’ of excitability to slowly
ropagate across individual elements of the upscaled grid (the small, isolated regions with distinct activation time in the
igure). These might be seen as the homogenised model capturing at least the spirit of slow, tortuous conduction in the
car region, even though the precise paths followed in the finescale model are unavailable.

onclusions

Homogenisation has seen only limited use in the modelling of fibrosis in cardiac electrophysiology, despite the
echnique presenting a natural means for incorporating the effects of sub-mesh-scale obstructions such as cardiac fibrosis
nto existing heart meshes. The dynamic behaviours seen in electrophysiological models, owing to their highly influential
nd strongly non-linear reaction terms, do present a significant challenge to prototypical homogenisation, which concerns
tself only with the calculation of macroscopic transport properties. However, by careful application of the volume
veraging theory for non-conductive obstructions [35], and a thorough consideration of how different choices of closure
roblem boundary conditions behave in several pernicious cases of interest in this field, we have demonstrated how
omogenisation can robustly capture some of the key dynamics through which fibrosis promotes arrhythmia. Specifically,
e have demonstrated the potential of the technique to produce homogenised models that accurately capture conduction
lowing, especially up to about 30 to 40% obstructed tissue, matching the proportions of collagen that can be seen in
ypical histological sections of fibrotic tissue [6]. Our homogenised models have also demonstrated successful prediction
f source–sink mismatch effects including unidirectional conduction block, and spiral wave anchoring to fibrotic regions.
We have thoroughly investigated the performance of different choices for closure subproblem BCs, both inclusive

f, and separate from, the grid error incurred by upscaling in the monodomain model (and bidomain model) [5]. Our
esults demonstrate linear BCs as the most robust choice in this context, despite their reputation for reduced accuracy
n other homogenisation contexts [40]. In addition to being able to correctly predict transport through thin conductive
hannels (Fig. 2), this choice of BCs has the further benefit that it tends to over-predict conductivity when it does incur
omogenisation error, and this error then acts to balance the under-prediction of conductivity that typically comes from
ncreasing the mesh spacing in the monodomain model. Linear BCs also best captured conduction block events due to
ource–sink mismatch in homogenised models.
The best-performing homogenised models here used reductions in node count by factors of 100 and 625 compared

o simulations explicitly resolving finescale detail, representing significant computational speedup. In three dimensions,
his speedup is expected to be even more pronounced. Although there is a computational cost associated with solving
he closure problems that define effective conductivities in a homogenised model, this is a one-off cost, involves no
imestepping, and for the problems considered here was only minor relative to the cost of simulating on the finescale.
here the solution of closure problems threatens to become a bottleneck, they may be solved in parallel or via

emi-analytical techniques that further reduce the time required [55].
To demonstrate and quantitatively validate the method, we have used regular, fine-scale (10µm) meshes that captured

he spatial scale of fibrotic obstructions to conduction, in two dimensions. As demonstrated through the use of skin around
he averaging volume in order to reduce boundary effects, the averaging volume does not need to be the same as the
olume over which the closure problem is solved. This allows the approach to extend naturally to irregular meshes, as
veraging volumes of any shape may still be embedded in rectangular regions that use a regular finescale grid, at which
oint the concept of periodicity and any choice of closure problem BCs may be applied. Calculating the proportion of the
verage volume occupied by collagen that sits on a different grid can be handled via Monte Carlo integration, as described
n [22]. These ideas also apply to volumetric meshes in three dimensions, however the once-off cost of solving a closure
roblem for each element will increase with the larger number of elements in this case. As each closure problem is a
teady-state diffusion problem that discretises to become a single linear system solve, and may be solved in parallel, this
omputational cost is expected to be minor, certainly compared to the cost of simulation on a finescale equivalent of the
hree-dimensional mesh.

In practice, a modeller will most likely have a coarser-scale (100–250µm) mesh, regular or irregular and in two or
three dimensions, on which they wish to simulate cardiac activity in the presence of cardiac fibrosis. Current non-invasive
imaging techniques for fibrosis can be used to inform where to place regions of affliction in computational studies [4,32],
and operate at increasingly impressive resolutions [56]. In terms of the placement of finescale collagenous obstructions
16
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inside regions of fibrosis, however, this would be achieved in consideration of histological data, or more realistically,
using a histologically-informed computational generator of microfibrotic patterns [25]. Studies incorporating macroscopic
regions of fibrosis from imaging data into computational models typically seek to capture its net effect, adjusting for
example conductivity and electrophysiological properties (for example [56]). Our homogenisation approach serves as a
tool for informing these conductivity modifications, providing a quantitative way to determine how different patterns
of collagen deposition affect the larger-scale conductivity of afflicted tissue. The primary limitation of homogenisation
in this context is of course the elimination of the microscopic structure by the homogenisation process. Although we
have demonstrated capture of source/sink mismatch and spiral wave anchorage through proof-of-concept experiments,
we have not exhaustively tested whether homogenised models can predict the precise manifestations of these effects
across the many different types of obstacle arrangement that may be of interest. The further challenge of capturing re-
entries that ‘‘live’’ on the micro-scale [3] has also not been considered here. Additionally, although the method presented
here generalises naturally to three dimensions, we have not tested the capture of pro-arrhythmic phenomena in a three-
dimensional setting. As including an extra dimension meaningfully changes source/sink balance [57], the prediction of
conduction block in homogenised models might also be affected by a third spatial dimension.

Overall, homogenisation has been shown here to perform better than might be expected, considering the reaction-
ominated dynamics of excitation propagation and the complex effects of spatial heterogeneity on these dynamics. Used
ith care, and making use of the extensions to the base technique we have presented such as explicitly incorporating
eterogeneity in the volume of excitable tissue, homogenised monodomain models have proven capable of predicting
everal key phenomena of interest in cardiac electrophysiology. The technique should also be applicable to travelling wave
ynamics in other contexts, for example Ca2+ [58] or cyclic adenosine monophosphate [59] signalling, where cytoskeletal
bstructions motivate homogenisation [60]. Indeed, following the result that discrepancies in homogenised models owed
ostly to the numerical consequences of changing grid spacing, we suspect the approach we present here would perform
ven better in models where waves are less steep-fronted.
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ppendix A. Control volume finite element method for rectangular grid

Here we present the precise form of the control volume finite element scheme for a two-dimensional regular
ectangular grid, as used in this work. For such a grid, bilinear interpolation is suitable for the interpolants in (15). If
e take the bottom left corner of an element as the origin, such an interpolant takes the form

Vi = f
(
Vdl,i, Vul,i, Vdr,i, Vur,i, x, y

)
= Vdl,i + (Vul,i − Vdl,i)

x
+ (Vdr,i − Vdl,i)

y
+ (Vur,i − Vul,i − Vdr,i + Vdl,i)

x y
,

(A.1)

∆x ∆y ∆x∆y
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with (Vdl,i, Vul,i, Vdr,i, Vur,i) the vertices of the ith mesh element, as pictured in Figure S5. Via appropriate use of the
ransformations x′

= ∆x − x and y′
= ∆y − y, we may treat all four elements associated with a control volume as

having the node at the control volume’s centre as the origin (bottom left corner). This motivates labelling the vertices of
each element in terms of how they relate to the control volume node, as demonstrated in Figure S5. Briefly, Vp refers to
the control volume’s central node, Vx,i refers to the vertex of the ith element that is an x translation away from the central
node, and similarly for Vy,i and Vxy,i. Using this re-labelling, the contribution of each portion of the control volume now
has the same form, so that mi and ki in Eq. (16) become

mi =

∫
ΩCV,i

Vi dΩCV,i

=

∫ ∆x/2

0

∫ ∆y/2

0
f
(
Vp,i, Vx,i, Vy,i, Vxy,i, x, y

)
dxdy

= ∆x∆y
(

9
64

Vp,i +
3
64

Vx,i +
3
64

Vy,i +
1
64

Vxy,i

)
ki =

∫
σCV,i

D∇Vi · n̂ dσCV,i

=

∫ ∆x/2

0

[
D11

(
Vx,i − Vp,i + (Vxy,i − Vy,i)

∆y
2

)
+ D12

(
(Vy,i − Vp,i)(∆x − x) + (Vxy,i − Vx,i)x

)]
dx

+

∫ ∆y/2

0

[
D22

(
Vy,i − Vp,i + (Vxy,i − Vx,i)

∆x
2

)
+ D12

(
(Vx,i − Vp,i)(∆y − y) + (Vxy,i − Vy,i)y

)]
dy

= ∆x∆y
[
D11

∆x2

(
3
8
(Vx,i − Vp,i) +

1
8
(Vxy,i − Vy,i)

)
+

D22

∆y2

(
3
8
(Vy,i − Vp,i) +

1
8
(Vxy,i − Vx,i)

)
+

1
2

D12

∆x∆y
(Vxy,i − Vp,i)

]
.

In the case of constant D and φ across the domain, the resulting mass and stiffness matrices then take the stencil
form [61]

M = φ

⎛⎜⎝
1
64

3
32

1
64

3
32

9
16

3
32

1
64

3
32

1
64

⎞⎟⎠ K = φ

⎛⎜⎜⎜⎜⎝
1
8

(
D11
∆x2

+
D22
∆y2

)
−

1
2

D12
∆x∆y

3
4

D22
∆y2

−
1
4

D11
∆x2

1
8

(
D11
∆x2

+
D22
∆y2

)
+

1
2

D12
∆x∆y

3
4

D11
∆x2

−
1
4

D22
∆y2

−
3
2

(
D11
∆x2

+
D22
∆y2

)
3
4

D11
∆x2

−
1
4

D22
∆y2

1
8

(
D11
∆x2

+
D22
∆y2

)
+

1
2

D12
∆x∆y

3
4

D22
∆y2

−
1
4

D11
∆x2

1
8

(
D11
∆x2

+
D22
∆y2

)
−

1
2

D12
∆x∆y

⎞⎟⎟⎟⎟⎠ .

hese are slightly different to those derived using a typical finite element method, and thanks to the control volume
ormulation, result in a conservative numerical scheme. For reference, when D = DI and ∆x = ∆y = ∆, the stiffness
matrix becomes

K = φ
D
∆2

⎛⎜⎝
1
4

1
2

1
4

1
2 −3 1

2
1
4

1
2

1
4

⎞⎟⎠ .

ppendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.cnsns.2022.106794.
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