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Abstract

The recent pig heart transplant in a patient at the University of Maryland Medical Center has 

stimulated renewed interest in the xenotransplantation of organs from genetically engineered 

pigs. The barriers to the use of pigs as sources of organs have largely been overcome by 2 

approaches – (1) the deletion of expression of the three known pig carbohydrate xenoantigens 

against which humans have preformed antibodies, and (2) the transgenic introduction of human 

‘protective’ proteins, such as complement-regulatory proteins. These gene modifications, coupled 

with immunosuppressive therapy based on blockade of the CD40/CD154 costimulation pathway, 

have resulted in survival of baboons with life-supporting pig heart grafts for almost 9 months. The 

initial clinical success at the University of Maryland reinforces encouraging preclinical results. 

It suggests that pig hearts are likely to provide an effective bridge to an allotransplant, but their 

utility for destination therapy remains uncertain. Because of additional complex immunobiological 

problems, the same approach has been less successful in preclinical lung xenograft transplantation, 

where survival is still measured in days or weeks. The first formal clinical trials of pig heart 

transplantation may include patients who do not have access to an allotransplant, those with 

contraindications for mechanical circulatory support, those in need of retransplantation or with a 

high level of panel-reactive antibodies. Infants with complex congenital heart disease, should also 

be considered.
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Xenotransplantation using organs from genetically modified nonprimate mammals offers 

a potentially unlimited supply of replacement organs. However, clinical translation has 

been impeded by vigorous innate and adaptive immune responses when organs from pigs 
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– the species being developed for clinical xenotransplant indications – are transplanted 

into primates. Additional barriers include incompatibilities in thromboregulatory and ‘self-

recognition’ molecular interactions between pigs and humans, and the risk of potentially 

contagious infection being transmitted from the pig to the xenograft recipient, and then 

to other humans.1,2 In response to the recent report of a clinical pig heart transplant in 

Maryland, we here review the current status of heart and lung xenotransplantation, and their 

prospects as viable therapies for end-stage cardiopulmonary diseases.

Thoracic organ xenotransplantation: brief history and recent experience

Even before the famous first human heart allotransplant by Barnard in 1967,3 in 1964 Hardy 

performed the world’s first clinical cardiac transplant using a chimpanzee heart that proved 

inadequate to support the circulation of the recipient.4 Subsequent attempts, involving 

nonhuman primate, sheep, and pig hearts, were also unsuccessful (Table 1). However, 

Bailey’s transplant of a baboon heart into an infant girl5 did much to stimulate the successful 

development of pediatric heart allotransplantation. Clinical lung xenotransplantation has not 

been reported.

On January 7, 2022, the first clinical xenotransplant of a heart from a genetically-engineered 

pig (with 10 genetic modifications) was carried out at the University of Maryland, based to 

some extent on preclinical studies in Munich.6 The 57 years old recipient experienced good 

heart function for 2 months before succumbing in the context of graft dysfunction. This 

clinical experiment surprised and energized the thoracic transplant and xenotransplantation 

communities.

Developing ‘biocompatible’ pigs

Rationale for development

The historic use of organs from primate species raised ethical concerns,7 faced formidable 

logistical barriers, and posed potential risks of the transfer of infectious microorganisms.8 

Focus therefore shifted to pigs as the organ source, which have advantages in (1) better size-

matching with humans, (2) favorable breeding characteristics (faster sexual maturity, shorter 

pregnancy, greater number of offspring, and lower costs for husbandry and propagation), 

and (3) the feasibility of genetic modification.9 The short reproductive cycle of pigs 

and the development of in vitro fertilization and cloning technologies for this species 

enabled application of gene-editing to address the biologic obstacles of’ pig-to-human 

transplantation (summarized below).

Anti-pig antibodies

When wild-type (i.e., genetically unmodified) pig organs are exposed to human or NHP 

blood, antibody-mediated endothelial injury occurs within minutes, driven largely by 

binding of preformed ‘natural’ antibodies to the pig vascular endothelial cells, leading to 

complement activation and graft loss from hyperacute rejection.1 The majority of these 

natural human anti-pig antibodies are targeted at 3 carbohydrate antigens (Table 2), of 

which galactose-α 1,3-galactose (Gal)10 appears to be the most important. Work in the 

1990s focused on elimination or neutralization of these antibodies utilizing plasmapheresis 
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or immunoadsorption by immunoaffinity columns, which delayed, but did not prevent, 

rejection.11–13

In 2003, the first pigs that did not express Gal were produced by knockout of the a1,3-

galactosyltransferase gene (GTKO pigs)14 (Table 2). At the time, gene-editing techniques 

were less site-specific and very complex. Subsequent development of many gene editing 

technologies, like ZFNs, TALENS, and CRISPR-Cas9 (Table 3), enabled more precise and 

complex gene modification.15 In this regard, reengineering of Cas9 by Charpentier and 

Doudna made CRISPR-Cas9 a capable cost-effective technology and enabled high-precision 

targeting and editing of genomic loci, which has had a revolutionary impact on the life 

sciences. Those techniques facilitated additional deletion of expression of the remaining 

xenoantigens, yielding double16 and triple (TKO) knockout pigs.17

Complicating preclinical assessment of TKO organs, the TKO modification has unveiled or 

activated a ‘fourth’ xenoantigen that may be associated with antibody-mediated rejection in 

NHPs, but not in humans.18

Complement activation

Complement activation, physiologically triggered in circumstances where the innate immune 

system senses ‘foreign invasion’ or ‘self-injury,’ is regulated by negative feedback 

mechanisms to avoid over-activation and collateral damage to healthy host tissues.19 This 

is achieved by the expression of several ‘protective’ complement pathway regulatory 

proteins (CPRPs) on the vascular endothelial cells,20 for example, decay accelerating factor 

(CD55); membrane cofactor protein (CD46), and membrane-attack-complex-inhibitory 

protein (CD59). CPRPs are relatively species-specific,21 and pig CPRPs are less effective 

in controlling human complement-mediated injury than are human CPRPs. The expression 

of human CPRPs on pig cells reduces complement-mediated cell injury,22 and has been 

associated with prolonged pig graft survival in a variety of NHP models.23–25

Coagulation pathway dysregulation

Even in the absence of detectable antipig antibodies, diffuse microvascular thrombosis 

in the graft (thrombotic microangiopathy) and consumptive coagulopathy in the recipient 

were observed after transplanting GTKO pig organs that expressed human CPRPs.26 This 

observation suggested that incompatibilities between pig and human thromboregulatory 

molecules might be physiologically consequential.27,28 Pig thrombomodulin (TBM) binds 

human thrombin, but is less potent in activating protein C. Its cofactor, pig endothelial 

protein C receptor (EPCR), is also less efficient in activating protein C, and hence in 

regulating the coagulation process.29 Pig tissue factor pathway inhibitor (TFPI) may be 

inefficient in regulating human tissue factor-initiated coagulation,30 although this view has 

been questioned.31

Coagulation dysfunction is more problematic in regard to pig lung transplantation. 

Relatedly, pig von Willebrand factor (vWF) aggregates and activates human platelets 

spontaneously through aberrant non-physiologic interaction with human glycoprotein 

(GP)Ib,32,33 a platelet surface membrane glycoprotein that functions as a receptor for 

vWF. Blocking the GPIb-binding site for vWF34 or ‘humanizing’ vWF reduces platelet 
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sequestration during ex vivo perfusion of lungs with human blood, and after pig-to-baboon 

lung transplantation.35

Once activated, platelets propagate platelet and leukocyte aggregation through interactions 

mediated by GPIIb/IIIa, ADP- P2Y12, P- and E-selectins, integrins, and galectins, among 

others, leading to progressive thrombosis and necrotic destruction of the graft1,36–38 (Figure 

1). As a consequence, each of these procoagulant and proadhesive interactions are logical 

targets to reduce physiologically inappropriate clotting and inflammation after cell and organ 

xenotransplantation.

Coagulation dysfunction, together with an associated inflammatory response, has proved a 

major hurdle in achieving prolonged pig lung survival in NHPs.39

Self-identification

Cluster of differentiation molecule 47 (CD47) is a self-recognition marker that inhibits 

phagocytosis of CD47+ cells by macrophages and other innate immune ‘scavenging’ 

cell populations.40,41 When CD47 was introduced into GalT-KO pig cells by genetically 

engineering, bone marrow cells remained detectable in the circulation for days rather than 

minutes.42 Recent reports describe improved results associated with GTKO.hCPRP lungs 

and kidneys that additionally express CD47.43,44 While perhaps less essential than hCPRP 

or thromboregulatory genes, expression of human ‘self’ may prove advantageous for heart 

and lung xenografts.

Rapid pig organ growth after transplantation

Rapid growth and hypertrophy have been documented in pig hearts (and kidneys) implanted 

into NHPs, likely associated with differences in the rates of growth between pigs and 

NHPs.45,46 Cardiac xenograft hypertrophy can be reduced by hypotensive therapy and 

mTOR inhibition.46 It might be avoided by using pigs that grow slowly, for example, 

miniature swine, or have been genetically engineered to reach smaller size at maturity, for 

example, by knock-out of growth hormone receptors.47

Potential infectious concerns

Pigs could potentially transmit to humans a wide range of bacteria, parasites, and 

viruses.48,49 The FDA will require that the organ-source pigs be bred and housed in clean, 

biosecure conditions, and be certifiably free of pig organisms that are known pathogens for 

humans. Thus, the infections that are most likely to affect recipients of pig xenografts are the 

same as those that typically occur in immunosuppressed recipients of allografts (e.g., CMV 

reactivation, opportunistic bacterial infections), for which effective treatments are generally 

available.

In the 1990s, concerns were raised regarding the possibility of humans being infected by 

porcine endogenous retroviruses (PERVs) that are present within the genome of all pig 

cells.50 At that time, the pandemic spread of the human immunodeficiency virus (HIV), an 

exogenous retrovirus, helped feed these fears, appropriately raising concerns for regulatory 

authorities, and depressing public (and investor) enthusiasm for xenotransplantation.1,51
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Reassuringly, PERV transmission to primates has never been observed in preclinical or 

clinical studies.52 In addition, (1) multiple innovative strategies have been developed to 

inhibit possible PERV transmission,53 (2) PERV-deleted pigs have been produced utilizing 

CRISPR-based technology,54,55 and (3) potent antiretroviral drugs that were developed to 

treat HIV are effective in vitro against PERV.56 Consequently, the risk of PERV infection for 

a given xenograft recipient appears to be very low; infection or disease, if either occurs, will 

likely be treatable; and subsequent transmission or pandemic infection seems improbable.

In summary, harvesting organs from pigs bred and raised under strictly controlled 

‘designated pathogen-free’ (DPF) conditions57 could decrease the risk of infection to 

less than that seen in recipients of allografts, where the human donor might have been 

exposed to a variety of pathogens, and in whom the available screening strategies are time-

limited. As long as a surveillance strategy designed to detect both known and ‘unknown 

unknown’ pathogens is consistently deployed, xenotransplantation may prove to be safer 

than contemporary allotransplantation with respect to the risk of donor-transmitted infection.

Preclinical progress

Cardiac xenotransplantation

Two valuable lessons have been learned from preclinical in vivo organ xenotransplantation 

studies. First, conventional immunosuppressive therapy (i.e., tacrolimus-based) is less 

effective in xenotransplantation than in allotransplantation.58 Rather, blocking the CD154/

CD40 costimulatory pathway, first introduced into the pig-to-NHP model by Buhler 

et al in 2000,59 results in substantial improvement in graft survival. Blockade of the 

CD28/B7 costimulatory pathway is less successful.60,61 Second, pig hearts seem to be more 

susceptible to ischemia-reperfusion injury than human hearts.62 Längin et al. addressed this 

problem by using non-ischemic heart preservation by continuous perfusion with 8°C Steen 

solution.63,64 Consistent survival of 3 to 6 months was reported using GTKO/hCD46/hTBM 

hearts and blockade of the CD40/CD154 pathway.45

Encouraging with respect to long-term viability of pig heart xenografts, in a heterotopic 

(non-life-supporting) model (Figure 2), GTKO/hCD46/hTBM heart xenografts consistently 

survived for as long as CD40-blocking was given, in one case up to 945 days.65,66 In 

this context, the Langin and Brenner reports mark an important benchmark, reaching 

the prerequisite conditions for embarking on a clinical xenotransplantation trial that were 

proposed by the Advisory Committee to the International Society for Heart and Lung 

Transplantation (ISHLT) in 2000.67

Nevertheless, it should be noted that to date the longest period of life support by a pig heart 

in a NHP has been limited to <9 months.68 Based on this data and the recent Maryland 

clinical experience, we suggest that at present pig heart xenotransplantation might most 

appropriately be considered as a bridge to allotransplantation. In our estimation, to justify 

heart xenotransplantation trials as ‘destination therapy,’ consistent success in preclinical 

models, similar to that recently reported6,45 or demonstration of more durable success in a 

‘compassionate use’ clinical application – will be necessary.
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Lung xenotransplantation

Lung xenotransplantation research to date has primarily employed ex vivo models 

incorporating human blood perfusion to evaluate the effect of genetic modification of the 

pig and/or drug treatment on the rise in pulmonary vascular resistance and loss of vascular 

barrier function characteristic of pig lung injury.69 The knowledge gained, however, has 

translated into relatively limited improvement in life-supporting lung function and recipient 

survival in the in vivo pig-to-NHP lung xenograft model.39,69 Probably because of the more 

extensive endothelial surface area, pro-inflammatory resident immune cells, and anatomic 

vulnerability to even localized injury flooding adjacent airways, lung injury is more difficult 

to prevent, and thus in vivo lung xenograft survival remains limited to days or weeks.39,70

Increasingly sophisticated genetically-engineered pigs have been produced with 10 or even 

15 gene edits,1–71 including those designed to address some of the mechanisms of lung 

injury identified in the ex vivo lung perfusion model and partially validated in vivo.39 We 

speculate that adding a humanized vWF modification35 in the context of these mechanism-

directed gene edits will be necessary, and may be sufficient, to enable prolonged lung graft 

survival in our non-human primate model, so as to eventually justify an initial clinical trial.

Prospects for clinical heart or lung xenotransplantation

What additional evidence is needed to justify regulatory approval for a definitive, 

‘qualifying’ trial of clinical heart xenotransplantation? The pig sources of hearts in the 

Munich studies (with 3 genetic modifications) were suitable for transplantation into NHPs, 

but may not prove to be optimal for transplantation into human patients.72 The University 

of Maryland team provided encouraging results following the transplantation in baboons of 

hearts from pigs with 10 genetic manipulations, designed to be fully ‘biocompatible’ with 

humans, thus enabling the US Food and Drug Administration (FDA) to approve a single 

initial ‘compassionate use’ clinical study.

Although the predictive value of the NHP model has never been tested and may introduce 

confounding immune barriers,73 several important remaining questions can potentially be 

answered in preclinical models: (1) define a ‘necessary and sufficient’ pig phenotype, (2) 

validate a consistently effective method of heart preservation, (3) identify a consistently 

effective, safe immunosuppressive regimen, and (4) test candidate strategies to prevent or 

manage graft hypertrophy, when evident. Cautious clinical experimentation is justifiable in 

the hands of experienced investigators, not least because information gained will determine 

whether or not NHP preclinical studies are informative.

We gauge that additional advances in understanding and modulating the mechanisms of lung 

xenograft injury will be required before pig lungs can emerge as a viable clinical option. 

Hopefully, with further experience in the pig-to-NHP lung transplantation model and from 

experience with clinical xenotransplantation of the heart and other cells and organs, the 

remaining barriers to clinical pig lung transplantation will also be resolved.
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Patient selection for clinical trials of pig heart transplantation

In our estimation, selection of patients for initial xenotransplantation trials should adhere 

to the general guidelines for heart allotransplant candidacy.74 Until the actual risks and 

complications associated with receipt of a life-supporting pig heart are defined by clinical 

experience, basic ethical principles75 will dictate first enrolling patients who are unlikely to 

have access to, or to benefit from, currently-available therapeutic alternatives. These patients 

include those with:

Relative or absolute contraindications to mechanical circulatory support

Patients with restrictive or hypertrophic cardiomyopathies or severe right ventricular 

dysfunction experience a high morbidity and mortality after implantation of a left ventricular 

assist device (LVAD). Furthermore, the presence of a dysfunctional mechanical valve, 

or a degenerated bioprosthesis (e.g., associated with mitral or aortic stenosis, or aortic 

insufficiency), or an atrial or ventricular septal defect, greatly complicate bridging or 

destination therapy with any form of mechanical circulatory support (LVAD or BiVAD). 

These patients often exhibit rapid and unpredictable deterioration, and might benefit from 

timely access to a pig heart as a bridge to allotransplantation.

High titers of broadly panel-reactive anti-HLA antibodies (PRA)

High PRA candidates (1) experience long waiting times for allotransplantation and a high 

wait-list mortality, (2) may require potentially high-risk and incompletely effective treatment 

to reduce anti-HLA titers, and (3) experience higher rates of rejection and early graft 

vasculopathy even after receipt of a ‘cross-match negative’ heart allograft. We caution to 

initially avoid patients with a high PRA who exhibit cross-reactivity with swine leukocyte 

antigens (SLAs) unless they are demonstrated to have a negative flow cytometric cross-

match with cells from the ‘donor’ pig.76

Chronic rejection after cardiac allotransplantation

Cardiac allograft recipients with graft vasculopathy have (1) a high risk of sudden death, 

(2) a low priority on the waiting list for a second deceased human donor organ, and (3) 

suboptimal support by a mechanical device. The risks of acute and/or chronic immune 

injury to a second or subsequent heart allograft are high.77 Elective access to a crossmatch-

negative pig heart (see above) might be attractive for patients with rapidly progressive graft 

vasculopathy or for those at high risk for fatal arrhythmia.

Infants and children with complex congenital heart disease

Infants with complex congenital heart disease, especially those with single ventricle 

physiology, have limited access to allotransplantation due to the scarcity of size-matched 

deceased donor organs in that age group.78–80 The results of mechanical support in these 

patients are poor,81–82 and the results of multiple staged surgical reconstructive procedures 

for palliation remain mixed.81 A genetically-engineered pig heart might be life-supporting 

as a bridge until a heart from a deceased human donor can be obtained. The relatively 

immature and ‘flexible’ immune system of infants may enable greater resistance to rejection 
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than in older patients.83 Theoretically, a pig heart might grow proportionately with the 

infant, or could be electively replaced later if a size-mismatch develops.

Future considerations

Traditional methods of monitoring for rejection (e.g., echocardiography, measurement of 

troponin and CK-MB levels84 have been found to be helpful in determining whether 

graft atherosclerosis is developing. The utility of endomyocardial biopsy in patients 

with a pig heart transplant remains to be determined, but we are mindful that routine 

histologic surveillance of the graft was arguably pivotal to the current success of heart 

allotransplantation. Several novel, but largely unproven, methods of detecting rejection 

are worthy of exploration, for example, donor-derived cell-free DNA,85–87 species-specific 

gene-expressing profiling,84,88 or circulating organ-specific miRNAs.89,90

Success of pig heart transplantation in NHPs has been achieved to date only when 

experimental immunomodulatory drugs (not yet approved by US FDA or European 

Medicines Agency - EMA) have been used.91 Fortunately, in published guidance92 and by 

its approval on compassionate grounds of the Maryland patient, the FDA has demonstrated 

its willingness to consider an experimental drug as part of a clinical protocol when that 

approach is supported by preclinical data.

Maintaining ‘designated pathogen-free’ pigs in isolation will be costly, and, when and if 

clinically approved, cost may become a significant barrier to access. On the other hand, 

prolonged costly pre-transplant stays in the intensive care unit will become unnecessary, 

and high-cost, high-risk alternative medical or surgical therapies will become obsolete as 

the availability of a suitable pig organ will enable transplantation to be carried out timely 

when indicated and optimal for the recipient. Based on the initial success achieved in the 

University of Maryland case, this idealized vision for cardiac xenotransplantation now seems 

within reach.

In summary, in the initial clinical trials, we caution against including patients with poor 

prognosis based on medical or surgical risk factors not directly related to their heart 

pathology (e.g., advanced frailty, widespread peripheral atherosclerotic disease, a ‘hostile’ 

mediastinum), as this approach is likely to yield poor outcomes and undermine public and 

peer support for xenotransplantation. Similarly, we believe that enrolling subjects under 

emergency circumstances that do not allow thorough assessment of patient suitability should 

be avoided. Current or recently treated advanced malignancy or an active infection are likely 

to cause life-limiting complications under immunosuppressive therapy. Finally, adequate 

psychosocial support, a robust process of preprocedure education, and thorough informed 

consent for both the patient and his/her caregivers are important to encourage compliance 

with post-transplant treatment, monitoring, and public safety protocols.
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Abbreviations:

CRISPR clustered regularly interspaced short palindromic repeats

CPRPs complement pathway regulatory proteins

EPCR endothelial protein C receptor

GTKO α1,3-galactosyltransferase knockout

hTBM human thrombomodulin

LVAD left ventricular assist device

mTOR mammalian target of rapamycin

NHP nonhuman primates

PERV porcine endogenous retrovirus

PRA panel-reactive anti-HLA antibodies

TFPI tissue factor pathway inhibitor

TKO triple knockout
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Figure 1. 
Genetic modifications designed to address mechanisms of xenograft injury: Examples 

of genetic modifications designed to prevent known xenograft injury (top) include Gal 

a 1-3Gal and 2 other carbohydrates (triple knockout, TKO) and expression of human 

complement pathway regulatory proteins (hCPRPs) and coagulation pathway regulatory 

proteins, eg, thrombomodulin and endothelial protein C receptor (bottom). Absence of 

carbohydrate antigens and expression of human complement and coagulation pathway 

regulatory molecules reduce endothelial activation and injury.
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Figure 2. 
Experimental heterotopic non-working heart transplantation: After harvesting the pig heart 

and perfusing it for 30 minutes in ex vivo (A), it is implanted in heterotopic position in 

baboon abdomen (B), by anastomosing the donor aorta to the recipient abdominal aorta and 

the donor pulmonary artery to the recipient inferior caval vein, after legating both donor 

caval veins and closing the left atrium (C).
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Table 3

Timeline for Application of Evolving Techniques for Genetic Engineering of Pigs Employed in 

Xenotransplantation

Year Technique

1992 Microinjection of randomly-integrating transgenes

2000 Somatic cell nuclear transfer (SCNT)

2002 Homologous recombination

2011 Zinc finger nucleases (ZFNs)

2013 Transcription activator-like effector nucleases (TALENs)

2014 CRISPR-Cas9
a

a
CRISPR-Cas9 = clustered randomly interspaced short palindromic repeats and the associated protein 9.
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