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ABSTRACT
Introduction  Hypoglycaemia is a harmful potential 
complication in people with type 1 diabetes mellitus 
(T1DM) and can be exacerbated in patients receiving 
treatment, such as insulin therapies, by the very 
interventions aiming to achieve optimal blood glucose 
levels. Symptoms can vary greatly, including, but not 
limited to, trembling, palpitations, sweating, dry mouth, 
confusion, seizures, coma, brain damage or even death 
if untreated. A pilot study with healthy (euglycaemic) 
participants previously demonstrated that hypoglycaemia 
can be detected non-invasively with artificial intelligence 
(AI) using physiological signals obtained from wearable 
sensors. This protocol provides a methodological 
description of an observational study for obtaining 
physiological data from people with T1DM. The aim of 
this work is to further improve the previously developed 
AI model and validate its performance for glycaemic 
event detection in people with T1DM. Such a model 
could be suitable for integrating into a continuous, non-
invasive, glucose monitoring system, contributing towards 
improving surveillance and management of blood glucose 
for people with diabetes.
Methods and analysis  This observational study aims to 
recruit 30 patients with T1DM from a diabetes outpatient 
clinic at the University Hospital Coventry and Warwickshire 
for a two-phase study. The first phase involves attending 
an inpatient protocol for up to 36 hours in a calorimetry 
room under controlled conditions, followed by a phase of 
free-living, for up to 3 days, in which participants will go 
about their normal daily activities unrestricted. Throughout 
the study, the participants will wear wearable sensors to 
measure and record physiological signals (eg, ECG and 
continuous glucose monitor). Data collected will be used 
to develop and validate an AI model using state-of-the-art 
deep learning methods.
Ethics and dissemination  This study has received 
ethical approval from National Research Ethics Service 
(ref: 17/NW/0277). The findings will be disseminated 
via peer-reviewed journals and presented at scientific 
conferences.
Trial registration number  NCT05461144.

INTRODUCTION
Type 1 diabetes mellitus (T1DM) is a chronic 
disorder caused by autoimmune damage to 
the insulin-producing pancreatic beta cells, 
leading to elevated blood glucose concen-
tration (hyperglycaemia).1 T1DM requires 
exogenous insulin treatment,2 of which hypo-
glycaemia is a potential side effect.3 The prev-
alence of T1DM globally is 5.9 per 10 000 with 
the incidence of 15 per 100 000 people.4 5 In 
the UK, the prevalence is reported as fifth 
highest with 8.6%, and incidence of T1DM 
is rising 5% every year.5 There is no cure for 
diabetes; therefore, effective management 
can be pivotal in reducing risk of adverse 
events as well as delay the onset of long-term 
complications.6 7

The self-monitoring of blood glucose 
(SMBG) can play a key role in effec-
tive management of diabetes. SMBG can 
empower patients to adhere to lifestyle inter-
ventions, such as changes to diet and exercise 
regimen, as they have access to immediate 
feedback on the effects.8 Active participation 

STRENGTHS AND LIMITATIONS OF THIS STUDY
	⇒ This two-phase study will obtain data in both the 
controlled environment of a metabolic chamber and 
in free-living conditions, overcoming limitations of 
previous studies limited to controlled conditions.

	⇒ The second phase of the protocol has been designed 
with non-compliance in mind in order to determine 
how a model developed in controlled settings works 
with real-world data.

	⇒ This is a single-centre observational study aiming to 
recruit from the local population without discrimina-
tion of characteristics such as sex, ethnicity or race, 
which may limit the generalisability of the results.
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from the patient in their care has been shown to improve 
outcomes such as reducing the risk of diabetic compli-
cations.9 Current methods for glucose monitoring have 
several limitations. The most common method for SMBG 
is an invasive ‘finger-prick test’ in which a small sample 
of blood is collected from the fingertip and analysed by a 
handheld device called a glucometer. This invasive proce-
dure has several documented barriers preventing SMBG 
such as inconvenience, cost and discomfort.10 Moreover, 
the devices and associated consumables are prone to error 
if not operated correctly,11 requiring repeat attempts and 
generating unnecessary waste. Hypoglycaemia typically 
occurs during sleep,12 and those receiving insulin therapy 
are at increased risk due to a combination of factors such 
as impaired counter-regulatory hormone response and 
warning symptoms going unobserved.13 This presents 
an obvious limitation to the effectiveness of an invasive 
‘finger-prick test’ as a tool for SMBG. An alternative to 
‘finger-pricking’ are continuous glucose monitoring 
(CGM) devices, which require a small cannula inserted in 
the top layer of skin to continuously measure glucose in 
the fluid between the cells. They can be described as mini-
mally invasive as after the initial fitting, they are routinely 
worn continuously for up to 14 days. However, despite 
being shown to be a beneficial tool for SMBG, national 
clinical guidelines for the UK do not recommend routine 
use of CGM devices for the management of T1DM due 
to insufficient evidence demonstrating their efficacy and 
cost-effectiveness.14

It has been demonstrated, by this group15 16 and 
others,17–19 that glycaemic events can affect certain 
cardiac characteristics, which can be extracted from read-
ings of the electrical activity of the heart, the ECG. With 
increasing availability of wearable devices for tracking 
physiological signals, studies have been undertaken to 
investigate prediction of blood glucose concentration 
or glycaemic event detection using artificial intelligence 
(AI), by combining data or features extracted from the 
ECG with blood glucose measurements. Such an approach 
would address the need for non-invasive continuous 
blood glucose monitoring. Studies have shown prom-
ising predictive performance based on data collected 
from healthy subjects15 16 20–22 or adolescent patients with 
T1DM.19 23 In a review of techniques for detecting hypo-
glycaemia, Diouri et al note that the use of ECG-based 
techniques has only been investigated in small cohort 
trials, and that the success of such approaches relies on 
further, ideally larger, trials and validation in patients with 
diabetes and cardiac diseases.24

This protocol expands on an initial pilot, results of 
which are published,15 which made opportune use of 
applicable secondary data collected for a separate study25 
on healthy elderly men. The aim of the pilot was to use the 
data to create a personalised AI model for the detection of 
nocturnal hypoglycaemia. The developed and validated 
deep learning model achieved 90% for specificity (ability 
to identify true positives) and sensitivity (ability to identify 
true negatives), which are clinically relevant metrics in 

relation to diagnosis of disease.26 The aim of this protocol 
is to build on this initial work, by obtaining new data to 
validate the technique for people with diabetes and test 
its applicability beyond controlled conditions, to that of 
normal living conditions.

Study objectives
The purpose of this observational study is to acquire 
continuous physiological data from adults with T1DM 
over a period of several days. Data obtained from wear-
able sensors and recorded in diaries to track lifestyle activ-
ities will be used to carry out our primary and secondary 
objectives.

Primary objective
The primary objective of this study is to further develop 
and validate in a new population (T1DM) our previously 
developed AI approaches for non-invasive hypoglycaemia 
detection. We will extract and analyse ECG-derived 
features from the raw signal and determine their relation-
ship with the glycaemic status. State-of-the-art algorithms 
will be used to create a mathematical mapping from the 
ECG-derived features to the glycaemic status.

Secondary objective
To examine the impact of physical activity and diet on 
glycaemic events and incorporate relevant features into 
the model.

METHODS AND ANALYSIS
Study setting
This two-phase observational study will be conducted at 
the Human Metabolism Research Unit (HMRU) and 
in free-living conditions. During phase 1, the partici-
pants attend an inpatient protocol at University Hospital 
Coventry and Warwickshire (UHCW) in a calorimetry 
room for up to 36 hours. The calorimetry room is a 
controlled environment, which allows for precise regu-
lation of parameters such as ambient temperature, air 
pressure, humidity and subject behaviour enabling us to 
obtain high-quality baseline ECG and glucose data from 
the wearable sensors. In phase 2, the same sensors will 
be used to collect data under free-living conditions, for 
a period of up to 3 days, during which the participants 
are free to go about their normal daily activities without 
restriction. Participants will be asked to complete diaries 
for daily activity, food intake and sleep.

Inclusion and exclusion criteria
The study will be open to all adult individuals living inde-
pendently with T1DM who are comfortable with a stay in 
a calorimetry room. The inclusion and exclusion criteria 
are summarised in box 1.

Enrolment procedure
Participants will be recruited from the Warwickshire 
Institute for the Study of Diabetes, Endocrinology, and 
Metabolism Clinic at UHCW. We aim to recruit up to 30 
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adult patients with T1DM who may enrol in either or both 
phases of the study. The process of identifying poten-
tial participants began in September 2022 and the first 
session took place in December 2022. Participant recruit-
ment will be an ongoing process, expected to conclude in 
September 2023. All participants will receive a participant 
information sheet and written informed consent will be 
obtained.

Sample size
As this is an observational study, an exact sample size calcu-
lation is not possible. A target of 30 participants will be 
enrolled, based on a pragmatic approach, which ensures 
sufficient data are available for analysis. Full participation 
in the protocol will yield 108 hours of continuous data 
per participant. We aim to capture the daily blood glucose 
fluctuations known as glycaemic variability,27 a feature of 
impaired glucose metabolism. However, it is not possible 
to anticipate how many hypoglycaemic episodes will be 
recorded. ECG data, labelled with corresponding glucose 
concentration, will be analysed in excerpts of variable 
length from individual heartbeats (cardiac cycles) to 
several minutes, resulting in a large sample size.

Study protocol
Calorimetry room
The participant will stay in the calorimetry room for up to 
36 hours, during which there will be set times for meals, 
light exercise and rest. Meals will be provided with known 
total energy and macronutrient content. Water will be 
provided ad libitum. While in the calorimetry room, wear-
able sensors will record physiological data continuously.

Other activities will be performed during this time, 
specifically: (a) up to 12 serial blood samples of 30 mL will 
be obtained from a peripheral venous catheter inserted at 

the beginning of phase 1 to measure venous glucose and 
insulin concentration, (b) finger-prick blood samples will 
be taken periodically for capillary glucose measurements, 
(c) up to 12 saliva samples will be taken to analyse salivary 
concentration of cortisol and melatonin, (d) all urine will 
be collected as voided for protein oxidation analysis, (e) 
movement and activity will be assessed by motion sensors, 
(f) simple questionnaires will be used to measure food 
intake and activity as well as subjective aspects such as 
appetite, satiety and wellness, and (g) daytime blood pres-
sure will be monitored using an ambulatory blood pres-
sure monitor (hourly readings).

Free-living
While free-living, the participant will continue to wear the 
monitoring devices to record ECG and glucose concen-
tration. If tolerated, participants will also be fitted with an 
ambulatory blood pressure monitor for the first 24 hours 
of the free-living phase. Instructions will be provided on 
how to affix and operate the devices. During this time, 
participants will also be required to keep brief diaries 
detailing physical activity, food intake and sleep. The 
first is a daily activity diary, to be completed at the end of 
each day, detailing: any device removal and replacement, 
physical activity, food intake, alcohol intake and caffeine 
intake. The second is a standardised sleep diary, the 
Consensus Sleep Diary-M,28 to be completed on waking 
in the morning.

Devices
Continuous glucose monitoring
Continuous glucose levels will be measured using a Free-
Style Libre 2 flash glucose monitoring system, which 
can be worn for up to 14 days. Although the sensor is 
sampling continuously, the glucose concentration is 
reported in 15-minute intervals. The sensor can store data 
for a period of 8 hours. As such, data will be extracted at 
regular intervals using a smartphone preconfigured with 
the companion application. The sensor is water resistant 
and can be used while bathing, showering, swimming or 
exercising, and is worn on the back of the upper arm. The 
device has been evaluated for accuracy and user experi-
ence and found to have been generally well received by 
patients with T1DM who used it for 10–14 days.29

ECG
Medtronic Zephyr BioPatch is a CE-marked device, indi-
cating that the product complies with European Union 
safety, health and environmental requirements, which 
operates across one lead within an ECG amplitude range 
between 0.25 and 15 mV, with a sampling frequency of 
250 Hz. The device will be affixed to the wearer’s skin via 
two electrodes placed in the centre of the chest. It can 
also be worn in a secondary configuration attached to a 
fabric harness, which is worn across the chest if the elec-
trodes are not tolerated. The Zephyr BioPatch also has 
additional sensors to record physiological parameters 
such as activity levels, posture and breathing rate, which 

Box 1  Inclusion and exclusion criteria

Inclusion criteria
	⇒ Aged 18 years or older.
	⇒ Without acute illness or ongoing clinical investigation.
	⇒ Participants with an ongoing medical condition will only be included 
after detailed consultation with clinical and dietetics members of 
the team.

Exclusion criteria
	⇒ Children (under 18 years).
	⇒ Any adult who lacks decisional capacity.
	⇒ Claustrophobic and/or isolophobic patients, or those with needle 
phobia.

	⇒ Individuals who have undertaken recent abnormal exercise, radia-
tion exposure within the preceding 24 hours of entering the whole-
body calorimeter and feeling unwell in any way.

	⇒ Any medical/endocrine problem that could affect energy expendi-
ture (eg, thyroid problems, Cushing’s syndrome).

	⇒ Chronic inflammatory disorders like rheumatoid arthritis, or long-
term use of steroids or other immunomodulators like ciclosporin, 
azathioprine and beta blockers.

	⇒ Currently actively losing weight.
	⇒ Depression or any psychiatric illness.
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are all reported at 1 Hz.30 The device will be removed 
before bathing, showering or swimming, and reaffixed 
afterwards. The battery is rated for 35 hours of continual 
use. Each participant will be provided with fully charged 
devices for the free-living phase of the study.

Data management
All data collected are owned by the UHCW National 
Health Service (NHS) Trust. All electronic data, physio-
logical or otherwise, generated as part of this study will be 
anonymised and stored in the HMRU database on secure 
servers and backed up and protected in accordance with 
NHS guidelines. Anonymised data will be made available 
to researchers for analysis under an Institutional Data 
Sharing Agreement between the UHCW and Univer-
sity of Warwick. Data will be extracted from the devices, 
anonymised, stored and made available for analysis when 
the participant has concluded the protocol.

Data analysis and modelling
Data processing
The effect of glycaemic events on the ECG signals will 
be examined. It is anticipated that ECG signals will be 
affected by noise and artefacts due to body movement or 
heavy respiration. Therefore, we will apply preprocessing 
methods such as baseline wander removal to the raw signal 
to remove low-frequency noise. We will then identify indi-
vidual heartbeats in the ECG and detect fiducial points 
using our ECG segmentation tool,31 which has been used 
in a recent study for cardiovascular disease detection.32 
Heartbeats will then be grouped into 15-minute excerpts, 
corresponding to the sampling of the CGM, and anno-
tated with the glycaemic state (ie, hypoglycaemic, normal, 
hyperglycaemic) according to the thresholds defined in 
table 1. Due to the lower sample frequency of the CGM, 
we will perform linear interpolation to estimate glucose 
measurements at every second.

Data analysis
Data will be obtained from several days of continuous 
physiological monitoring of participants. During analysis, 
the data will be divided into smaller excerpts such as 1, 
2 or 5 min intervals. In addition, beat-level ECG samples 
will be analysed; therefore, the total number of samples 
available during analysis is ambiguous.

Characteristics of an ECG can be represented by heart 
rate variability (HRV) parameters and can be categorised 
into time-domain features, frequency-domain features 
and non-linear features.33 We aim to use physiological 
signal processing packages such as NeuroKit234 and 
HeartPy35 to determine these features. Furthermore, we 
aim to determine ECG beat parameters, which include 
length and slope among the fiducial points (P, Q, R, S 
and T). We will perform statistical tests to determine 
the statistical significance of different HRV features and 
ECG morphology parameters among different glycaemic 
values to determine which parameters are associated with 
hypoglycaemia.

Covariates
The autonomic nervous system is responsible for main-
taining homeostasis and regulates processes such as 
blood pressure,36 digestion,37 metabolism38 and circadian 
rhythm,39 all of which may affect cardiac function and 
show as changes in the ECG morphology.40–43 Addition-
ally, exercise can affect the QT interval, that is the ECG 
section representing ventricular depolarisation, due to 
exercise-induced autonomic response.44 During phase 1 
of the study, daytime blood pressure will be monitored, 
and the calorific value and macronutrient composition 
of meals will be recorded. Additionally, exercise sessions 
will be scheduled throughout the phase. Throughout the 
free-living phase, all meals, exercise duration and inten-
sity, and sleep times will be recorded by the participant. 
The data collected via this protocol enable us to examine 
how the covariates relate to the outcome of interest, that 
is, the glycaemic status, by performing statistical tests 
such as analysis of variance.45 The recording of meal-
times, exercise and sleep enables the data to be analysed 
during distinct periods of interest such as post-exercise or 
postprandial.

Data modelling
The inherent part of the project is to develop AI models 
for detecting glycaemic events and inferring them with 
physical activity and diet. The state-of-the-art AI models 
vary from traditional machine learning models (such 
as Support Vector Machines, Decision Trees, etc) to 
advanced deep learning-based models.46 Traditional 
machine learning models have the capability to train 
static features for the development of explanatory 
models, whereas deep learning models can train raw ECG 
signals based on spatial and temporal context. The deep 
learning models will be built upon earlier work devel-
oped for healthy subjects.15 We aim to develop and vali-
date hypoglycaemia detection models that incorporate 
lifestyle trends such as activity levels and sleep patterns 
using metrics provided by the sensors and reported in 
the diaries. For a model to be clinically useful, it should 
demonstrate generalisability. Therefore, we will test 
the model on unseen data using a subject-wise cross-
validation approach.47

Table 1  Glycaemic event thresholds for people with 
T1DM51–57

Glycaemic event
Blood glucose 
concentration (mmol/L)

Severe hypoglycaemia <2.8

Hypoglycaemia >2.8 and <3.9

Euglycaemia >3.9 and <11.1

Hyperglycaemia >11.1 and <13.9

Severe hyperglycaemia >13.9

T1DM, type 1 diabetes mellitus.



5Cisuelo O, et al. BMJ Open 2023;13:e067899. doi:10.1136/bmjopen-2022-067899

Open access

Patient and public involvement
No formal patient and public involvement (PPI) group 
was convened for this study; however, phase 1 is a standard 
protocol used at the HMRU and has been continually 
developed with PPI for over 10 years. The methodology 
using a single-lead wearable ECG device and CGM was 
discussed and reviewed with participants for a previous 
study investigating the effects of resistance exercise 
and protein supplementation on sarcopenia in healthy 
older men (​ClinicalTrials.​gov Registry: NCT03299972). 
The PPI consists of informal, non-scripted interviews 
with members of the public post-study via the UHCW 
PPI forum. Depending on the results obtained, PPI 
groups may be approached to discuss non-scientific 
dissemination.

DISCUSSION
The primary objective of this observational study is to 
obtain physiological data from people with T1DM using 
non-invasive wearable sensors to validate and further 
develop an AI model for automated detection of hypo-
glycaemia. The initial model15 was developed using data 
from healthy individuals and the results determined that 
the personalised classifiers based on deep learning algo-
rithms can reliably perform automatic detection of hypo-
glycaemic events using features extracted from the ECG 
waveform recorded with wearable devices. This study is 
designed to improve the performance and robustness of 
this AI model for use in a population with T1DM. Addi-
tionally, as a secondary outcome, this study will examine 
impact of lifestyle habits such as exercise, diet and sleep 
as predictors in the model.

The study will add to the body of evidence evaluating 
AI for use in the detection of glycaemic events (eg, hypo-
glycaemia) in free-living conditions. Current efforts in 
the literature have been limited by small sample sizes,48 
healthy subject populations16 and data originating from 
highly controlled experimental settings.49 This study 
protocol has been developed to address the gaps of the 
existing literature. As such, the strengths of this study 
design are that data are collected from participants with 
diabetes, both in controlled and free-living settings. An 
additional strength of this protocol is that it has been 
designed with non-compliance in mind. The first phase 
will take place in a metabolic chamber where the activi-
ties of the participants and the operation of the wearable 
sensors are prescriptive and supervised. This enables us to 
obtain high-quality baseline data. The second phase will 
take place in free-living conditions where the participants 
go about their normal daily activities unencumbered by 
the wearable sensors, providing real-life data. During the 
free-living phase, a level of non-compliance and variance 
is desirable in order to determine how our analysis and 
model work with real-world data. Non-compliance with 
the protocol will not exclude the participant from inclu-
sion in the analysis. Any deviations from the protocol 
will be noted. Participation in both phases of the study 

is not a requirement; therefore, we are likely to obtain 
different number of samples for each participant. We 
will take a pragmatic approach and work with the data 
available at the end of the study. All analyses will report 
the number of samples used and if excerpts of data have 
been excluded and for what reason. Our planned anal-
ysis will segment the continuous physiological data into 
smaller excerpts of variable length, yielding a sufficient 
sample size for the training algorithm to discover relevant 
features in the data.

A potential limitation of this protocol is that during 
the free-living phase of the study, participants will be 
required to extract data from the CGM at least once every 
8 hours. They will also have to remove and reattach the 
ECG device when engaging in water-based activities or 
exchanging the device for a new fully charged one. This 
introduces scenarios with the possibility of missing data 
such as if a CGM scan is missed, the ECG device is not 
changed when the battery is depleted or it is not correctly 
activated. To mitigate this, participants will be provided 
with instructions and a demonstration as well as an infor-
mation sheet. A member of the research team will also 
be contactable throughout if further assistance is needed.

To our knowledge, no studies have attempted to 
develop a glycaemic event detection model for people 
with T1DM using deep learning with raw single-lead ECG 
signals. This study is being run complementary and in 
parallel to another involving paediatrics with T1DM.50 
In our planned analysis, we will investigate changes in 
the ECG morphology and other features derived from 
the ECG signal with respect to glycaemic status. A novel 
aspect of the analysis will be the inclusion of additional 
features such as activity levels, mealtimes and composi-
tion, and sleep patterns.

Non-invasive monitoring of blood glucose and 
glycaemic event detection can potentially eliminate the 
need for finger-pricking. The development of an accu-
rate and robust model for the non-invasive detection 
of abnormal excursions of blood glucose is pivotal for 
efficient management of metabolic disorders such as 
diabetes, drastically reducing discomfort, costs and waste 
associated with current invasive methods to measure 
blood glucose concentration. A continuous non-invasive 
blood glucose monitoring solution could help to over-
come barriers and limitations of traditional methods, 
thereby increasing adherence to self-management proto-
cols leading to improved outcomes, quality of life and 
reduced incidence of complications.

Ethics and dissemination
This study has received ethical approval from the Research 
Ethics Service (ref: 17/NW/0277). It is anticipated that 
the scientific findings of the study will be disseminated via 
presentation at national or international conferences and 
through publication in peer-reviewed scientific journals.
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