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ABSTRACT

Here we introduce the ‘interaction generality’
measure, a new method for computationally
assessing the reliability of protein—protein interactions
obtained in biological experiments. This measure is
basically the number of proteins involved in a given
interaction and also adopts the idea that interactions
observed in a complicated interaction network are
likely to be true positives. Using a group of yeast
protein—protein interactions identified in various
biological experiments, we show that interactions
with low generalities are more likely to be reproducible
in other independent assays. We constructed more
reliable networks by eliminating interactions whose
generalities were above a particular threshold. The
rate of interactions with common cellular roles
increased from 63% in the unadjusted estimates to
79% in the refined networks. As a result, the rate of
cross-talk between proteins with different cellular
roles decreased, enabling very clear predictions of
the functions of some unknown proteins. The results
suggest that the interaction generality measure will
make interaction data more useful in all organisms
and may yield insights into the biological roles of the
proteins studied.

INTRODUCTION

As numerous complete cDNA and whole genome sequences
become available (1,2), global analyses of gene and protein
functions will become increasingly important. Particularly
valuable will be analyses of proteins that play pivotal roles in
biological phenomena in which the physiological interactions
of many proteins are involved in the construction of biological
pathways, such as metabolic and signal transduction pathways.
Therefore, identifying reliable protein—protein interactions is
perhaps one of the most useful approaches to uncover the
function of genes and proteins (3,4).

Several computational methods to predict protein—protein
interactions have been proposed (5-12). The results of these
approaches may be useful, although the accuracy of the predictions
is somewhat limited. Experimental methods for screening
protein—protein interactions include phage display, affinity

chromatography and co-immunoprecipitation (13). Recently,
the two-hybrid method has been widely used to perform high
throughput genome-wide screening of protein—protein inter-
actions in yeast and Caenorhabditis elegans, as well as higher
organisms such as mouse (14—17). In particular, comprehensive
interaction assays using yeast genes have been carried out by
two independent groups (14,16). Thus, thousands of
experimentally identified protein—protein interactions are
accumulating.

Uetz et al. (14) and Ito et al. (16) showed that such protein—
protein interaction data can supply important information
about many biological events. Furthermore, the functions of
uncharacterized proteins can be predicted in the light of the
interacting partner (18) by using the principle of ‘guilt by
association’, which maintains that two interacting proteins are
likely to participate in the same cellular function (19). There-
fore, with the help of bioinformatic platforms, we can expect to
extract biologically important information from protein—
protein interaction networks (20,21). However, an intrinsic
problem is that protein—protein interactions obtained from
biological experiments often include numerous false positives
(22). These false positives may unnecessarily connect
unrelated proteins, forming huge interaction clusters (16),
which complicate elucidation of the biological importance of
these interactions. Incorrect biological conclusions may also
be derived from these interactions. Therefore, removing as
many of these false positive interactions as possible may be very
useful for various types of analyses, although it is laborious to
confirm the interactions by other experimental methods.

Here, we introduce the ‘interaction generality’ measure,
which can be used to computationally assess the reliability of
the interaction data using only a list of protein—protein inter-
actions. We also report results on networks of interaction data
that were made more reliable by applying this measure.

MATERIALS AND METHODS

The yeast protein—protein interaction data of Ito et al. (16) and
Uetz et al. (14) were obtained from http://genome.c.kanazawa-
u.ac.jp/Y2H/ and http://www.genome.ad.jp/brite/, respectively.
In these data, we considered the interactions protein A (bait)—
protein B (prey) and protein B (bait)—protein A (prey) as a
single interaction (i.e. a bidirectional interaction in a two-hybrid
experiment). As a result, these databases contained 806 and
948 non-redundant interactions (including homodimers),
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respectively. In addition, we obtained 2592 non-redundant
physical interactions, including 624 interactions studied by
immunoprecipitation, from MIPS (Munich Information Centre
for Protein Sequences, http://mips.gsf.de) (23). Combining the
physical interaction data obtained from MIPS with those of Ito
and Uetz yielded a total of 3210 non-redundant interactions
(referred to as ‘all physical interactions’ in this paper), which
included 2128 heterodimers for which the function of both
partners is known.

Using the Yeast Proteome Database (YPD) web site, we
assigned one or some of 44 cellular roles and one or some of 28
cellular localizations to each protein (24). Gene names with
multiple synonyms were integrated into a single name, in the
light of information in the YPD. The yeast gene expression
profiles from the DNA microarray data of 2467 yeast genes
(25) were obtained from http://rana.stanford.edu/clustering.
We had all physical interaction data for 1237 heterodimers
with gene expression data. The expression data were used to
calculate the Pearson product—-moment correlation coefficients
between interacting proteins. The mathematical formula to
define interaction generality is available on request.

RESULTS

Biological basis for the interaction generality measure

We defined the interaction generality for each protein—protein
interaction. The definition of interaction generality is based on
the idea that there are some ‘sticky’ proteins which seem to
interact with many other proteins and that most of these inter-
actions may not be physiologically important. In particular, in
yeast two-hybrid assays some proteins seem to activate tran-
scription of a reporter gene without actually interacting with
their partners, a situation that can lead to an excess number of
candidate partners (some of which are erroneous) for a single
protein (26). Therefore, we first defined the interaction gener-
ality as the number of proteins that directly interact with the
target protein pair. An example is shown in Figure 1A, in
which proteins included in the calculation of interaction gener-
ality are yellow or green. Therefore, in this example, the inter-
action generality for the interaction between GLC7 and
YDR412W is 13. In reality, GLC7 is unlikely to interact with
all 12 of these proteins, because most of these have distinct
functions (see Fig. 1A legend). Thus, interactions in which
proteins directly interact with many other proteins will have
relatively high interaction generalities.

Calculating the interaction generality can be an efficient
means of revealing potentially false positive interactions.
However, a high interaction generality is not always due to
false positive protein interactions. Instead, these proteins may
be involved in various biological processes by forming large
complexes or by participating in complex pathways. An
example of such a situation is shown in Figure 1B. Lsm?2 and
Lsm8 interact with each other and are involved in RNA
splicing (27). They have many partners, as in the previous
example, and the interaction generality is 16. However, the
proteins with which Lsm2 and Lsm8 interact also interact with
each other or with other proteins of related function, making a
complicated network of protein interactions. Similar interaction
networks are observed for many protein complexes, including
RNA polymerase III (28).
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Figure 1. Examples of protein—protein interaction networks. Nodes and lines
denote proteins and interactions, respectively. The target proteins for calculation
of the interaction generality and their interactions are shown in red. Green and
yellow nodes are proteins associated with a given interaction; green nodes
interact with more than one protein. According to the unimproved and
improved definitions, the interaction generality is the number of yellow and
green nodes + 1 and the number of yellow nodes + 1, respectively. Protein—protein
interactions were obtained from Uetz et al. (14). Only proteins within two
interaction steps of the protein pair are shown. The schema were drawn using
the tool developed by Mrowka (32). Graphical outputs were modified using
several drawing tools. (A) Protein—protein interaction network for proteins
interacting with YDR412W or GLC?7 or their interacting partners. Most of the
proteins associated with GLC7 have distinct functions (24). BDF2, chromatin
chromosome structure; BNI4, cell wall maintenance and cytokinesis; GIP1,
meiosis; MHP1, mitosis; PANT1, cell polarity, cell structure and vesicular trans-
port; REF2, RNA processing and modification; SCDS5, vesicular transport.
FIN1, YDR412W, YHRI100C, YOR315W and BUDI4 are uncharacterized
proteins. (B) Protein—protein interaction network for proteins interacting with
Lsm2 or Lsm8 or their interacting partners. The following interactions
involving Lsm2 or Lsm8 were independently identified by Fromont-Racine ef al.
(33) and Pannone et al. (27): HSH49-LSMS8, LSM1-LSM2, LSM2-LSMS5,
LSM2-LSM6, LSM2-LSMS8, LSM2-SMD2, LSM4-LSM8, LSM5-LSMS8,
LSM6-LSM8, LSM8-MTR3 and LSM8-YELO15W.

To distinguish the interaction properties shown in Figure 1A
from those of Figure 1B, we modified our definition of inter-
action generality. In the improved definition, the number of
proteins interacting with more than one protein is subtracted
from the interaction generality given by the previous definition
(subtracted proteins are colored green in Fig. 1A and B). This
operation effectively reduces the interaction generality of
complicated networks, thereby increasing their validity. The
adjusted interaction generality for Lsm2 and Lsm8 (Fig. 1B) is
reduced to 2, whereas that for YDR412W and GLC7 (Fig. 1A)
remains high, at a value of 11.
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Table 1. Distribution of the number of interactions with given interaction generalities

A B E
1G. |ito ol. lovlap Uetz ol|ovlap 1.G. |Ali-Ph|All-Rp]oviap
1] 229 66] 34% 50% 236 58| 29%| 44% 1] 842 398 53| 35% 51%| 40%
2| 137 34] 54%] 75% 226 37| 571%| 71% 2| 503} 177 35| 55% 74% 66%
3 57 16] 63%] 87% 113 16| 71%] 83% 3| 324 66 13[ 68% 83% 76%
4 43 6] 69%| 92% 66 6] 79%| 88% 4] 187 52 14] 76%| 90%| 87%
5 24 41 73%] 95% 38 5| 83%| 92% 5] 130 21 2| 81%| 92%| 88%
6 16 1] 75%| 95% 37 2| 88% 93% 6] 130 24 6] 87% 95% 93%
7 27 0f 79% 95% 20 3| 90% 95% 7 91 10 5] 91%] 97%| 96%
8 23 1] 83% 96% 16 2| 92%| 97% 8 34 11 0| 92%| 98%| 96%
9 9 1] 84%| 97% 4 0| 93%] 97%) 9 15 4 1] 93%| 99%] 97%
10 2 0] 84%| 97%| 44 0] 98% 97% 10 11 0 0] 93% 99%] 97%
11 0 0| 84%| 974 9 2| 99% 98% 11 26 1 0| 94%| 99%| 97%
12 1 0] 84%| 97% 4 0] 100%] 98% 12 39 [4] 0 96% 99% 97%
13 13 0| 86% 97% 0 1] 100%| 99% 13 25 0 0 97% 99% 97%
14 15 0| 89% 97% 1 1] 100%| 100% 14 6 0 0 o97%| 99%| 97%
15 16 0] 91% 97% o] 0] 100%| 100%| 15 2 0 0] 97%| 99%| 974
16 30 3| 95%] 99% 1 0} 100%| 100%| 16 2 0 Of 97%| 99%] 97%
17 6 1] _96%) 100% 0 0/ 100%| 100%| 17 17 0 0| o98% 99%| 97%
18 20 0| 99%| 100% [4] 0] 100%] 100% 18 37 5 2| 99%| 99% 99%
19 2 0f 100%| 100% 0 0] 100%| 100%| 19 9 1 0] 100%| 100%| 99%
20 3 0] 100%| 100% 0 0] 100%| 100% 20 2 1 0/ 100%| 100%| 99%
21 0 0] 100%| 100% 0 0| 100%] 100% 21 4 2 2] 100%| 100%| 100%|
22 0 0] 100%| 100% 0 0] 100%| 100% 22 1 0 0| 100%| 100%| 100%
23 0 0] 100%| 100% 0 0} 100%| 100% 23 0 0 0 100%| 100%| 100%
24 0 0] 100%| 100%| 0 0 100%] 100% 24 0 Q 0] 100%| 100%| 100%|
25 0 0] 100%| 100%, 0 0/ 100%| 100% 25 0 0 0] 100%| 100%| 100%|
26— 0 0] 100%] 100% 0 0] 100%| 100% 26~ 0 0 0 100%| 100%| 100%
Total | 673] 133 815 133 Total | 2437] 773 133
LG. |bi-dir 1G. |bi-dir
1 14] 404 1 7 784
2 13| 77% 2 2| 100%
3 3| 86% 3 0] 100%
4 0] 86y 4 0] 100%|
5 1] 89y 5 0] 100%
6 2| 94y 6 0 100%
7 0] 94% 7 0] 100%
8 1] 97% 8 0] 100%
9 0| 974 9 0] 100%
10 1] 100%) 10 0] 100%
11— 0} 100%] 11— 0} 100%
Total 35 Total 9

(A) Analyses using the interactions unique to the work of Ito and the interactions common to the data of Ito and Uetz (i.e. overlapping interactions). Interaction
generality (I.G.) calculations are based on Ito’s interaction network. Numbers in each column show, first, interaction generality (I.G.), second, number of interactions
(excluding overlapping ones, denoted Ito ol.) and, third, number of overlapping interactions observed for corresponding generalities (ovlap). Cumulative percentages
for the second and third columns are shown in the fourth and fifth columns, respectively.

(B) Analyses using interactions unique to the work of Uetz (Uetz ol.) and those common to the studies of Ito and Uetz (ovlap). Interaction generality calculations
are based on Uetz’s interaction network.

(C) Analysis using the bidirectional interactions (bi-dir) identified by Ito. Interaction generality calculations are based on Ito’s interaction network.

(D) Analysis using the bidirectional interactions (bi-dir) identified by Uetz. Interaction generality calculations are based on Uetz’s interaction network.

(E) Analysis using all physical interactions (All-Ph), all reliable interactions (overlapping interactions between the assays of Ito and Uetz, all bidirectional interactions
and interactions obtained by immunoprecipitation, denoted All-Rp) and the interactions common to the studies of Ito and Uetz (ovlap). Generality is calculated
according to the all physical interaction network.

The interaction generality can be used to assess the interaction generality to assess the reliability of interactions,
reliability of interactions we calculated the distribution of the interaction generalities for
Using two-hybrid methods, Ito ez al. and Uetz et al. independ- the inte.ractions. iden.tifiec} l?y both Ito and Uetz, as well as those
ently comprehensively screened yeast protein—protein inter- for the interactions identified by only one of these two groups.
actions. However, only ~17% of the protein—protein Table 1A shows the distribution of interaction generalities
interactions obtained by Ito ef al. (16) were among (i.e. over-  for the data of Ito (excluding those that overlapped with the

lapped with) those identified by Uetz et al. (14). These results ~ data of Uetz) and for the overlapping data, the value for which
suggest that the fraction of non-overlapping interactions may was calculated in the light of Ito’s protein—protein interaction
contain many false positive interactions, whereas most over-  data. The overlapping data have significantly lower
lapping interactions are reliable in that they are reproducible in ~ generalities than those of the non-overlapping data. The ratio
independent assays. To evaluate the efficiency of using the  of interactions with generalities between 1 and 5 is 72.8% for
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Figure 2. Rates of interacting protein pairs versus interaction generality. These
figures show the rates of interacting protein pairs with common cellular roles
(A) or a common cellular localization (B) after elimination of interactions
whose generalities exceed a given threshold. The lines, squares and triangles
denote results using protein—protein interaction networks of all physical inter-
actions (All-phys), interactions obtained by Ito and those obtained by Uetz,
respectively. The threshold value varied from 1 to 29. Uncharacterized proteins
were removed from the analyses in (A) and proteins with unknown cellular
localizations were removed from the analyses in (B).

the non-overlapping data but 94.7% for the overlapping data
(P= 52 x 10®). We obtained a similar result when we
calculated the distribution of the interaction generalities for the
data of Uetz (Table 1B).

In addition, interactions obtained by prey-bait and bait—prey
assays using identical pairs of proteins (i.e. bidirectional
interactions) also seem to be reliable. Table 1C shows the
distribution of generalities for bidirectional interactions in the
Ito study. All of the generalities are less than 11 (P = 0.0025).
Table 1D shows a similar analysis for the bidirectional inter-
actions in the Uetz study. All the generalities are less than 3
(P =0.006). These results give additional support to the
assumption that interactions with lower generalities are more
likely to be reliable.

In the MIPS database, interactions obtained by various
experimental methods are deposited as a ‘physical interaction
set’. We evaluated whether interaction generality is applicable
to the entire physical set (all physical interactions). In this set,
we defined reliable interactions as those identified by immuno-
precipitation, those comprising the data overlapping in the Ito
and Uetz studies and the Ito and Uetz bidirectional interactions.
The second and third columns in Table 1E show the distributions
of interaction generalities for all physical interactions

(excluding reliable interactions) and for reliable interactions,
respectively. Most of the reliable interactions have low inter-
action generalities, suggesting that using interaction generalities to
assess reliability is also applicable to physical data.

Interaction generalities may be biased by the number of
proteins and interactions in the dataset. However, according to
Table 1A, B and E, reproducible interactions (ovlap and
All-Rp) with generalities within the range 1-5 are almost same
(88-95%) regardless of the size of the dataset. We obtained
similar results using three random datasets of different sizes
from the all physical dataset (data not shown), indicating that
the biases seem to be small with an appropriately sized dataset.

The rate of interactions with common cellular roles increases
upon elimination of interactions with high generalities

It is widely accepted that interacting proteins are likely to share
a common function (the ‘guilt by association’ hypothesis) (19).
Several groups reported that ~63% of pairs of interacting
proteins have a common cellular role as defined in the YPD
(18,24,29). We investigated the effect of eliminating unreliable
interactions as defined by their interaction generalities. We
eliminated interactions whose generalities were greater than a
given threshold from the interaction network and calculated
the rate of interacting protein pairs with common cellular roles.
For all three data sets (all physical interactions, Ito’s interactions
and Uetz’s interactions), the rates significantly increased as the
generality threshold decreased (Fig. 2A). Similar results were
observed for an analysis of cellular co-localization (Fig. 2B),
in which the rate of co-localization of interacting proteins
increases as the generality threshold decreases.

When the threshold was set to 1 (the minimal value), the rate
of physical interactions with a common cellular role was as
high as 79.6% (P = 0.00018, Fig. 2A). We analyzed this result
in further detail. Figure 3 shows the rate of interactions among
proteins with common cellular roles and the rate for those with
different cellular roles before (Fig. 3A) and after (Fig. 3B)
elimination of interactions with an interaction generality >1.
Note that the rates of interactions for proteins with different
cellular roles decreased whereas those with the same cellular
role increased.

We expect that ‘guilt by association’ will be very clear after
the removal of interactions with high interaction generalities.
APL2, the protein involved in vesicular transport and various
other functions, interacts with five other proteins (Fig. 4A),
and partners having low generalities are likely to have the same
cellular role (i.e. vesicular transport) as APL2. Similar results
were obtained for TIF35 (protein synthesis) and NUP42
(nuclear cytoplasmic transport) (data not shown). Thus,
elimination of interactions with high generalities from protein—
protein interaction networks may improve prediction of the
function of uncharacterized proteins. For example, YOR284W
is an uncharacterized protein that interacts with four other
proteins (Fig. 4B). As interactions of this protein with proteins
involved in protein synthesis have lower generalities,
YOR284W is likely to be involved in protein synthesis. We
found that cellular roles could be assigned to four other
previously uncharacterized proteins in this way: YDR100W
(vesicular transport/membrane fusion), YOR275C (vesicular
transport), YIL151C (protein degradation) and SOH1 (Pol II tran-
scription) (data not shown).
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Figure 3. Rate of cross-talk before and after refinement of the protein—protein
interaction network. Figures show rates of interactions within given cellular
roles and across different cellular roles (A) before and (B) after elimination of
interactions whose generalities exceeded 1. Crosses indicate rates of inter-
action with no common cellular role. Other names of cellular roles indicate the
rate of interactions having that cellular role in common. Interactions with only
a single common cellular role (F) are dealt with as one interaction within that
cellular role. Interactions with multiple common cellular roles (F, F,, ..., F,)
are dealt with as 1/n interactions within each cellular role.

Interacting protein pairs with low interaction generalities
are likely to be co-expressed

Using microarray and protein—protein interaction data for
yeast, Grigoriev showed that the average correlation coefficient
of gene expression profiles that corresponds to interacting
pairs is significantly higher than those that correspond to
random pairs (30). We investigated the relationship between
interaction generalities and expressional correlations of
interacting proteins. The average correlation coefficient for
interactions whose generalities were 1-5 was 0.183, which is
markedly greater than that for interactions with higher generalities
(0.0684, P = 4.53 x 1079, clearly showing that reliable interacting
pairs are more likely to be co-expressed.

DISCUSSION

Here, we have defined the ‘interaction generality’ measure and
showed its relationship to the reliability of a protein—protein
interaction. At first, we simply defined interaction generality as
the number of proteins that directly interact with the target protein
pair. However, this definition often gave high interaction
generality even when the interactions seem to be true positives.
Therefore, we established the improved definition that adopted the
idea that interactions observed in complicated interaction networks
are likely to be true positives. The rate of interactions with
generalities within the range 1-5 for 773 reliable interactions
shown in Table 1E changed from 28.7% according to the first
definition to 92.4% after the refinement, clearly showing the
improvement of the definition.
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Figure 4. Example of interaction generality analysis for the prediction of gene
function. Only interactions involving the given proteins are shown. The
number beside a line is the interaction generality of that interaction; the width
of the line is inversely proportional to its generality. (A) Interactions that show
clear associations between common cellular roles. (B) Interactions that enable
clear prediction of the cellular roles of uncharacterized proteins.

Although not all interactions defined as ‘reliable’ in this way
may be physiologically meaningful, we believe that inter-
actions with low generalities are predominantly physiologi-
cally meaningful. Therefore, eliminating high generality
interactions may help create more reliable networks. As a
result, we observed that the rate of association of proteins with
common functions increases and that interacting proteins are
more likely to be co-expressed. However, even after applying
the most stringent thresholds to networks, 20% of interactions
still cross cellular roles. We suggest that some or most of these
dissimilar  interactions are biologically meaningful,
presumably as examples of cross-talk.

One of the advantages of this elimination is that it improves
the accuracy with which the functions of uncharacterized
proteins can be predicted. There are 445 uncharacterized yeast
proteins that interact with proteins whose functions are known.
The accuracy of functional prediction is ~63% if the predic-
tions are made on the basis of a single interacting partner. Of
course, the accuracy would be increased if a sophisticated
algorithm were applied to predict function using information
about multiple interacting partners. However, according to the
data in Figures 2A and 3, the accuracy of predicting the function
of an uncharacterized protein would increase to ~79.6% if
interactions with generalities of 2 or more are eliminated. As a
result, the functions of 240 proteins can be predicted with
increased accuracy.

The disadvantage of this elimination is that we may eliminate
some true positive interactions. For example, in molecular
biological networks, although most nodes interconnect with only
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a few other nodes, some do have connections to many others
(31). The interactions between these numerously connected
nodes will be eliminated by our analysis unless the interacting
partners also interact with each other or with other proteins. In
fact, ~8% of reproducible interactions are eliminated if we set a
threshold of 5 (Table 1E). The elimination of true positive
interactions greatly reduces the number of interactions avail-
able for consideration. We propose two approaches to solving
this problem. One is to combine the data examined in our
method with other sources of information (such as protein—
protein interactions of ortholog proteins in other organisms,
expression data, etc.) to assess reliability. The other is to define
interaction generality in a more sophisticated way, by
incorporating additional biological knowledge, such as interaction
patterns of protein complexes.

One of the interesting features of large-scale protein—protein
interaction networks is that they contain huge interaction
clusters containing large numbers of proteins. For example, Ito
et al. (16) have shown that there are large clusters of inter-
action networks that connect more than half of all proteins.
However, as Ito et al. noted, the elimination of proteins with
many interacting partners would reduce the size of these
networks substantially. In fact, elimination of interactions with
generalities of =6 reduces the size of Ito’s largest cluster from
417 (52.3% of 797) to 219 (30.9% of 708) proteins.

In summary, our method is extremely helpful in effectively
constructing reliable protein—protein interaction networks. In
addition, we believe that our method is applicable to future study
of protein—protein interaction networks in various organisms.
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