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ABSTRACT
Introduction  Gestational diabetes mellitus (GDM) is 
underdiagnosed in Mexico. Early GDM risk stratification 
through prediction modeling is expected to improve 
preventative care. We developed a GDM risk assessment 
model that integrates both genetic and clinical variables.
Research design and methods  Data from pregnant 
Mexican women enrolled in the ‘Cuido mi Embarazo’ 
(CME) cohort were used for development (107 cases, 
469 controls) and data from the ‘Mónica Pretelini 
Sáenz’ Maternal Perinatal Hospital (HMPMPS) cohort 
were used for external validation (32 cases, 199 
controls). A 2-hour oral glucose tolerance test (OGTT) 
with 75 g glucose performed at 24–28 gestational 
weeks was used to diagnose GDM. A total of 114 
single-nucleotide polymorphisms (SNPs) with reported 
predictive power were selected for evaluation. Blood 
samples collected during the OGTT were used for SNP 
analysis. The CME cohort was randomly divided into 
training (70% of the cohort) and testing datasets (30% 
of the cohort). The training dataset was divided into 
10 groups, 9 to build the predictive model and 1 for 
validation. The model was further validated using the 
testing dataset and the HMPMPS cohort.
Results  Nineteen attributes (14 SNPs and 5 clinical 
variables) were significantly associated with the outcome; 
11 SNPs and 4 clinical variables were included in the GDM 
prediction regression model and applied to the training 
dataset. The algorithm was highly predictive, with an area 
under the curve (AUC) of 0.7507, 79% sensitivity, and 
71% specificity and adequately powered to discriminate 
between cases and controls. On further validation, the 
training dataset and HMPMPS cohort had AUCs of 0.8256 
and 0.8001, respectively.
Conclusions  We developed a predictive model using both 
genetic and clinical factors to identify Mexican women at 
risk of developing GDM. These findings may contribute to a 
greater understanding of metabolic functions that underlie 
elevated GDM risk and support personalized patient 
recommendations.

INTRODUCTION
Gestational diabetes mellitus (GDM), defined 
as hyperglycemia with onset or first recogni-
tion during pregnancy, is associated with an 
increased risk of pregnancy complications 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Women of Hispanic ancestry have not been ade-
quately represented in datasets investigating genet-
ic associations with gestational diabetes mellitus. 
Given the high incidence of gestational diabetes 
mellitus in Mexico, it is important to have risk as-
sessment tools to identify Mexican women at high 
risk. As such, the integration of both genetic and 
clinical variables may help improve predictability.

WHAT THIS STUDY ADDS
	⇒ This study provides insight into genetic risk factors 
associated with the development of gestational 
diabetes mellitus within the Mexican population. 
We developed a predictive model for gestational 
diabetes mellitus in Mexican women that integrat-
ed genotypic and phenotypic traits. These findings 
contribute to the understanding of the potential met-
abolic functions underlying elevated risk and can 
support further research in this area.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ The development of predictive models that incorpo-
rate both genetic and clinical factors can potentially 
support a movement towards personalized recom-
mendations and treatment for individual patients. 
The use of genomic intelligence-based tools in clin-
ical practice will contribute to advancing diabetes 
precision medicine. Consequently, patients, clinical 
practice, and healthcare systems are expected to 
benefit.
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and adverse perinatal outcomes, including pre-
eclampsia, stillbirth, large for gestational age, neonatal 
hypoglycemia, preterm birth, low Apgar scores, and 
admission to neonatal intensive care.1–3 Fetal exposure 
to diabetes in utero has been linked to macrosomia and 
adiposity in newborns and impaired glucose tolerance 
and obesity in childhood, thereby increasing risks for 
adverse cardiometabolic outcomes later in life.4 5 While 
hyperglycemia commonly resolves post partum, GDM 
can reoccur and is often associated with a subsequent 
diagnosis of type 2 diabetes (T2D) and coronary heart 
disease.2 3 Although the global prevalence of GDM is 
increasing at a concerning rate,6 it varies according to 
population characteristics (eg, maternal age, ancestry, 
and obesity rates) and the criteria used for screening and 
diagnosis.7 In Mexico, the estimated prevalence of GDM 
in 2021 was 11.2%.8 Unfortunately, GDM is detected 
in only about 1% of cases in Mexico, and glucometers 
and glucose strips are generally not available for glucose 
self-monitoring.

Early risk stratification by prediction modeling might 
offer opportunities to improve care for those women at 
high risk of developing GDM. As timely intervention is 
key to preventing adverse outcomes in GDM,9 clinicians 
need simple prediction models that can be used in the 
first trimester of pregnancy. Clinical multivariate GDM 
risk prediction models have been proposed.10–12 However, 
these novel measures of biochemical and clinical markers 
have not been thoroughly examined and the equations 
are complex, making these prediction models difficult to 
use in routine clinical practice.

In contrast to T2D, there are relatively few published 
studies on the genetic susceptibility to GDM, and despite 
the high incidence in Mexico, studies on the genetic 
architecture of GDM in the Mexican population are 
lacking. To our knowledge, only a single study by Huerta-
Chagoya et al13 has provided insight into the genetic 
factors of GDM in Mexican women, confirming that T2D 
and GDM share a common genetic background and 
suggesting that other genetic mechanisms may be in play 
for GDM. Before that, Watanabe et al identified the asso-
ciation between variants in TCF7L2 and GDM in a small 
study of 152 women of Mexican American origin.14

A meta-analysis by Lowe et al15 that included the orig-
inal genome-wide association study (GWAS) of glycemic 
traits in pregnancy in the Hyperglycemia and Adverse 
Pregnancy Outcomes (HAPO) Study, multiple ethnic 
groups from the HAPO Study, and two other pregnancy 
cohorts16 17 has significantly contributed to the identifi-
cation of genetic variants associated with GDM. While 
these studies were significant and their scope was expan-
sive, women of Hispanic ancestry represented <10% of 
the participants. More recently, within the GENetics 
of Diabetes In Pregnancy Consortium, Pervjakova et 
al conducted the largest and most ancestrally diverse 
GWAS meta-analysis for GDM that included a total of 
5485 women with GDM and 347 856 without; of those, 
2.8% were of Hispanic/Latino origin.18 Powe et al19–21 

have also provided insight into the genetic heterogeneity 
among women with GDM. They examined polygenic 
scores for T2D, fasting glucose, fasting insulin, insulin 
secretion, and insulin resistance among women with 
different physiologic subtypes of GDM. Their genotype-
based approach to heterogeneity in GDM suggested that 
genetic data provide both information on GDM risk 
and distinct genetic information pointing to phenotypic 
data.

The Nurses’ Health Study II and the Danish National 
Birth Cohort were used by Ding et al22 to identify eight 
novel genetic variants and create a genetic risk score 
based on those variants. Furthermore, in our genetic 
variant analysis of the Europe-wide vitamin D and life-
style intervention randomized controlled trial, an 
interaction between MTNR1B variants and lifestyle inter-
vention in regard to maternal and neonatal outcomes 
was identified.23

In the study presented here, our aim was to develop 
and validate a risk assessment model to identify Mexican 
women at high risk of GDM, through an algorithm that 
integrates genetic and clinical variables. In this study, we 
used data from the ‘Cuido mi Embarazo’ (CME) cohort, 
which used an oral glucose tolerance test (OGTT) and was 
supplied glucose screening through MIDO Embarazo, a 
module of the Integrated Monitoring for Early Detection 
system (Medición Integrada para la Detección Oportuna, 
MIDO).

METHODS
Study populations
Development cohort: CME cohort
This population included 576 Mexican women from the 
prospective multicenter study CME (research registry no. 
7405). Participants were recruited between May 8, 2019 
and May 18, 2021, from six participating study sites in 
Mexico: three primary healthcare facilities in Hidalgo, 
two in Guanajuato, and one in Mexico City. The CME 
cohort included pregnant women without T2D who were 
<28 gestational weeks and had performed a 2-hour 75 
g OGTT between gestational weeks 24 and 28. Those 
diagnosed with pre-gestational diabetes, had multiple 
pregnancies, or had a previous chronic disease that 
required their pregnancy to be monitored by secondary 
care were excluded. All participants received primary 
antenatal care (standardized prenatal care was offered) 
and fasting plasma and capillary glucose measurements 
were performed at any time during the first 28 weeks of 
gestation.

Information on maternal age, ethnicity, gestational 
week at the time of the OGTT, body mass index (BMI), 
family history of T2D, medical history of GDM, obstetric 
history and parity, gestational weight gain, associated 
comorbidities, and newborn birth weight was collected. 
Baseline characteristics of this cohort are described in 
table 1 and in Martinez-Juarez et al.8
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External validation cohort: ‘Mónica Pretelini Sáenz’ Maternal 
Perinatal Hospital cohort
The ‘Mónica Pretelini Sáenz’ Maternal Perinatal 
Hospital (HMPMPS) cohort included 231 women who 
were recruited by ‘Mónica Pretelini Sáenz’ Maternal 
Perinatal Hospital, Toluca, State of Mexico. Participants 
were recruited between February 1 and September 30, 
2018, and the eligibility criteria for the HMPMPS cohort 
were the same as that of the CME cohort. This study is 
registered in ​ClinicalTrials.​gov (ID: NCT01649167). As 
described in online supplemental material 1, these two 
study cohorts were used to develop and validate an algo-
rithm that could predict the risk of GDM in Mexican 
women during the early stages of pregnancy or before 
pregnancy.

Diagnosis of gestational diabetes
GDM was diagnosed as per the International Associa-
tion of Diabetes and Pregnancy Study Groups criteria.1 A 
2-hour OGTT with 75 g glucose was performed at 24–28 

weeks of gestation. Plasma glucose levels were deter-
mined by the glucose oxidase method using fresh plasma 
samples. A diagnosis of GDM was confirmed if glucose 
levels were abnormal at one of the three time points 
(fasting, or 1 hour or 2 hours post-glucose ingestion). 
The assessment of the GDM outcome was blinded to 
predictors. Similarly, investigators were blinded to GDM 
assessment during predictor assessment.

Clinical variables selection
Maternal age, pre-gestational BMI, family history of 
T2D and previous pregnancies were chosen as the clin-
ical parameters for the model as these parameters have 
been described as strong risk factors and predictors in 
the development of GDM.24–27 Although other clinical 
variables such as glucose measurement have also been 
studied as predictors for the development of GDM,24 we 
selected variables for which information could be easily 
obtained from the initial antenatal care questionnaire 
and that did not require further laboratory testing or 
specialized trained personnel.

Single-nucleotide polymorphism selection
One hundred and fourteen single-nucleotide poly-
morphisms (SNPs) were selected based on their 
predictive power as reported in previously published 
studies.13 16 17 19 22 28–35 Specifically, SNPs were prioritized 
according to the results of a large meta-analysis of GWAS, 
with the assumption that their effects can be extrapolated 
and generalized and that large sample sizes allow solid 
estimations of the true size effect. In addition, significant 
SNPs that were identified in smaller association studies 
were also included. The 114 selected SNPs are listed in 
online supplemental material 2.

SNP genotyping
Genomic DNA was extracted from EDTA-stabilized blood 
samples taken during the OGTT using the Maxwell RSC 
instrument (Promega, Dubendorf, Switzerland). Geno-
typing was performed by iPLEX MassARRAY PCR using 
the Agena platform (Agena Bioscience, San Diego, Cali-
fornia, USA). iPLEX MassARRAY PCR and extension 
primers were designed from sequences containing each 
target SNP and 150 upstream and downstream bases 
with AssayDesign Suite software (http://agenabio.com/​
assay-design-suite-20-software) using the default settings. 
Single-base extension reactions were performed on the 
PCR reactions with the iPLEX Gold Kit (Agena Biosci-
ence) and 0.8 µL of the custom unique variant pool. 
PCR reactions were dispensed onto SpectroChipArrays 
with a Nano dispenser (Agena Bioscience). An Agena 
Bioscience Compact MassArray Spectrometer was used 
to perform matrix-assisted laser desorption/ionization-
time of flight mass spectrometry according to the iPLEX 
Gold Application Guide35 The Typer 4 software package, 
V.4 (Agena Bioscience) was used to analyze the resulting 
spectra, and the composition of the target bases was 
determined from the mass of each extended oligo. These 

Table 1  Baseline characteristics of study participants

Characteristics Cases Controls P value

CME cohort  �   �   �

 � Number of 
participants

107 469  �

 � Age at baseline 
(years)

28.64±6.56 26.06±5.98 <0.001*

 � Pre-pregnancy 
BMI (kg/m2)

28.05±4.76 25.52±4.88 <0.001*

 � Previous GDM 
(yes)

16 (14.95) 2 (0.43) <0.001†

 � Family history of 
T2D (yes)

73 (68.22) 217 (46.27) <0.001‡

 � Previous 
pregnancies (yes)

72 (67.29) 266 (56.72) 0.058‡

HMPMPS cohort  �   �   �

 � Number of 
participants

32 199  �

 � Age at baseline 
(years)

29.13±6.61 25.60±6.72 0.008*

 � Pre-pregnancy 
BMI (kg/m2)

30.67±6.10 25.00±4.54 <0.001*

 � Previous GDM 
(yes)

0 0 –

 � Family history of 
T2D (yes)

25 (78.13) 113 (66.83) 0.037‡

 � Previous 
pregnancies (yes)

27 (84.38) 126 (63.32) 0.033*

Data are presented as n (%) or mean±SD unless otherwise 
indicated.
*P values obtained using Student’s t-test.
†P values obtained using Fisher’s exact test.
‡P values obtained using the Χ2 test.
BMI, body mass index; CME, Cuido mi Embarazo; GDM, 
gestational diabetes mellitus; HMPMPS, 'Mónica Pretelini 
Sáenz' Maternal Perinatal Hospital; T2D, type 2 diabetes.

https://dx.doi.org/10.1136/bmjdrc-2022-003046
https://dx.doi.org/10.1136/bmjdrc-2022-003046
http://agenabio.com/assay-design-suite-20-software
http://agenabio.com/assay-design-suite-20-software
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panels were designed in collaboration with Patia, and 
genotyping was performed using the Agena platform 
located at the Epigenetics and Genotyping Laboratory, 
Central Unit for Research in Medicine, Faculty of Medi-
cine, University of Valencia, Valencia, Spain.

Data quality control
Quality control steps included the exclusion of variables 
with a high absence rate (>30%) to identify attributes 
and samples that did not provide sufficient information. 
The remaining missing data were estimated by the most 
common values of each attribute. The resulting database 
consisted of 576 samples and 139 attributes.

Statistical analysis
We performed a correlation analysis with the aim of 
reducing possible redundancies; the similarity between 
the variables was analyzed by measuring Pearson’s correla-
tion coefficient. The decision was made to consider one 
predictor for each pair/group of highly correlated vari-
ables (>0.90). Therefore, we chose to analyze the attribute 
with the lowest ratio of missing values at the beginning 
of the study. Comparisons between control and case 
samples were conducted using the Χ2 and Fisher’s exact 
test for qualitative data and Student’s t-test for quantita-
tive data (mean±SD). Sample sizes were not calculated or 
confirmed prior to modeling.

The entire cohort was randomly divided into a training 
dataset (70% of the cohort) for algorithm development 
and a testing dataset (30% of the cohort) for validation. 
We trained the prediction model for GDM using a 10-fold 
cross-validation logistic regression. In this analysis, the 
entire cohort was randomly divided into 10 subgroups; 
9 of them were used to build the predictive model and 1 
was used to validate it. The model was then further vali-
dated using the testing dataset (30% of the cohort) and 
the HMPMPS cohort. Of note, the HMPMPS cohort (vali-
dation cohort) differed from the CME cohort in that it 
was a single-center study versus a multicenter study.

All statistical and model calculations were performed 
in Python V.3.6, using the scikit-learn package. To validate 
the performance of the model, a k-fold cross-validation 
procedure was used to estimate the mean and SD of the 
values computed in the loop.

RESULTS
The data quality control process retrieved a total of 107 
cases and 469 controls from the CME cohort. Baseline 
characteristics of study participants are shown in table 1. 
Mean age and BMI were higher in cases than controls 
(age: 28.64 vs 26.06 years, p=0.0003; BMI: 28.05 vs 25.52 
kg/m2, p=0.00000451).

We examined 114 SNPs that were previously associ-
ated with the risk of T2D, GDM, high BMI, and adverse 
pregnancy traits associated with GDM (online supple-
mental material 2). A correlation analysis was performed 
to identify SNPs providing similar information (online 
supplemental materials 3 and 4). The SNPs rs560887 

and rs563694; rs17085593 and rs6235; rs13266634, 
rs11558471, and rs3802177; rs10814916, rs7041847, and 
rs7034200; rs4402960 and rs7651090; rs8050136 and 
rs1421085; and rs1801282 and rs17036328 were shown to 
be highly correlated.

Of the 114 SNPs, 105 provided unique information and 
were used for further analysis. Statistical analysis showed 
that a total of 19 attributes (5 clinical variables and 14 
SNPs) had a significant association (p<0.05) with the 
outcome (online supplemental material 5). Family history 
of T2D and personal history of GDM were selected using 
Χ2 test analysis (p=0.0000656 and p=0.0000000000000714, 
respectively); the other 17 variables were selected using 
Student’s t-test analysis. Data from 70% of the pregnant 
women in the CME cohort, which included 75 cases and 
328 controls with complete SNP genotype and clinical 
information available, were included in the development 
set. Fifteen of the 19 attributes that were significantly 
associated (p<0.05) provided optimal logistic regression 
performance; of those, 11 were SNPs and 4 were clinical 
variables (table 2). Of the 11 SNPs selected by the anal-
ysis, rs1387153 in LOC100128354/MTNR1B, rs4607517 
in GCK, rs10830963 in MTNR1B, rs11715915 in AMT, 
rs340874 in PROX1, rs6048205 in FOXA2, rs16996148 
in CILP2, rs2943634 in IRS1, rs6742799 in RBMS1, and 
rs2745353 in RSPO3 correlated with a diagnosis of GDM 
and rs9379084 in RREB1 correlated with absence of GDM 
diagnosis (table 2). The four clinical attributes selected 
by the analysis were maternal age, pre-gestational BMI, 
family history of T2D, and previous pregnancies (table 2).

We included the 15 selected attributes in a GDM predic-
tion regression model and applied it to the training 
dataset. The algorithm showed high predictive ability 
with an area under the receiver operating curve (AUC) 
of 0.7507, sensitivity of 79%, and specificity of 71%. The 
analysis of predictive values is shown in online supple-
mental material 6. Figure 1 shows violin plots where the 
number of samples in each risk percentage is represented 
in terms of density. The algorithm showed adequate 
power to discriminate between controls and cases, as the 
area with major density in controls (median, 12.35%) 
was smaller than that of the cases (median, 31.20%). The 
prediction model was then internally verified using the 
validation dataset of the CME cohort and externally vali-
dated using the HMPMPS cohort (table 3). The predic-
tion algorithm showed an AUC of 0.8256 in the training 
dataset and of 0.8001 in the HMPMPS cohort.

Finally, we explored the performance of the risk model 
including the 11 genetic variables alone, the 4 clinical 
variables alone, and all 15 variables together. The risk 
algorithm with only SNPs performed better than the risk 
algorithm with only clinical factors (table  4), and the 
robustness of the model increased when all 15 variables 
were included.

To use this model, clinicians can collect data regarding 
clinical variables from patient medical histories at the 
first prenatal examination, and SNP data either through 
the collection of an epithelial buccal swab sample or 

https://dx.doi.org/10.1136/bmjdrc-2022-003046
https://dx.doi.org/10.1136/bmjdrc-2022-003046
https://dx.doi.org/10.1136/bmjdrc-2022-003046
https://dx.doi.org/10.1136/bmjdrc-2022-003046
https://dx.doi.org/10.1136/bmjdrc-2022-003046
https://dx.doi.org/10.1136/bmjdrc-2022-003046
https://dx.doi.org/10.1136/bmjdrc-2022-003046
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peripheral blood followed by DNA genotyping. Once the 
data are entered, the model can be used to determine an 
individual’s risk of developing GDM.

DISCUSSION
We have developed a GDM risk model that can be 
applied during early pregnancy or before pregnancy. 
AUCs obtained during development were similar to those 
obtained after development (0.7507 and 0.8256, respec-
tively), supporting the validation of our model. The 
development of this model is important because early 
detection of women at high risk of GDM could catalyze 
timely intervention with the implementation of lifestyle 

changes prior to week 20 of pregnancy, or preferably 
before week 16, when interventions have been shown to 
be effective.7 36 The algorithm used in our model includes 
11 SNPs and 4 clinical features.

Our study showed that the presence of the G allele at 
rs10830963 in MTNR1B, and the T allele at rs1387153 in 
LOC100128354/MTNR1B are associated with an increased 
risk of GDM. The association of SNPs in MTNR1B with 
fasting glucose and insulin secretion is well established.37 
Melatonin is the primary hormone secreted by the pineal 
gland; it regulates sleep, circadian rhythm, and glucose 
metabolism. MTNR1B is highly expressed in both the 
placenta and pancreatic islets. Lyssenko et al have shown 
that genetic variants in this melatonin receptor correlate 

Table 2  Attributes with optimal logistic regression performance using k-fold cross-validation

Chromosome
(GRCh38.p13) Closest gene Effect allele

Logistic regression
coefficient (β)

Genetic attributes (SNP)

 � rs1387153 chr11:92 940 662 LOC100128354/MTNR1B T 0.4307

 � rs4607517 chr7:44 196 069 GCK A 0.5168

 � rs10830963 chr11:92 975 544 MTNR1B G 0.5167

 � rs11715915 chr3:49 417 897 AMT C 0.7845

 � rs340874 chr1:213 985 913 PROX1 C 0.3014

 � rs6048205 chr20:22 578 963 FOXA2 A 0.323

 � rs9379084 chr6:7 231 610 RREB1 A −0.5717

 � rs16996148 chr19:19 547 663 CILP2 T 0.2868

 � rs2943634 chr2:226 203 364 IRS1 C 0.4524

 � rs6742799 chr2:160 460 949 RBMS1 A 0.7422

 � rs2745353 chr6:127 131 790 RSPO3 T 0.254

Clinical attributes

 � Age – – – 0.0333

 � Pre-gestational BMI – – – 0.1039

 � Family history of T2D – – – 0.4811

 � Previous pregnancies – – – 0.0483

BMI, body mass index; SNP, single-nucleotide polymorphism; T2D, type 2 diabetes.

Figure 1  Violin plots of genetic risk scores distribution in 
cases and controls The distribution of the risk values for the 
control and case groups is displayed.

Table 3  Performance of GDM prediction algorithm in 
development and validation cohorts

Development Validation Validation

Cohort CME 70% CME 30% HMPMPS

No of cases 75 32 32

No of controls 328 141 199

Location Mexico Mexico Mexico

Diagnostic criteria IADPSG IADPSG IADPSG

AUC 0.7507 0.8256 0.8001

AUC, area under the curve; CME, Cuido mi Embarazo; GDM, 
gestational diabetes mellitus; HMPMPS, 'Mónica Pretelini Sáenz' 
Maternal Perinatal Hospital; IADPSG, International Association of 
Diabetes and Pregnancy Study Groups.
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with impaired glucose-stimulated insulin secretion.38 
Furthermore, interactions between variants in MTNR1B, 
GDM risk, and physical activity and healthy eating inter-
ventions in pregnant women have been proposed.22 
MTNR1B regulates circadian rhythmicity and influ-
ences energy metabolism.37 Furthermore, associations 
have been found between relative macronutrient intake, 
higher fasting plasma glucose, short sleep duration (<7 
hours), and MTNR1B genetic variants.39 It has been 
proposed that lower carbohydrate intake and normal 
sleep duration may ameliorate cardiometabolic abnor-
malities conferred by common circadian rhythm-related 
genetic variants.39 In addition, carriers of the CC geno-
type tend to respond more favorably to a hypocaloric diet 
enriched with monounsaturated fats.40 Thus, recommen-
dations regarding diet, particularly for carbohydrate and 
fat consumption, and sleep duration should be empha-
sized to women who are carriers of MTNR1B gene vari-
ants and at high risk of GDM.

Another variant included in our model was rs11715915 
in AMT, a gene that encodes aminomethyltransferase, 
which is a critical component of the glycine cleavage 
system in mitochondria, where energy production 
occurs.41 The breakdown of glycine produces a methyl 
group, which is added to and used by folate. rs11715915 
is located either in the 3’ untranslated region or within 
coding regions of AMT, depending on the transcript, and 
upstream of RHOA (ras homolog family member A).41 
RHOA is a signaling molecule that activates Rho kinase, 
a regulator of insulin transcription that is differentially 
regulated in T2D and thought to play a role in glucose 
homeostasis.42

Our study also identified variants in genes encoding 
transcription factors (FOXA2, PROX1, RBMS1, and 
RREB1) that regulate basic processes in the embryonic 
development of pancreatic beta cells, cell cycle progres-
sion in the pancreas, and insulin response in peripheral 
tissues. FOXA2 encodes the forkhead box protein A2, a 
member of the forkhead class of DNA-binding proteins. 
FOXA2 has been previously identified as a master regu-
lator in pancreatic development and is involved in regu-
lating both the glucose-sensing apparatus and insulin 
release.43 In a study by Yu and Zhong, it was shown that 

the microRNA miR-141, a post-transcriptional regulator 
in the pathophysiology of T2D, may lead to impaired 
glucose-stimulated insulin secretion and beta cell 
proliferation by targeting FOXA2 at the 3’ untranslated 
region; a potential role for the antidiabetic drug piogl-
itazone in regulating the miR-141/FOXA2 axis was also 
identified.44

Another variant of interest identified in our study is the 
C allele at rs340874 in PROX1 (Prospero homeobox 1), 
a transcription factor involved in the embryonic develop-
ment of the pancreas, liver, and nervous system. Carriers 
of the CC genotype have been previously shown to have 
higher non-esterified fatty acid levels after a high-fat meal 
and lower glucose oxidation after a high-carbohydrate 
meal in comparison with subjects who have other PROX1 
genotypes.45 Subjects with the CC variant also had higher 
accumulation of visceral fat and, surprisingly, lower daily 
food consumption.

Additionally, rs6742799, mapping to RBMS1 (RNA 
binding motif, single-stranded interacting protein 1) was 
found to have a significant association with GDM. RBMS1 
is expressed in the placenta and has a possible anti-
inflammatory role. Alvine et al proposed that increased 
expression of placental RBMS1 in obese women may 
serve as an adaptive response to reduce oxidative stress 
in a maternal obesogenic environment.46 Oxidative stress 
is now recognized as playing an essential role in certain 
pregnancy-related disorders such as GDM, pre-eclampsia, 
and intrauterine growth retardation.47 The maternal 
obesity associated with metabolic alterations seems to 
lead to the appearance of an elevated placental oxida-
tive stress, compromising both placental metabolism and 
antioxidant status.48

The A allele at rs9379084 in RREB1 (Ras-responsive 
element binding protein 1) was found to have a protec-
tive effect in our study. RREB1 is a member of zinc finger 
transcription factors and functions both as a transcrip-
tional activator and repressor, and its role in target gene 
regulation may depend on its binding partner and the 
status of epigenetic modifications.49 The cell cycle regu-
lator CDKN2A increases susceptibility to T2D and is 
regulated by RREB1. Furthermore, RREB1 also directly 
promotes the expression of insulin genes.49

Our GDM risk algorithm also included genetic vari-
ants in genes with a signaling function and association 
with insulin resistance (IRS1, RSPO3, CILP2). IRS1 is a 
signaling intermediate downstream of activated cell-
surface insulin receptors.48 RSPO3 encodes R-Spondin-3, 
which regulates Wnt and beta-catenin signaling pathways; 
RSPO3 gene knockdown results in abnormal adipogen-
esis, lipid metabolism, and insulin signaling.49 In addi-
tion, CILP2 encodes cartilage intermediate layer protein 
2, a glycoprotein initially identified in collagen. CILP2 is 
located in the NCAN-CILP2-PBX4 region, an intergenic 
region spanning 300 kb associated with serum choles-
terol, low-density lipoprotein and triglyceride concentra-
tions, cardiovascular disease, and non-alcoholic fatty liver 
disease.50

Table 4  Performance of GDM risk algorithm in 
development and validation sets considering only SNPs, 
only clinical variables, or both

Variables
AUC 
development AUC validation

SNPs only 0.7136 0.7694

Clinical variables 
only

0.6526 0.6824

SNPs+clinical 
variables

0.7507 0.8256

AUC, area under the curve; GDM, gestational diabetes mellitus; 
SNPs, single-nucleotide polymorphisms.
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The 11 SNPs identified in this analysis are located in 
genetic loci that have been reported to participate in 
molecular processes related to fasting glucose (MTNR1B, 
GCK, AMT, PROX1, and FOXA2), insulin resistance 
(CILP2, IRS1, and RBMS1), insulin secretion (MTNR1B), 
and fasting insulin (IRS1). Four of these SNPs have 
previously been associated with T2D (LOC100128354/
MTNR1B, PROX1, CILP2, and RBMS1), while two 
other SNPs have previously been reported in GDM 
(LOC100128354/MTNR1B and RREB1). Overall, this 
initial annotation of potential genetic loci characteristics, 
as reported in the literature, is just an initial investiga-
tion into how genetic variants may contribute to GDM 
susceptibility.

The GDM risk algorithm described in this study also 
included four phenotypic variables: maternal age, pre-
gestational BMI, family history of T2D, and previous 
pregnancies. Each of these is a well-known risk factor 
for GDM. The four phenotypic variables alone yielded 
an AUC of 0.65 and 0.68 in the development and valida-
tion sets, respectively. The 11 SNPs alone yielded respec-
tive AUCs of 0.71 and 0.77. The additive contributions 
of phenotype and genotype increased the overall AUCs 
to a respective 0.75 and 0.83. To our knowledge, this is 
the highest performance for a genotype-informed GDM 
prediction algorithm reported in the literature to date. 
Although the current rise in GDM prevalence is driven 
mainly by changes in lifestyle, complex genetic deter-
minants contribute to the inherent susceptibility of this 
disease. Inclusion of genotype-based susceptibility infor-
mation will support the use of precision medicine, the 
identification of women at high risk of GDM during 
the early stages of pregnancy, and the application of 
personalized preventive interventions. Translation of 
new findings from genetic studies to the clinic is the 
most attractive aspect of genome research. One poten-
tial clinical application is the development of genetically 
informed personalized susceptibility profiles and lifestyle 
recommendations. However, at present, precision medi-
cine has not yet fulfilled such expectations,51 as it requires 
a much-needed process of internal and external valida-
tion and calibrations to target specific populations. It is 
therefore necessary to apply sufficient funding and infra-
structure to promote the transfer of knowledge, such as 
the findings presented herein, to society as a whole.

The strengths of this study include a robust modeling 
strategy for significant attributes, as well as the analysis 
of a carefully selected list of 114 SNPs according to their 
reported predictive value. It is worth noting that we did 
not simply focus on the correlation of each SNP with 
GDM, but rather on the combined effect of the signifi-
cant SNPs. Our analysis yielded both a combination and 
predictive weight of variables that were predictive of the 
population studied. Our study had some limitations. The 
analysis was based on data from two cohorts of women 
and, as such, the results may not be applicable to the 
entire Mexican population. Ancestry markers were also 
not genotyped because our aim was to identify markers 

with a predictive power in the global Mexican popula-
tion; we were not evaluating variants specific to any partic-
ular subethnicity. This, however, could be considered a 
limitation of our study and should be evaluated in future 
analyses. Data regarding patient lifestyle, such as diet 
and sleep duration, which are associated with MTNR1B 
genetic variants, were not collected in this study. Addi-
tionally, the small sample size may have affected the accu-
racy and reliability of the model to an extent. Large-scale 
multicenter studies need to be performed to further 
verify this prediction model for GDM.

CONCLUSIONS
This study demonstrated progress towards adapting 
global findings on genetic variants that predict the risk of 
developing GDM to the Mexican population. In addition 
to having developed a good predictive model with the 
capacity for timely identification of women who require 
intervention and treatment for GDM, this study may 
contribute to the understanding of the potential meta-
bolic functions underlying elevated risk. Translation of 
novel findings from genetic studies to the clinic is the 
most attractive aspect of genome research. One potential 
clinical application for the findings of the present study 
is the development of genetically informed personalized 
susceptibility profiles alongside lifestyle recommenda-
tions. Our findings will potentially support a movement 
towards personalized recommendations and treatments 
for each patient. However, the study of the metabolic 
pathways that underlie GDM susceptibilities is still limited 
and requires additional research to improve the accuracy, 
efficiency, and impact on women’s care.
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