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SUMMARY

The ability to abstract information to guide decisions during navigation across changing 

environments is essential for adaptation and requires the integrity of the hippocampal-prefrontal 

circuitry. The hippocampus encodes navigational information in a cognitive map, but it 

remains unclear how cognitive maps are transformed across hippocampal-prefrontal circuits to 

support abstraction and generalization. Here, we simultaneously record hippocampal-prefrontal 

ensembles as rats generalize navigational rules across distinct environments. We find that, 

whereas hippocampal representational maps maintain specificity of separate environments, 

prefrontal maps generalize across environments. Furthermore, while both maps are structured 

within a neural manifold of population activity, they have distinct representational geometries. 

Prefrontal geometry enables abstraction of rule-informative variables, a representational format 

that generalizes to novel conditions of existing variable classes. Hippocampal geometry lacks 

such abstraction. Together, these findings elucidate how cognitive maps are structured into distinct 

geometric representations to support abstraction and generalization while maintaining memory 

specificity.

In brief

Tang et al. show that, as rats generalize rules across environments, cognitive maps are 

constructed on neural manifolds in the hippocampus and prefrontal cortex with distinct geometries 
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for complementary functions. Prefrontal geometry enables abstraction of task knowledge 

generalizable across contexts, whereas hippocampal manifolds remap to maintain memory 

specificity.

Graphical Abstract

INTRODUCTION

Memory generalization, the ability to abstract knowledge from prior experiences, is critical 

for adaptive behavior in novel situations. In the spatial memory domain, generalization 

manifests in the application of learned navigational rules across environments with distinct 

sensory cues. Animals can thus rapidly adapt in new contexts without having to learn de 
novo. Considerable research in humans and animals has established that the hippocampus is 

essential for memory of contextual details1,2 and that generalization across contexts requires 

the medial prefrontal cortex (PFC).3–7 Memory generalization thus depends on distributed 

circuits in the hippocampus and PFC; however, little is known about the underlying neural 

representations.

Memory generalization can be facilitated by a systematic organization of past episodes 

into a map-like representation, a “cognitive map,”8 and a promising neural substrate 

for spatial cognitive maps is provided by hippocampal place cells.9 Place cells form 

context-specific spatial maps by responding to particular locations in an environment and 
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remapping to distinct place codes in a new environment.9–12 How these spatial cognitive 

maps are transformed across hippocampal-prefrontal representations to enable abstraction 

and generalization remains largely unknown. Recently, several studies have reported 

spatially tuned neurons in rodent PFC that strikingly resemble hippocampal place cells.13–23 

Furthermore, similar to the hippocampus,24–26 spatial locations are conjunctively encoded 

with other task-relevant variables in the PFC,17,27–30 termed “mixed selectivity.”31–33 These 

parallel representations with shared task information raise a fundamental question about 

how these representations can also subserve the distinct functions in memory generalization 

ascribed to the hippocampus and PFC.

An emerging theoretical framework suggests that circuit function is determined not only by 

representational content but also by representational geometry, the structural arrangement of 

task-relevant variables in a space of neural population states, called a manifold.26,34–36 A 

recent study demonstrated the existence of a geometric neural manifold in the hippocampus 

that represents task knowledge in the current environment during navigation.26 However, 

it is unclear whether the PFC preserves or reorganizes the hippocampal manifold structure 

and whether and how these representational geometries contribute to generalization across 

environments. To address these questions, we simultaneously recorded hippocampal-PFC 

neural ensembles as rats generalized memory-guided decision-making in a hippocampal-

PFC-dependent navigation task across two distinct environments. This approach allows for 

a quantitative comparison of the intrinsic structures of hippocampal-PFC representations, as 

well as their dynamics, during generalization of navigational behavior.

RESULTS

Rats generalize learned rules across contexts

We trained five rats to perform a spatial memory task known to require hippocampal-

prefrontal interactions37–39 and to switch between familiar and novel environments. In this 

continuous alternation W-maze task (Figure 1A, left), rats had to return to the center (C) 

from either the right (R) or left (L) side of a W-track (inbound trajectory left or right [INL or 

INR]) and then correctly choose the opposite side (outbound trajectory right or left [OUTR 

or OUTL]) to be rewarded at the end of each trajectory. Therefore, the critical memory 

demand of this task is to learn and remember the correct IN-OUT sequences (INR-OUTL 

and INL-OUTR), termed “task sequences.”

Animals initially had no prior W-track experience and first learned the task in one 

environment with at least eight 20-min W-track sessions interleaved with rest sessions 

in a sleep box (de novo learning; final performance, 84.3% ± 7.7%, mean ± SD; STAR 

Methods). On a subsequent day, they were introduced to a novel W-track in a visually 

distinct room for one session (denoted as N; Figure S1A), then returned to the familiar 

environment (F) where they had learned the task de novo on previous days, and finally 

reexposed to the novel environment (N′; Figure 1A, right). Compared with de novo learning, 

all animals acquired the inbound and outbound task rules faster in the novel environment 

(Figures 1B, 1C, and S1B). To determine whether rats had indeed generalized learned 

rules, instead of confusing the novel environment with the familiar one, we examined the 

performance of another set of well-learned rats n = 3 , which were exposed to the familiar 
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environment first and then switched to the novel environment within a day, for an opposite 

order of exposures as F-N-F′-N′ (STAR Methods). We found that for both animal groups, 

the performance in the familiar environment was significantly higher than that in the novel 

one regardless of the order of experience (Figures 1C and S1C), suggesting that animals 

were able to remember and distinguish the two environments. Together, these data suggest 

that rats learned to generalize spatial rules across environments.

PFC spatial map generalizes, while CA1 completely remaps, across contexts

Since rats demonstrated transfer of learned knowledge from one environment to another, we 

leveraged this behavior to assess neural representations that support memory generalization. 

We recorded simultaneously from the PFC and the dorsal CA1 region of the hippocampus 

using high-density arrays with 32–64 tetrodes (Figure S2; STAR Methods). Cells were 

stably tracked across environments (mean ± SD = 30.5 ± 9.8 CA1 and 37.4 ± 19.3 

PFC cells per session per animal; Figure S2). In agreement with previous hippocampal 

findings,9–12 CA1 place cells exhibited extensive remapping in response to environment 

switches (Figures 2A–2C and S3). Notably, the distributions of CA1 spatial-representation 

similarity between two environments were not different from distributions obtained by 

shuffling cell identities in the same environment (Figure S3A), suggesting that CA1 place 

cells provide statistically independent ensemble activity in separate environments (i.e., 

global remapping).11,12 Furthermore, the previous CA1 representation was reinstated upon 

reexposure to the same environment (Figures 2A–2C and S3). Therefore, the hippocampus 

maintains unique maps of individual environments, even when the animals perform the same 

spatial memory task.

In striking contrast with hippocampal global remapping, we found that the PFC spatial 

representation was stable across environments (Figures 2A and 2B). While there was 

representational drift of PFC cells even within the same environment16 (Figure 2B), the PFC 

spatial-representation similarity between two different environments was just as large as 

with repeated testing in the same environment (Figures 2C–2E, S3A, and S3B), suggesting 

that novel and familiar environments shared the same prefrontal map. Furthermore, there 

was greater assimilation of PFC representations across environments with experience, while 

CA1 place cells maintained their independent representations (Figures S3C and S3D). Of 

note, the persistence of environment-specific representations in the hippocampus suggests 

that the animals did not ignore environmental cues when generalizing task knowledge, as 

it has been shown that inattentiveness to environmental cues changes spatial coding and 

reduces hippocampal place-field stability.40,41

Since the environments shared both the same rules (i.e., remembering correct task 

sequences) and the same reward configuration, we examined the degree of generalization 

attributed to coding of reward expectation and task sequences. Previous studies have shown 

that firing rates of some hippocampal42–44 and prefrontal45,46 neurons ramp up as the 

animal moves toward the reward, representing relative proximity of goals and thus reflecting 

reward expectation.47–49 Consistent with previous reports, we identified ramping neurons 

in both CA1 and PFC (Figures S4A and S4B; STAR Methods). We found that PFC 

ramping cells generalized reward representations, but the CA1 representation remapped 
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across environments (Figures S4A and S4B). In addition, the generalization for reward 

ramping cells was seen to a similar degree to other cells within regions (Figure S4C). 

Finally, in both regions, the similarity of population activity across different environments at 

reward wells was the same as other locations (Figure S4D). Therefore, the generalization of 

PFC maps was not simply attributed to reward expectation.

To determine how fast ensemble codes shift upon environment switch, we next examined 

trial-to-trial dynamics of CA1 and PFC representations. We used Bayesian decoding 

to apply spatial representations of CA1 and PFC cells from the novel environment to 

reconstruct locations in the familiar and novel environments (STAR Methods). Confirming 

the remapping results, the error between actual and reconstructed positions in the familiar 

environment was significantly higher than that in the novel environment and no better 

than chance for CA1, whereas PFC decoding was well above chance and similar across 

environments (Figures 2B and 2E). Interestingly, the decoding error rapidly increased during 

the first trial after environment switching for CA1 but remained stable for PFC (Figure 

2F; trial −1 vs. 1: p = 0.038 and > 0.99 for CA1 and PFC, respectively, Kruskal-Wallis test 

with Dunn’s post hoc). Together, these data suggest that when animals performed the same 

memory task in different environments, unique CA1 representations appeared immediately 

after introduction to a novel environment, contributing to separation of spatial contexts 

in memory, whereas PFC representations carried over from one environment to the other, 

allowing generalization.

Distinct geometries of CA1 and PFC representations

To further investigate how CA1 and PFC neurons encode task knowledge, we examined 

their single-cell responses to different task variables. We found that PFC and CA1 single-

cell codes had distinct generalization properties for multiple task variables beyond spatial 

locations. First, many PFC cells exhibited similar activity profiles at the same trajectory 

phase (defined by the distance from the starting point) across different trajectory types 

(Figure S5), termed “path equivalence.”50,51 Such path equivalence is relatively rare in 

CA152,53 (Figure S5). Furthermore, beyond simple “path equivalence” comprising one 

generalized representation of all trajectories as previously suggested,50,52,53 we found that 

the firing patterns of PFC neurons specifically distinguished the two IN-OUT task sequences 

critical for task performance (INR-OUTL vs. INL-OUTR in Figure 1A; “task-sequence 

selectivity”) and thus generalized the responses across the two IN and OUT trajectories 

covering distinct spatial locations within a task sequence (Figures 3B, 3C, and S5F). 

In contrast, most CA1 cells showed consistent firing for trajectories with similar spatial 

coverage (INR-OUTR or INL-OUTL; Figures 3A and 3C). As a result, the selectivity indices 

of IN (INL vs. INR) and OUT (OUTL vs. OUTR) trajectories exhibited a positive correlation 

for CA1 and an opposite, negative correlation for PFC (Figure 3D; STAR Methods). We 

noted, however, that while the two trajectories within a task sequence shared similar motor 

patterns (e.g., performing an L/R turn), the response of PFC cells was not a pure encoding 

of actions because spatial positions associated with similar actions can still be accurately 

decoded from PFC activity17,22 (Figures 2B and 2E). Therefore, the PFC representation did 

not strictly encode spatial or motor information, per se,29 but variable conjunctions relevant 
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to the task rule. Finally, consistent with spatial remapping results, these properties were 

stable across environments for PFC neurons but not CA1 (Figures 3E and S5E).

The examination of single-cell encoding profiles revealed extensive heterogeneity, with 

a gradient in selectivity and generalization properties in each region (Figures 2 and 3). 

To further gain insights into how CA1 and PFC circuits engaged individual neurons 

into functional ensembles to encode task knowledge, we characterized the structure of 

population activity by extracting neural manifolds using uniform manifold approximation 

and projection (UMAP; STAR Methods). This unsupervised algorithm revealed that the 

population activity of PFC cells resides on a ring-shaped manifold, making it distinct from 

the CA1 neural manifold with a double “V” shape that topologically resembles the physical 

spatial structure of the W-maze (Figures 3F and 3G, left).

To validate the manifold approach, we examined if the extracted geometric structure 

accurately reflected the diverse tuning properties of individual cells. If so, four key 

predictions should be true. First, locations along different trajectories should have 

distinct population neural states in the manifolds to support episodic encoding of 

locations in both CA1 and PFC, with the location-selective firing of individual neurons 

differentiating the context of specific trajectories (Figures 2B and 3E).17,22,27,28,52,54 

Figures 3F and 3G demonstrate that neural states of single passes of the same trajectory 

exhibited similar dynamics, yet maintained separation between those belonging to different 

trajectories, enabling trajectory-specific representations of locations. Second, the task-

sequence selectivity of PFC cells (Figure 3D) predicts that the trajectories in a correct task 

sequence (InSeq; INR-OUTL or INL-OUTR) should reside in closer proximity than those 

out of the sequence (OutSeq; INR-OUTR or INL-OUTL). Indeed, the two InSeq trajectory 

pairs lie close together on opposite sides of the ring of the PFC manifold (Figure 3G). When 

measuring the distance between neural trajectories (STAR Methods), we found that the 

distance between two InSeq trajectories was significantly smaller than two OutSeq ones in 

the PFC manifold, whereas OutSeq pairs with same spatial coverages had smaller distances 

than InSeq pairs in the CA1 manifold (Figure 3H). Third, the same trajectory phase across 

the four different trajectory types should be geometrically aligned in the PFC manifold 

to encode “path equivalence.” Indeed, for PFC, the same phases of different trajectories 

(e.g., the start points) were aligned, regardless of their physical distances (Figure 3G, left). 

As a result, the distances between PFC neural states for the same trajectory phases were 

significantly smaller than those for the same spatial locations, while the opposite is true 

for CA1 (Figure 3I). Fourth, the generalization of PFC spatial representations (Figure 2) 

predicts that the manifold structure should be preserved across environments. To test this, we 

embedded the population activity from the familiar environment into the manifold extracted 

from the activity in the novel environment (Figures 3F and 3G, right; STAR Methods). 

We found that the geometric structure of the PFC manifold was largely preserved across 

environments, whereas the distortion of the CA1 manifold was similar to that from random 

shuffles (Figure 3J). In all the cases above, the distance relationship of neural states, which 

determines the representational geometry, was preserved between the low-dimensional 

manifold space and the original high-dimensional neural space (Figure S6). Together, our 

data reveal that neural ensembles in CA1 and PFC simultaneously represent multiple task 

variables with distinct geometries that are consistent with single-neuron selectivity. More 
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importantly, the demonstration of population-level neural manifolds uncovers an internal 

structure that is not readily apparent from individual neuronal responses, elucidating how 

two seemingly opposing functions of the single-neuron codes, i.e., maintenance of episodic 

detail (e.g., location and trajectory specificity) and generalization across experiences, can 

operate in tandem at the level of neural populations.

Distinct abstraction in CA1 and PFC

Generalization is posited to arise from abstraction of commonalities across 

experiences.3,32,35 Previous studies have operationally defined abstraction using the 

generalization performance of neural decoders across task conditions not used for 

training (cross-condition generalization performance [CCGP]), which requires a specific 

representational geometry.35,55 Unlike traditional cross-validation decoders, trained on a 

subset of samples from all conditions and tested on held-out samples from the same 

conditions, CCGP evaluates a decoder’s ability to reuse its existing trained structure to 

separate similar but novel inputs, allowing generalization.35

To assess if CA1 and PFC manifolds emerged as an abstraction of task variables, we 

further characterized their representational geometries using CCGP. To simplify decoding, 

we considered an early and a late phase for each trajectory in the neural manifolds (Figures 

3F and 3G, left), resulting in 8 different clusters for each region (Figures 4A and 4B; 

STAR Methods). We then tested the CCGP for the three different dichotomies introduced 

in the previous section (i.e., early vs. late trajectory phase, task sequence INR-OUTL vs. 

INL-OUTR, and novel vs. familiar environment; Figure 4C, top to bottom). For example, 

to classify early and late trajectory phases (Figure 4C, top), a linear decoder was trained 

on 3 out of all 4 trajectory types and then tested on the one trajectory type not used for 

training. Similarly, we tested the CCGP of the task sequence by holding out a pair of 

clusters with the same trajectory phase but belonging to different task sequences; for the 

CCGP of spatial contexts, we tested the decoder trained by neural activity in the novel 

environment with the activity in the familiar environment (STAR Methods). We found that 

the CCGP for all three task variables showed high accuracy for PFC but was at or below 

chance for CA1 with a trial-label permutation test (Figures 4C and 4D), as well as against 

a geometric random model (STAR Methods; Figures S7A and S7B).35 PFC representation 

thus has a geometric structure that enables a decoder to classify neural responses to these 

task variables in novel conditions (i.e., an abstract format). Notably, if we measured the 

amount of information decodable using the traditional cross-validation decoder for all 35 

possible dichotomies (dividing the 8 clusters into 2 groups of 4 conditions),35 with each 

dichotomy corresponding to a task variable that could be decoded, we found that most of the 

dichotomies were accurately separated in both CA1 and PFC, suggesting that both regions 

contain a similar amount of decodable variables (Figures S7C and S7D). Together, these 

data reveal that although CA1 and PFC representations shared similar information content of 

the current task, such content was formatted with distinct levels of abstraction in CA1 and 

PFC.
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DISCUSSION

Here, we have identified neural manifold signatures of memory generalization in the 

rat hippocampal-prefrontal circuitry using a spatial navigation task across environments 

with distinct sensory cues. Animals acquired the task significantly faster in the novel 

environment than during de novo learning (Figures 1 and S1) and thus exhibited behavior 

reflecting generalization of remembered task knowledge. During memory generalization, 

we found that the hippocampus remapped and conjunctively linked the task structure with 

current spatial context, whereas PFC did not remap but organized task knowledge in an 

abstract format, which is generalizable to novel spatial contexts (Figure 2) and to variable 

conjunctions relevant to the task rule (Figures 3 and 4).

We note that the generalizable PFC map observed here is broadly consistent with previous 

reports of its task-rule representation, where PFC neurons respond similarly to different 

sensory stimuli associated with the same behavioral outcome.56–58 Our navigational task 

densely samples the space of task variables, rather than using a few pre-defined task states 

as in the previous studies,56–58 and thus reveals the organized cognitive map instantiated 

by a neural manifold in PFC. Further, the distinct geometry of the prefrontal cognitive 

map provides a striking contrast to the exemplar cognitive map in the hippocampus 

for representing episodic details.9 Finally, our results provide neurophysiological support 

to the prevailing theoretical framework regarding the complementary contributions of 

the hippocampus and PFC to memory generalization.5–7 Of note, the complementary 

representations observed here have the capacity to retrieve learned task knowledge in new 

spatial contexts without losing the separability of different contexts. Proposed models with 

similar complementary architectures can optimize the trade-off between separability and 

generalizability in neural computations and thus achieve enhanced flexibility and reduced 

interference in artificial agents.7,25,33,59

The use of the W-maze task is motivated by causal evidence that an intact hippocampal-

prefrontal network is necessary for optimally learning and performing the task.37–39,60 In 

contrast, recent experiments using simple exploratory tasks, such as linear-track running and 

random foraging, showed that PFC remapped, reminiscent of the hippocampus.16,19,30,61 

Notably, this type of behavior without explicit memory requirements does not require 

the hippocampal-prefrontal network.62,63 Together, these results demonstrate that while 

PFC responds to contextual information, the generalizability of the PFC cognitive map 

is task dependent. This dependency is further supported by previous evidence that PFC 

neurons changed their response to similar behaviors across two different tasks in the same 

environment.29,64,65 Therefore, shared visual cues and motor patterns alone are insufficient 

to robustly evoke a generalizable representation of task space in PFC. This idea echoes 

previous studies, which found that cognitive demands and behavioral engagement can 

profoundly change hippocampal and prefrontal spatial representations.29,40,41,66–68 Given 

that the hippocampus provides a major input to PFC69,70 and that hippocampal lesions 

impair the PFC spatial code,61 we postulate that the spatial responses in PFC may be 

passively invoked by hippocampal input when not actively engaged in the behavior, such as 

during spontaneous locomotion, whereas specific task requirements may necessitate further 

neural computations of generalizable task knowledge in PFC.
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In contrast to the distinct representational formats, we found that the representational 

content of current task information is largely shared across the hippocampus and 

PFC, consistent with previous reports of various response types found in both regions, 

including spatially tuned cells (Figure 2),14,16,22,28 trajectory-dependent cells (Figures 2 

and 3),17,22,27,28,52,54 and path-equivalent cells (Figure S5).50–53 Our data also support 

recent studies demonstrating highly distributed encoding of task variables across diverse 

brain areas involved in flexible behavior,71–74 posing the challenge of reconciling highly 

distributed encoding with specialized functions in distinct brain circuits. Here, we bridged 

this gap by revealing an important relationship between coding properties of individual 

neurons and population geometry in the hippocampal-prefrontal circuitry (Figures 3 and 

S6) and demonstrating how distinct representational geometries can be compatible with 

hippocampal and PFC specialized functions. Notably, the PFC representation achieved 

generalization across many task variables (Figure 4) yet did not discard their information 

(Figure S7). This coding mechanism can confer flexibility for readout of task variables 

(Figure S7), in agreement with studies in other species, including humans and non-human 

primates,35,36,55 suggesting that it may be a conserved computational strategy.

Limitations of the study

The present study did not explore the relationship between the dynamics of geometric 

properties of neural manifolds (e.g., CCGP) and behavioral improvement due to the 

limited numbers of different trial types and neurons recorded. Recent developments in 

optical imaging and high-density electrophysiological recordings offer opportunities to 

address this question, and our study provides an ideal foundation to characterize the 

geometric structure of cognitive maps in such data. Also, the effective dimensionality 

of CA1 and PFC population activity remains to be determined. One common strategy 

to measure dimensionality is to apply linear dimensionality reduction methods, such 

as principal-component analysis (PCA), to neural population activity.75,76 While such 

“embedding dimensionality” carries important information about manifold structures, 

it does not correspond to the “intrinsic dimensionality” (i.e., the minimal number of 

latent variables needed to parametrize the manifold).77 Using a non-linear dimensionality 

reduction method, a recent study has demonstrated that the hippocampal manifold embedded 

in 4 dimensions of the non-linear space needed a much larger number of dimensions 

when applying PCA (~29 dimensions).26 Therefore, accurately estimating the dimensions 

of CA1 and PFC manifolds remains a challenge. Finally, our results open questions not 

addressed here regarding the circuit mechanisms that govern transformation of hippocampal-

PFC representations underlying memory generalization. The hippocampal-PFC interaction 

involves a broad network via multiple direct and indirect pathways,69,70 and their functional 

connectivity is modulated by multiple network patterns, including theta oscillations and 

sharp-wave ripples.18,78 Unraveling the roles of these pathways and network patterns in 

memory generalization is an important avenue for future studies.
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STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Dr. Shantanu P. Jadhav 

(shantanu@brandeis.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• Raw electrophysiological and rat behavioral data have been deposited on servers 

at Brandeis University, and are available upon request by contacting the lead 

contact.

• Custom code in MATLAB (R2017a) used for analyses in this study is available 

on GitHub at http://github.com/JadhavLab/GeometricTransformation.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Eight adult male Long-Evans rats (450–550 g, 4–6 months) were used in this study. 

Animals were individually housed and kept on a on a 12-hr regular light/dark cycle. All 

procedures were approved by the Institutional Animal Care and Use Committee at the 

Brandeis University and conformed to US National Institutes of Health guidelines.

METHOD DETAILS

Experimental design—After habituation to daily handling and resting in a high-walled, 

opaque sleep box (~30 × 30 cm), animals were food deprived to 85–90% of their ad 
libitum weight, and pre-trained to run on a linear track (~1-m long) for rewards (sweetened 

evaporated milk).17,22 For experiments on the W-maze (~80 × 80 cm with ~7-cm wide 

tracks), animals were food-deprived and naïve to the W-mazes and the novel experimental 

room (Figure S1A). Animals were rewarded for performing a hippocampal and PFC-

dependent continuous alternation task (Figure 1A, left)37–39: returning to the center well 

after visits to either side well (left or right well; inbound, INL or INR), and choosing the 

opposite side well from the previously visited side when starting from the center (outbound, 

OUTR or OUTL). Animals learned the W-track alternation rule by trial-and-error. Rewards 

were automatically delivered in the three reward wells (left well: L; right well: R; center 

well: C), triggered by crossing of an infrared beam by the animal’s nose. Each W-maze 

session lasted 15–20 mins, and was interleaved with rest sessions in the sleep box placed 

near the W-maze (Figures 1A and S1A). The task performance was estimated using a 

state-space model (Figures 1 and S1).39,84

We collected behavioral and electrophysiological data from five rats. For these animals, 

de novo learning of the W-maze task occurred in one room (Figure S1A) with 8 W-maze 

sessions within a single day.17,22 Three of the five rats were trained for 2 additional days 
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in the same environment (i.e., familiar environment). On a subsequent day after the de 
novo learning, rats were first trained to perform the W-maze task in a novel room for one 

session (denoted as N). In addition to a different size and number of prominent visual 

cues, the novel room incorporated large cue cards with distinct patterns to increase the 

discriminability from the familiar room (Figure S1A). After this novel session, rats ran 

one session in the familiar environment (F), followed by another session in the novel 

environment (N’; Figure 1A).

To ensure that animals can remember and discriminate the two environments, we analyzed 

the behavioral data of another three rats from a previous experiment23,85 (Figure 1C). These 

animals were well-trained for the W-maze task in one environment for 5 days. Subsequently, 

for two further days, they ran one session in the familiar environment first, and then one 

session in the novel environment each day, and thus experienced a test sequence as F-N-F’-

N’.

Recording procedures—After linear-track pretraining, animals were implanted with 

a multi-tetrode drive containing 32–64 independently moveable tetrodes targeting dorsal 

hippocampal region CA1 (−3.6 mm AP and 2.2 mm ML) and medial PFC (+3.0 mm AP 

and 0.7 mm ML), both in the right hemisphere (for 32-tetrode drives) or bilaterally (for 

64-tetrode drives). On the days following surgery, hippocampal tetrodes were gradually 

advanced to the desired depths with characteristic EEG patterns (sharp wave polarity, theta 

modulation) and neural firing patterns.17,22,23,85 One tetrode in corpus callosum served as 

the hippocampal reference, and another tetrode in overlying cortical regions with no spiking 

signal served as the prefrontal reference. The reference tetrodes reported voltage relative to 

a ground (GND) screw installed in skull overlying cerebellum. The W-maze experiments 

started at ~21 days after implantation, and electrodes were not moved at least 4 hours before 

and during the experiments. Following the conclusion of the experiments, micro-lesions 

were made through each electrode tip to mark recording locations17,22 (Figures S2A–S2F). 

PFC recordings were primarily in PreLimbic cortex with a smaller number in rostral 

Anterior Cingulate Cortex (Figures S2D–S2F).

Data were collected using a SpikeGadgets data acquisition system (SpikeGadgets LLC). 

Spike data were sampled at 30 kHz and bandpass filtered between 600 Hz and 6 kHz. LFPs 

were sampled at 1.5 kHz and bandpass filtered between 0.5 Hz and 400 Hz. The animal’s 

position and running speed were recorded with an overhead color CCD camera (30 fps) and 

tracked by color LEDs affixed to the headstage. Single units were identified offline using a 

manual clustering method (MatClust, M. P. Karlsson).17,22 Only well isolated neurons with 

stable spiking waveforms (Figures S2G–S2I), and at least 100 spikes in a given session were 

included in analyses. Putative interneurons were identified and excluded based on spike 

width and firing rate criterion.17,22,23,85

QUANTIFICATION AND STATISTICAL ANALYSIS

Spatial fields and linearization—Spatial fields were calculated only during locomotor 

periods (> 5 cm/s; all SWR times excluded) at positions with sufficient occupancy (> 20 

ms). 2D occupancy-normalized rate maps (Figure 2A) was constructed using spike counts 
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and occupancies with 2-cm spatial bins, and smoothed with a 2D Gaussian (σ = 8 cm). To 

construct the 1D linearized rate maps on the 4 trajectory types (INR, OUTL, INL, OUTR), 

animal’s linear positions were first estimated by projecting its actual 2D positions onto 

pre-defined idealized paths along the track, and further classified as belonging to one of the 

four trajectory types.17,22 The linearized rate maps were then calculated with 2-cm spatial 

bins of the linear positions, and smoothened with a 1D Gaussian (s = σ cm; Figure 2B). 

A peak rate ≥ 3 Hz across linear spatial bins was required for a cell to be considered as a 

spatially-tuned cell.

Quantification of single-cell remapping—Single-cell activity on the W-maze was 

compared across different environments. Rate remapping (i.e., change in firing rate) was 

quantified using “rate overlap”, which was calculated by dividing the mean firing rate in 

the less active environment to the mean rate in the more active one11 (Figure S3A, top). 

Global remapping (i.e., change in firing location) was quantified using “spatial similarity”, 

as Pearson correlation (r) between linearized rate maps of two environments (Figure 

S3A, bottom). These values were also compared to the values expected from independent 

distributions, by randomly pairing the activity of a cell in the familiar environment to the 

activity of a different cell in the novel environment (i.e., cell ID shuffles).

Population vector similarity—To measure remapping in population activity, a 

population vector (PV) was constructed as the activity vector of all spatially-tuned cells 

in a certain linear spatial bin. The PV similarity was then defined as the Pearson correlation 

(r) between the PVs across all bins in two environments (Figures 2C, S3B, and S3C).

Ramping response identification—The ramping response was identified using a 

previous established method49 (Figure S4). Session-averaged rate maps were considered 

as having ramping characteristics toward reward if they have a significantly linear regression 

coefficient (Pearson’s, r > 0.5 and p < 0.05) over traversed positions to reward. We only 

included cells with a peak rate ≥ 3 Hz and located within 20 cm around the reward location.

Bayesian decoding—To evaluate neural representations at the ensemble level, Bayesian 

decoding was implemented.17,22 A memoryless Bayesian decoder was built to estimate 

the probability of animals’ position given the observed spikes (Bayesian reconstruction; or 

posterior probability matrix):

P(X, Tr ∣ spikes) = P spikes ∣ X, Tr P X, Tr
P spikes

where X is the set of all linear positions on the track for different trajectory types (i.e., 

Tr, Tr ∈ INR, OUTL, INL, OUTR ), and we assumed a uniform prior probability over X and Tr. 
Assuming that all N cells fired independently and followed a Poisson process:

P(spikes ∣ X, Tr) =
i = 1

N τfi X, Tr spikesie−τfi X, Tr
spikesi!
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where τ is the duration of the time window, fi X, Tr  is the expected firing rate of the i-th 

cell as a function of sampled location X and trajectory type Tr, and spikesi is the number of 

spikes of the i-th cell in a given time window. Therefore, the posterior probability matrix can 

be derived as follows:

P X, Tr ∣ spikes = C ∏
i = 1

N
fi(X, Tr)spikesi e−τ∑i = 1

N fi X, Tr

where C is a normalization constant such that ∑k = 1
4 ∑j = 1

D P xj, trk ∣ spikes = 1 (xj is the j-th 

spatial bin, D is the total number of spatial bins, and trk is the k-th trajectory type).

Specifically, linearized rate maps of neural ensembles in the N’ session were used as 

templates (i.e., f X, Tr ). Spikes were calculated from the population activity in the N or F 

session binned into 200-ms bins (i.e., τ = 200 ms; moving window with 50 ms overlap), and 

was restricted to locomotor periods (> 5 cm/s; locations within 15 cm of the reward well 

were excluded for decoding to prevent contamination from SWR activity). For each time 

bin, the location with maximum decoded probability was compared to the actual position of 

the current trajectory that the animal was at in that bin (Figure 2B, bottom). Decoding error 

was then determined as the linear distance between estimated position and actual position 

(Figures 2E and 2F), and was compared to distributions from shuffling cell identities of rate 

maps in the N′ session (Figure 2E).

Trajectory selective index—To measure the trajectory selectivity of single cells, a 

trajectory selectivity index (SI) was calculated (Figures 3D and 3E) by comparing the mean 

firing rates on the Left- (or L-) vs. Right- (or R-) side trajectories for outbound (OUT, OUTL 

vs. OUTR) and inbound (IN, INL vs. INR), respectively:

SI = FRL − FRR
FRL + FRR

where FRL is the mean firing rate on the L-side trajectory, and FRR is for the R-side 

trajectory. Only cells that had at least one spatial field (peak rate ≥3 Hz) detected on either 

the L- or R-side trajectory were considered, and the rate maps in different sessions were 

analyzed separately.

Path-equivalent coefficient—Path equivalent coefficient of single cells was calculated 

using a previously established method.50 We calculated the Pearson correlation of rate maps 

between two trajectory types. The median of the Pearson correlations across all possible pair 

combinations was reported as path-equivalent coefficient (R; Figure S5).

Characterization of neural manifold—In each region, all spatially-tuned units that 

were active in both environments were pooled across animals to build a pseudo-population 

of neurons (n = 98 CA1 and 171 PFC cells, respectively). For each trajectory type, the 

minimal number of trials (or passes) across animals starting from the first trial in a given 

session was used as the trial number. For each population, single-trial linearized rate map of 
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each cell was calculated and binned at a resolution of 1 cm. Bins with spikes from less than 

5 neurons were discarded. Uniform Manifold Approximation and Projection (UMAP)80,81 

was then run on these n-dimensional data to extract low-dimensional neural manifolds 

(Figures 3J and 3G). The hyperparameters for UMAP were: ‘n_dims’ = 3, ‘metric’ = 

‘cosine’, ‘n_neighbours’ = 50, and ‘min_dist’ = 0.6, similar to previous studies.86,87 To 

compare the neural manifolds between the novel and familiar environment, the UMAP 

transformation calculated for the N’ session was re-applied to the population activity of 

the F session, by applying the fitted N’ UMAP transformation as the ‘template_file’ to the 

‘run_umap’ function in the UMAP MATLAB toolbox81 (Figures 3F and 3G, right).86

The geometric relationship of CA1 and PFC representations was further estimated using 

Euclidean distance in this reduced manifold space (Figures 3H–3J), as well as the original 

n-dimensional state space (Figure S6). In both spaces, distance was computed identically, 

except for the number of dimensions used. The between-trajectory distance was computed 

between the single-trial neural trajectories from two different trajectory types (Figures 3H 

and S6A). For trajectory pairs belong to the same task sequence, the distance between their 

neural states at the same trajectory phase (defined by the distance from the starting point) 

was calculated; similarly, for trajectory pairs on the same spatial side of the W-maze, the 

distance between their neural states at the same spatial location was calculated (Figures 

3I and S6B). Finally, the distance between F and N0 representations was computed as the 

average distance of all pairwise distances of neural states from the same trajectory type and 

location in F and N’ (Figures 3J and S6C). The chance level was estimated by randomly 

shuffling the cell identities of population activity in N’ (Figures 3J and S6C).

Cross-condition generalization performance—The ability of neural manifolds 

to generalize to unseen experimental conditions was estimated using cross-condition 

generalization performance (CCGP).35 For trajectory phase (Figure 4C, top), we first trained 

the decoders n = 4  to classify the early and late phase of 3 out of 4 trajectory types (early 

and late phases defined as 20%-30% and 70%-80% trajectory length from the trajectory 

start, respectively; different phase values yielded similar results), and tested the trained 

decoders on the remaining trajectory type not used for training. Similarly, for task sequence 

(Figure 4C, middle), we first trained the decoders n = 4  to classify the INR-OUTL versus 

INL-OUTR task sequences by holding out two clusters belonging to the same trajectory 

phase of two different OutSeq trajectories, and tested on the held-out conditions. Finally, 

these two types of decoders n = 8  trained with neural activity in the N’ session were tested 

with neural activity in the F session (Figure 4C, bottom).

The CCGP was further compared with traditional cross-validation decoders. For cross-

validation decoders, we considered all 35 dichotomies that divide the 8 clusters in Figures 

4A and 4B into 2 groups of 4 conditions.35 For each dichotomy, the binary decoder was 

built using a 4-fold cross-validation, of which data samples of all conditions were split into 

4 groups with one group as the test data (Figures S7C and S7D). For all the binary decoders, 

we used a C-Support Vector Machine (SVM) with a linear kernel through the libsvm 

library.79 Significance was estimated using permutation of trial labels (n = 1,000 times).
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We also tested the CCGP against a geometric random model that destroys the geometrical 

structure but preserves within-condition noise structure in the data (Figures S7A and S7B), 

as in previous studies.35,55 To achieve this, the noise clouds (the trial-by-trial firing rates of 

each condition) were rotated by permuting the axes of the firing rate space, and we repeated 

this procedure for each cluster separately (Figures S7A, left). We then computed the CCGP 

as described above on these moved clusters to obtain a null model CCGP value (Figures 

S7A, right), and repeated this 100 times to get a null distribution (Figures S7B).

Statistical analysis—Data analysis was performed using custom routines in MATLAB 

(MathWorks) and GraphPad Prism 9 (GraphPad Software). We used nonparametric and 

two-tailed tests for statistical comparisons throughout the paper, unless otherwise noted. We 

used ANOVA for multiple comparisons of Gaussian distributions, followed by a Tukey’s 

test, when appropriate. For non-Gaussian distributions of multiple groups, we used Kruskal-

Wallis test with post hoc analysis performed using a Dunn’s test. p < 0.05 was considered 

the cutoff for statistical significance. Boxplots show median, 75th (box), and 90th (whiskers) 

percentile, unless indicated otherwise. All heat maps were obtained using perceptually 

uniform colormaps from MatPlotLib.83,82 No statistical methods were used to pre-determine 

sample sizes, but our sample sizes are similar to those generally employed in the field.
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Highlights

• Rats generalize knowledge of a hippocampal-PFC-dependent task to novel 

environments

• As rules transfer across contexts, CA1 remaps, but PFC representations 

generalize

• CA1 and PFC neural manifolds encode spatial cognitive maps with distinct 

geometries

• PFC manifolds organize task knowledge in an abstract, generalizable format
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Figure 1. Prior knowledge facilitates learning in novel environment
(A) Experimental design.

(B and C) After de novo learning, rats n = 5  acquired the task more rapidly in the novel 

environment (novel learning).

(B) Proportion correct for the first 50 trials during de novo vs. novel learning. Each pair 

of dashed (de novo learning) and solid (novel learning) lines represents an animal (color 

coded).

(C) Proportion correct against session number (data points for individual animals; repeated-

measures ANOVA with Tukey’s post hoc, F = 40.48, n.s., p > 0.75, ***p = 0.0002, **p = 

0.0045). De novo (session 1), the first W-track session of de novo learning; de novo (final), 

final performance of de novo learning before N-F-N′ sessions. Horizontal dashed line: 

chance level.

See also Figure S1.
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Figure 2. Hippocampus shows global remapping, whereas prefrontal spatial representations 
generalize across environments
(A) 2D rate maps of 4 CA1 and 4 PFC cells simultaneously recorded across environments 

(N, F, and N′).
(B) Top two rows: normalized rate maps on 2-m-long linearized trajectories of all spatial-

tuned neurons tracked over environments, sorted by peak activity in N′ (left 3 columns) and 

in F (right). Bottom two rows: corresponding confusion matrices between true and decoded 

positions (with leave-one-out cross-validation; STAR Methods), where diagonal elements 

represent decoding accuracy.

(C and D) Population vector (PV) similarity across novel (N-N′; light gray) and familiar-

novel (F-N′; blue) environments. Dashed vertical line on histogram: median. Each circle 

in (D) is for an animal (repeated-measures ANOVA with Tukey’s post hoc, F = 83.24, n.s., 

p = 0.41, *p = 0.01).

(E) Decoding error using spatial maps from N′. Kruskal-Wallis test with Dunn’s post hoc 

comparing N and F, n.s., p > 0.99, ****p < 0.0001. p values above each box were computed 

by comparing with its cell-ID shuffles (shaded boxes; n.s., p = 0.14, **p = 0.0023, ****p 

< 0.0001, Wilcoxon paired test). Box plots show median, 75th (box), and 90th (whiskers) 

percentile.

(F) Trial-by-trial decoding error during environment switch (N to F; median ± SEMs; line, 

sigmoid fit). Trial −1 vs. 1: p(CA1) = 0.038, and p(PFC) > 0.99, Kruskal-Wallis test with 

Dunn’s post hoc.

See also Figures S2–S4.
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Figure 3. Distinct geometric representations of task space in CA1 and PFC
(A–E) CA1 and PFC neurons show distinct task-sequence selectivity.

(A and B) Firing fields on different trajectories of example (A) CA1 and (B) PFC cells. Top: 

2D rate maps on each of 4 trajectories in the rewarded order (INR, OUTL, INL, OUTR, color 

coded) in N′ and F (all locations visited in a given session in gray). Bottom: corresponding 

rate maps on linearized trajectories (color-coded arrowheads indicate trajectory start and 

end).

(C) Linearized rate maps on the 4 trajectories of all spatially tuned neurons, sorted by 

selectivity index of inbound trajectories (i.e., SI(IN); INL vs. INR). The vertical lines 

separate each trajectory type. Horizontal line with a red arrowhead: division between cell 

samples with SI(IN) < 0 (above; selective to INR) vs.> 0 (below; selective to INL).

(D) Selectivity index of inbound against outbound trajectories (SI(IN) vs. SI(OUT); PFC, 

r = − 0.5, ****p = 1.35e16; CA1, r = 0.56, ****p = 1.39e11; Pearson correlation).

(E) Selectivity index in familiar against novel environment (PFC, r = 0.49, ****p = 2.77e–

14; CA1, r = 0.12, n.s., p = 0.22; Pearson correlation). Dark gray: SI(IN); green: SI(OUT). 

Each dot is a cell sample, and lines show least-squares linear fits in (D) and (E).

(F and G) 3D unsupervised embeddings of neural manifolds using UMAP in (F) CA1 

and (G) PFC. Each dot represents the populational neural state (same 98 and 171 cells 

for CA1 and PFC, respectively) at one spatial position of a single trajectory pass (color 

coded by trajectory types and phases). Arrow-headed lines on manifolds schematically 

illustrate direction of motion along trajectory phases (from start to end). Left and middle: 

two different views of the manifold from the N′ session. Right: embeddings of population 

activity from F, guided by its template from N′ (STAR Methods).
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(H) Distance between pair of trajectories in manifold. InSeq, pair of trajectories in a correct 

task sequence (INR and OUTL or INL and OUTR); OutSeq, pair of trajectories out of the 

sequence (INR and OUTR or INL and OUTL).

(I) Distance between pair of neural states at same physical spatial locations or trajectory 

phases (traj-phases) in manifold.

(J) Distance between F and N′ neural manifolds. Shuffle: cell IDs of N′ activity randomly 

shuffled.

Box plots in (H)–(J) show median, 75th (box), and 90th (whiskers) percentile (rank-sum 

tests, n.s., p = 0.16, ****p < 0.0001).

See also Figures S5 and S6.
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Figure 4. Distinct abstraction in CA1 and PFC representations
(A and B) UMAP embeddings of 8 clusters for early and late trajectory phases of 4 

trajectory types (color coded) in (A) PFC and (B) CA1.

(A) Two different views of PFC clusters shown on top and bottom.

(C) CCGP of example decoding of dichotomies in PFC (left) and CA1 (right). From top 

to bottom: decoding for trajectory phases, task sequences, and environments, respectively 

(STAR Methods). A linear classification was implemented by a “decision hyperplane” 

(blue), trained on a subset of conditions in (A) and (B) (training set, crosses), and divided 

the space into two classes (red or black). CCGP (denoted on top) was then measured as 

how well this classifier generalize to an unseen set of conditions (testing set, circles; STAR 

Methods). Note the good performance on training sets but poor generalization on testing sets 

for CA1 decoding in contrast to high CCGP for PFC.

(D) CCGP for trajectory phases (circles), task sequences (triangles), and environments 

(diamonds; horizontal lines, median). Early, early trajectory phase; late, late trajectory 

phase. Note that all dichotomies can be accurately decoded in PFC (****p < 0.001) but 

not in CA1 (n.s., p > 0.05, trial-label permutation test). Boxplots are for trial-label shuffles 

(n = 1,000 times) and show median, interquartile range (box), and min-max (whiskers).

See also Figure S7.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Cresyl Violet Acros Organics Cat#: AC229630050

Formaldehyde Fisher Cat#: 50–00–0,67561,7732–18–5

Isoflurane Patterson Veterinary Cat#: 07–806–3204

Ketamine Patterson Veterinary Cat#: 07–803–6637

Xylazine Patterson Veterinary Cat#: 07–808–1947

Atropine Patterson Veterinary Cat#: 07–869–6061

Bupivacaine Patterson Veterinary Cat#: 07–890–4881

Beuthanasia-D Patterson Veterinary Cat#: 07–807-3963

Sucrose Sigma-Aldrich Cat#: S8501–5KG

Experimental models: Organisms/strains

Rat: Long Evans Charles River Cat#: Crl:LE 006; RRID: RGD_2308852

Software and algorithms

MATLAB 2017a Mathworks, MA RRID: SCR_001622

Trodes SpikeGadgets http://www.spikegadgets.com

Matclust Mattias P. Karlsson https://www.mathworks.com/matlabcentral/fileexchange/39663-
matclust, V1.7

Libsvm Chang and Lin 201179 https://www.csie.ntu.edu.tw/~cjlin/libsvm/, V3.12

Uniform Manifold Approximation and 
Projection (UMAP)

McInnes et al., 201880;
Meehan et al., 202281

https://www.mathworks.com/matlabcentral/fileexchange/71902-
uniform-manifold-approximation-and-projection-umap, V4.2.1

MatPlotLib Cobeldick, 202282;
Nunez et al., 201883

https://www.mathworks.com/matlabcentral/fileexchange/62729-
matplotlib-perceptually-uniform-colormaps, V2.1.3

Prism 9 GraphPad Software RRID: SCR_002798

Other

128 Channel electrophysiology data 
acquisition system

SpikeGadgets http://www.spikegadgets.com

12.7 μm NiCr tetrode wire Sandvik Cat#: PX000004
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