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Abstract

Transcranial direct current stimulation (tDCS) can noninvasively modulate behavior, cogni-

tion, and physiologic brain functions depending on polarity and dose of stimulation as well as

montage of electrodes. Concurrent tDCS-fMRI presents a novel way to explore the parame-

ter space of non-invasive brain stimulation and to inform the experimenter as well as the par-

ticipant if a targeted brain region or a network of spatially separate brain regions has been

engaged and modulated. We compared a multi-electrode (ME) with a single electrode (SE)

montage and both active conditions with a no-stimulation (NS) control condition to assess the

engagement of a brain network and the ability of different electrode montages to modulate

network activity. The multi-electrode montage targeted nodal regions of the right Arcuate

Fasciculus Network (AFN) with anodal electrodes placed over the skull position of the poste-

rior superior temporal/middle temporal gyrus (STG/MTG), supramarginal gyrus (SMG), pos-

terior inferior frontal gyrus (IFG) and a return cathodal electrode over the left supraorbital

region. In comparison, the single electrode montage used only one anodal electrode over a

nodal brain region of the AFN, but varied the location between STG/MTG, SMG, and poste-

rior IFG for different participants. Whole-brain rs-fMRI was obtained approximately every

three seconds. The tDCS-stimulator was turned on at 3 minutes after the scanning started. A

4D rs-fMRI data set was converted to dynamic functional connectivity (DFC) matrices using a

set of ROI pairs belonging to the AFN as well as other unrelated brain networks. In this study,

we evaluated the performance of five algorithms to classify the DFC matrices from the three

conditions (ME, SE, NS) into three different categories. The highest accuracy of 0.92 was

obtained for the classification of the ME condition using the K Nearest Neighbor (KNN) algo-

rithm. In other words, applying the classification algorithm allowed us to identify the engage-

ment of the AFN and the ME condition was the best montage to achieve such an

engagement. The top 5 ROI pairs that made a major contribution to the classification of
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participant’s rs-fMRI data were identified using model performance parameters; ROI pairs

were mainly located within the right AFN. This proof-of-concept study using a classification

algorithm approach can be expanded to create a near real-time feedback system at a partici-

pant level to detect the engagement and modulation of a brain network that spans multiple

brain lobes.

Author summary

Noninvasive brain-stimulation can affect behavior, sensorimotor skills, and cognition

when this function/activity draws on brain regions that are targeted by brain-stimulation.

The parameter space (dose and duration of stimulation; size, number, and montage of

electrodes) and selection of optimal parameters for a particular intervention are actively

explored in numerous research studies. We aimed to examine whether the engagement of

a particular targeted brain network, the Arcuate Fasciculus Network (which spans multi-

ple brain lobes), can be determined quickly and whether a multi-electrode montage pro-

vides stronger engagement than a single electrode montage. Applying machine learning

techniques to dynamic functional images obtained in a simultaneous brain-stimulation-

fMRI setting allowed us to quickly identify the specific engagement of the targeted Arcu-

ate Fasciculus Network (AFN). Our approach applied to the AFN should be taken as a

prototypical example that functional activity of brain networks spanning across multiple

lobes can be modulated by targeting nodal cortical access points. Similar approaches can

now be applied to other networks. Our proof-of-concept study can be expanded to create

a near real-time feedback system of brain network engagement for the experimenter as

well as the participant in a brain-modulation study.

Introduction

Experimental studies revealed evidence that transcranial direct current stimulation (tDCS)

modulates brain activity and affects behavior, cognition, and sensorimotor skills among others

when that activity draws on targeted brain regions or entire brain networks [1–4]. tDCS applies

a constant electric current to targeted brain regions through their scalp access points typically

using one or more anodal electrodes and one or more cathodal electrodes [5,6]. The current

induces subthreshold changes across the neuronal membrane potentially modulating the neuro-

nal firing depending on the polarity and dose of the current as well as the montage of electrodes.

In general, brain regions targeted with anodal tDCS shows increased excitability while cathodal

tDCS decreases it, as commonly shown in the studies stimulating motor cortex [3,7–9]. More-

over, modulatory effects of tDCS have been shown in non-motor brain regions as well [10–13].

There is compelling evidence that targeted tDCS can not only modulate local intrinsic

brain activity or the activity directly under the targeted brain region, but also influence activity

in connected brain regions spanning longer distances in the brain. Modulation of multiple

connected regions or entire networks may account for the effects on complex behavior and

cognition seen in neurologic and psychiatric disorders [3,8,14–22]. One network that is

uniquely situated, spans multiple lobes, and could be targeted by identifying nodal cortical

access points, is the Arcuate Fasciculus Network (AFN). The AFN includes brain regions in

the posterior superior and middle temporal gyri, the inferior parietal lobule (supramarginal

gyrus), and the inferior frontal gyrus and connections with several regions in between such as
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the inferior sensorimotor cortex. This network is ideal for examining whether targeting partic-

ular cortical access points with different electric montages can differentially modulate rs-fMRI

using concurrent tDCS-fMRI experiments.

Concurrent tDCS-fMRI has been used to reveal neural correlates of stimulation using vari-

ous MR acquisition methods including resting-state fMRI, and varying dose and montage to

test whether or not targeted brain regions can be engaged, and their connections be modulated

[5,23]. Fig 1 shows a schematic diagram for concurrent tDCS-fMRI experiment. Machine learn-

ing methods have been explored to characterize rs-fMRI, often grouped in two types: unsuper-

vised and supervised [24]. Unsupervised methods focus on understanding healthy brain and its

dynamics such as matrix decomposition and clustering to identify brain functional networks

[25,26]. On the other hand, supervised learning methods use rs-fMRI data to classify ‘patient vs

controls’ or to predict disease prognosis [27–29]. Despite widespread use of machine learning

methods for rs-fMRI classification, the use of machine learning techniques in tDCS-fMRI stud-

ies is limited and has been restricted to binary classification questions [30–34]

In this paper we describe a supervised learning approach to evaluate the engagement of a

targeted brain network, the Arcuate Fasciculus Network (AFN; see Fig 2) using a tDCS-fMRI

experiment. In the supervised learning approach, we classify the rs-fMRI data into three

groups based on stimulation condition and electrode montage (Multielectrode vs Single Elec-

trode and both vs a No-Stimulation condition). This is followed by identifying brain regions

that show strong differential effects of tDCS depending on electrode montage.

Methods

Ethics statement

The Institutional Review Board of Beth Israel Deaconess Medical Center and University of

Massachusetts Amherst approved this study. All participants gave written informed consent

before participating in the study.

Fig 1. a) Concurrent tDCS-fMRI setup. b) Timing diagram for MRI experiment. Red colored lines show the

application of tDCS during the 24-minute long rs-fMRI scan.

https://doi.org/10.1371/journal.pcbi.1011012.g001
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Participants

A total of thirty-three (33) participants were recruited in the greater Boston area as well as in

the greater Amherst area (Females = 14; mean age = 36.7). Participants (n = 12) in the greater

Boston area were scanned on a 3T GE scanner at Beth Israel Deaconess Medical Center

(BIDMC) while participants recruited in the greater Amherst/Pioneer Valley region (n = 21)

were scanned on a 3T Siemens wide bore scanner. All participants were right-handed accord-

ing to the Edinburgh Handedness Inventory (Oldfield, 1971), had no history of neurologic or

psychiatric conditions, and had no contraindications to undergo MRI or tDCS as verified by a

safety checklist. All participants underwent one mock session prior to the concurrent tDCS-

fMRI sessions in which they were familiarized with the setup and were given a test stimulation

of the 4mA stimulation to make sure that they were able to tolerate the intensity of stimulation

and were comfortable in the MR scanner environment. Participants were then assigned to one

of three concurrent tDCS-fMRI sessions on their first day of the experiment typically alternat-

ing between one of the stimulation montages and the no-stimulation session starting first; this

was followed on subsequent days by either one of the remaining two sessions. Not all partici-

pants were able to participate in all sessions. To ensure that there was not a systematic differ-

ence between the BIDMC and UMass MRI sessions due to factors not controlled for, an initial

analysis compared the BIDMC no-stimulation (NS) sessions (n = 5) with the first 5 UMass NS

sessions. An ‘interhemispheric functional connectivity measure’ was calculated as the simple

average of all possible interhemispheric functional connectivities between homotopic ROIs on

either hemisphere from every session, and a t-test was conducted. ROIs used for this calcula-

tion are defined in the section ‘Selection of ROI pairs.’ This test did not show a significant dif-

ference between sites, with p>0.05. Therefore, the BIDMC and UMass data were used as a

single dataset for all further analyses.

Electrode placement

Prior to a participant entering the MRI room, we placed MR compatible rubber electrodes on

each participant’s scalp using the 10–20 Electroencephalogram (EEG) system as a guide for the

initial identification of scalp targets. The electrode targets were selected to stimulate nodal cor-

tical regions of the AFN (see Fig 2). In the multielectrode (ME) condition, we placed three

round anodal electrodes (diameter of 3cm each) over the scalp position of the supramarginal

gyrus (SMG), the posterior inferior frontal gyrus (IFG) and the posterior STG/MTG junctional

region. The IFG electrode was placed at halfway of the distance between C6 and F8, the SMG

electrode was placed at one third of the distance between C6 and CP4, and the STG/MTG elec-

trode was placed at halfway of the distance between CP6 and TP8. A round cathodal electrode

(diameter of 5cm) was placed over the contralateral supra-orbital region (approximately corre-

sponding to FP1). In the single electrode (SE) condition, we placed a round electrode (diame-

ter of 4cm) over either the SMG, the pIFG, or the posterior STG/MTG junction and the

cathodal electrode again over the left fronto-orbital region (FP1). The electrode size and the

currents were selected to have similar maximum charge density values (ME: 0.2132 C/cm2 and

SE: 0.2292 C/cm2). After cleaning the targeted scalp locations with alcohol, rubber electrodes

lathered with approximately 2mm thick layer of Ten20 neurodiagnostic electrode paste

(Weaver and company, Aurora, CO, USA) were placed. Electrodes were held in place using a

self-adhesive bandage and hypoallergenic medical tape. Electrode connectors were adjusted to

avoid any crossover between wires. The no-stimulation (NS) data was acquired while partici-

pants had either the single or multi-electrode stimulation montage placed over their head and

were informed that stimulation might be applied but was not actually applied in that session.

Seven participants out of 33 participants from the no-stimulation (NS) group, participated in
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an MRI session where no electrodes were placed over the participant’s scalp; these participants

were naive to the stimulation at the time. The NS condition was a control condition without

any stimulation, not even a sham stimulation. Even when electrodes were mounted, we did

not ramp up/down the stimulation as is typically done in a sham stimulation condition, since

this effect could potentially engage the network that we were trying to identify with either the

ME and SE conditions in comparison to the NS condition.

Fig 2. (a) Representative image of the right hemispheric Arcuate Fasciculus tract shown in standard brain and the

canonical location of three nodal regions of the AFN targeted by brain-stimulation (dashed circles in 2a). tDCS

electrodes were placed on the scalp directly above the brain regions marked with circles. (b) Anatomically identified

spherical ROIs representing cortical regions within and outside of the AFN (shown here for the right hemisphere, but

mirror left hemisphere regions were identified as well). Side and oblique views are shown to demonstrate the mesial

location of AF tract and ROIs. (c) Shows electrode placement for ME montage for one of the participant and Electric

field distributions simulated using SimNIBS software [39].

https://doi.org/10.1371/journal.pcbi.1011012.g002
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Concurrent tDCS-fMRI

After placing electrodes on the scalp, participants were placed inside the MRI bore in a supine

position. Electrodes were connected to the MR-safe connector box. The connector box was

connected to the RF filter panel inside the MR room using the MR-safe connector cable. A sec-

ond connector cable was used in the MR control room connecting the RF filter panel to the

MR conditional connector box. The MR conditional connector box converted the stimulation

signal generated using Neuroconn DCMC stimulator into a signal that was carried through a

connector cable. All the aforementioned components were provided with the Neuroconn

DCMC stimulator device (Neurocare Group, Germany). A schematic diagram of these con-

nections is shown in Fig 1A.

After a participant was situated in the scanner and all connections were secured, a

T1-weighted 3D MPRAGE sequence (resolution = 1.0 × 1.0 × 2.0mm3; TR/TE 1490/3.36ms;

flip angle = 9˚; matrix = 256 × 256; field of view = 256 × 256mm2) with sagittal acquisition and

2mm slice thickness was obtained to speed up the acquisition of an anatomical image. This 3D

anatomical image set was used to confirm the accuracy of the electrode location with underly-

ing brain regions that we intended to target. If the electrodes were placed inaccurately (mean-

ing that they did not overlay the target region), then the participant was moved out of the MR

bore, the electrode position was adjusted, and the corrected placement was again confirmed

with a fast T1-weighted acquisition. When electrodes were accurately placed, a 24-min rs-

fMRI scan using a gradient-echo echo planar imaging sequence (At UMass: TR of 3s, TE of

31.0ms; flip angle of 90 degrees; field of view = 210x210mm2; and voxel size of

2.5 × 2.5 × 2.5mm3, and at BIDMC: TR of 3.196s; TE of 24.0ms; flip angle of 90 degrees; field

of view = 210x210mm2; and voxel size of 1.875 × 1.875 × 2.5mm3) was obtained. The stimula-

tor was turned ON and OFF during this 24-minute scan with ON periods being 4-minutes

long (with a 30 second ramp-up and ramp-down) and OFF periods 3-minutes long, flanking

the ON-stimulation at the beginning and the end (see Fig 1).

Applying tDCS

The total applied tDCS current was 4mA in the SE and ME montages; in the SE montage, all

4mA was applied through a single electrode while in the ME montage, 2mA was applied to the

posterior STG/MTG junction and 1mA each was applied to the SMG and posterior IFG elec-

trodes. The stimulation was applied using the multichannel MR compatible Neuroconn

DC-MC device (Neurocare, Germany). The Neuroconn stimulator device was placed in the

MR control room where the stimulation signals were generated. Three channels were pro-

grammed to concurrently generate 1mA and 2mA currents for the multi-electrode condition

or 4mA in a single channel output for the single electrode condition (Fig 1A). In each of the

concurrent tDCS-fMRI sessions, we alternated between the stimulation OFF and ON condi-

tions, starting with the OFF condition. Three 4-minute epochs of stimulation were applied

during the 24-minute resting state fMRI. Fig 1B shows the timing diagram of the stimulation

epochs during one rs-fMRI acquisition of 24 minutes.

Safety and tolerability

After each session of tDCS, we recorded safety and tolerability information. The skin and scalp

location under the electrodes were inspected for any skin burns or other lesions. At the end of

each session, we asked volunteers to indicate their tolerance of the noninvasive brain stimulation

on a visual analog scale (VAS) with 0 and 10 as the endpoints where zero indicated that subjects

tolerated the stimulation well and had no unusual sensations and 10 indicated that the stimula-

tion session caused strong sensory experiences and was judged to be barely tolerable.
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Dynamic functional connectivity matrices

Although we recorded rs-fMRI with three stimulation epochs interspersed by non-stimulation

epochs, in the current report we focus on the first stimulation epoch, especially the correlation

matrices generated from 4D rs-fMRI image sets acquired immediately after the first stimula-

tion onset. ML models designed in this case rely on feature vectors to perform classification.

Hence, we used a vector representation of a dynamic functional connectivity (DFC) matrix as

input feature vector. DFC is a method of calculating variations in functional connectivity

between iterative samples of two regions generating a DFC matrix for a selected window

length, then moving the time window by a step size to calculate the next DFC matrix which

can also be termed as a sliding window functional connectivity. A DFC matrix for a selected

time window is calculated in two steps- 1) extract (or derive) the raw fMRI signal from the

time-course for a region/s of interest (ROI) and 2) correlate that time-course signal from each

ROI with all of the other ROIs of interest in a correlation matrix. We selected 1 minute as a

window period and the step size of one acquisition volume (approximately 3 seconds). Fig 3

shows the data preprocessing pipeline including DFC calculation, window size and step size.

Further, details on preprocessing parameters are provided in Table A in S1 Document.

A DFC for the no-stimulation conditions was calculated assuming the onset time of a “pre-

tend-stimulation” as 3 minutes after the start of the acquisition to mimic the onset times of the

SE and ME conditions. Data from the first 2 minutes of acquisitions after the real or pretend

onset time was used to generate the DFC matrices and consequently the NS featured class vec-

tors. We performed three sub-analyses to identify the shortest fMRI duration that can be used

to classify the three different tDCS conditions. In each sub-analysis, a different number of

DFC matrices were used as feature vectors. The number of DFC matrices used was either 5,

10, or 20. These DFC matrices were used to generate the featured class vectors which were

then grouped into two categories: single electrode stimulation onset, and multi-electrode stim-

ulation onset. The groups of data from the stimulation sessions were then individually grouped

with the NS featured class vectors resulting in a cumulative dataset of three classes. Although

the stimulation was applied for 4 minutes which resulted in 80 DFC matrices, only first minute

of the rs-fMRI data was used to perform classification.

Selection of ROI pairs

The standard Harvard-Oxford atlas [35–38] with 112 regions of interest was used to calculate a

112 × 112 DFC correlation matrix. Because of the structure of the correlation matrix, each

value is replicated and the values on the diagonal axis are all ‘1.’ We converted each DFC

matrix into a vector of 1 × 6216 unique ROI pairs.

The large size of the feature vector can increase time requirements for preprocessing and

classification. To develop a real time feedback system and reduce the data processing time, we

devised a strategy to reduce the number of ROIs based on neuroanatomy and focus on the cor-

tical regions associated with AF-network. ROIs were drawn on MNI-space T1-weighted

images and a total of 38 equally sized spheres (16 mm in diameter) intended to sample previ-

ously-identified cortical nodes of the AFN (see Fig 2B) as well as the cortical nodes of the Infe-

rior Longitudinal Fasciculus (ILF) network, which was chosen as a control network in both

hemispheres. This resulted in a 38 x 38 DFC correlation matrix with a feature vector size of

1 × 703. To reduce the size of the feature vector even further, we reduced the number based on

their importance and closeness to the nodal cortical endpoints of the AF-network to generate

three groups with a total of 26, 22, 16 ROIs corresponding to the vector sizes 1 × 325, 1 × 231,

and 1 × 120. A list of these custom ROIs and ROI groups is provided in Table B in S1

Document.
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fMRI to feature vector calculation

We used a graph theoretical network analysis toolbox called GRETNA for preprocessing and

calculation of DFC matrices [40]. First, DICOM images were converted to 3D (T1w images)

Fig 3. Data preprocessing flow-chart.

https://doi.org/10.1371/journal.pcbi.1011012.g003
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and 4D (rs-fMRI) NIfTI (Neuroimaging Informatics Technology Initiative) datasets using

dcm2niix [41]. Since the BOLD signal shows some T1-saturation effects in the first few acqui-

sitions, we excluded the first minute of the rs-fMRI data from the analysis. This was followed

by preprocessing steps such as slice timing correction, realignment of rs-fMRI images, spatial

normalization to the standard MNI space using the dartel segmentation method, smoothing,

detrending fMRI data, and regressing out covariates such as white matter signal, CSF signal

and head motion. The regression was carried out using a published strategy [42]. After the

DFC matrices were generated, we used a custom program developed in MATLAB to get the

feature vector for each participant and each set of ROIs to be used in the ML part.

Machine learning approach

Dataset preparation. The prepared dataset for this study consists of data from 33 partici-

pants who completed a total of 69 sessions which included 20 no-stimulation sessions, 25 sin-

gle-electrode sessions, and 24 multi-electrode sessions. In order to ensure that the classification

models used in this study were able to train effectively and were tested on an unseen data to

assess performance of the trained model, the dataset was divided into a training set (80% of the

data) and a testing set (20% of the data). Additionally, we ensured that data from a particular

participant was not split between testing and training data which lead to 26 datasets used for

training and 7 datasets (not seen by the model) used for testing. The data used in the paper is

available on GitHub (https://github.com/soveshmohapatra/DFC_Data_PLOS)).

However, due to the fewer number of sessions included in the dataset, there was a risk that

the classification models would be overfit to the training data and not generalize well while

performing on the testing data [43]. This means that the generalized learning of mapping from

inputs to outputs is avoided, and the models could learn the specific inputs and the associated

output results [44]. To mitigate this risk, we took two approaches: up-sampling the training

data and adding noise to the training data [45]. Up-sampling involved an increase in the num-

ber of training examples [46,47], while adding noise across the training data involved ran-

domly swapping the values of multiple features for a subset of the data points. These measures

were taken to make the classification models more robust and better able to generalize their

predictions regarding new data.

Classification algorithm. The machine learning (ML) models random forest, k neigh-

bors’ classifier, naive bayes, decision tree classifier, gradient boosting classifier were used on

the feature vectors from the DFC matrices. The objective of the ML models is to classify the

DFC matrices into three categories: NS, SE, and ME [48].

Ten-fold cross-validation was deployed while training the models. The use of multiple

models has helped us compare performance across different models along with a varying num-

ber of volumes.

Independent validation. To validate the results of the classifier and to assess the perfor-

mance of the classification model, we focused on three parameters: Receiver Operating Charac-

teristic (ROC) score, Matthews Correlation Coefficient (MCC), and Accuracy (based upon the

test dataset). The ROC score shows the relationship between sensitivity and specificity for every

possible cut-off when performing a combination of predictions. The MCC score calculates the

difference between the actual values and predicted values of the classification which is equiva-

lent to the chi-square statistics for a 2 × 2 matrix [49]. While evaluating the models using differ-

ent parameters, we have also considered each model’s sensitivity and specificity. Accuracy was

calculated using the ratio of true positives and true negatives against all predictions.

Model interpretation. There are various methods to estimate the importance of the attri-

butes. In tree-based models like RF and decision tree, attribute importance is pre-assigned
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which greatly influences the output. The contribution of an attribute is completely different

from its importance towards the output. The importance is based on the quantitative approach

that determines which attributes significantly drive the model’s performance. Whereas the

contribution of the attributes helps to understand an intuitive explanation for the output,

beyond just identifying what attributes strongly affect the classification performance.

In this study, we have used the Gini impurity decrease to interpret RF model. We can deter-

mine how much a particular attribute contributes toward the average decrease in the error of

the model classification. Each value from the feature vector represents a correlation between

ROI pairs and Gini impurity decrease and helps us identify the importance of each ROI pair or

an attribute. However, this method is insufficient in explaining how individual attributes affect

the prediction.

Therefore, we also used the SHAP method to determine quantitatively how each attribute

contributes to the RF model’s performance [50,51]. The SHAP uses the game theory concept

to calculate the contribution of each of the attributes combined with the prediction model and

explanation model using the various methods. Using the SHAP method we can determine the

contribution of each attribute to the model classification.

Proof-of-concept feedback system. The various classification models described above will

be tested to identify the ML models’ capable of identifying the effects of ME and SE stimulation

on the fMRI data. Additionally, SHAP method and Gini impurity decrease interpretation will

be used to identify the top ROI pairs that contribute strongly towards this classification.

This was done as follows: whenever a new fMRI dataset was presented to the system, it was

processed to calculate the DFC matrices using GRETNA software which would then be con-

verted to the feature vectors and fed as input to the classification model. The pre-trained classi-

fication model would inform if the fMRI data showed responses that correspond to the effects

generated with ME and SE stimulation. Additionally, top contributing ROI pairs can be com-

pared against top contributing pairs generated while training the model. Upon receiving new

data, the model first generates predictions based on its previous training. Then, the dataset is

expanded by incorporating the new data and human-verified results from the model’s predic-

tions. This updated dataset is used to retrain the model, ensuring that it is able to continuously

improve its learning.

This proof-of-concept feedback system is designed to help in the evaluation of unknown

(newly acquired) fMRI data using classification model and corresponding interpretation indi-

ces which can inform about the stimulation and similarity of the top contributing ROI pairs

with the ROI pairs that strongly influence the classification in validation. Using this informa-

tion, stimulation parameters can be adjusted to invoke the desired responses in fMRI.

Results

Evaluation of classification performance

Classification performance was evaluated using the feature vectors generated with the first 5,

10, and 20 DFC matrices calculated from the rs-fMRI data immediately after stimulation

onset. Best classification performance was observed with the first minute of data which are

detailed below. Results with the first 5 and first 10 DFC matrices are presented in Table C-F in

S1 Document.

ROC and MCC score

The ROC score was generated using the true positive rates and false positive rates of the mod-

els. The MCC score is used as a measure of the quality of binary classifications and has been

generated using the formula based on true positives, false positives, true negatives, and false
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negatives. In Table 1, we represent the ROC and MCC scores for each of the models. A score

of 1.0 for the ROC indicates the model performs ideally. In the case of the k-nearest neighbor

(knn) classifier, the ROC was consistently 0.90 (except when 112 ROIs or 16 ROIs were used)

or higher when compared to the other models, this displayed the best performance. Although

the Random Forest Classifier came close to the values of the ROC curve it was consistently

lower compared to knn. A score of 1.0 for the MCC indicates the perfect agreement between

the prediction and observation. MCC values for the knn classifier were close to 0.85 when 38,

26 and 22 ROIs were used to calculate feature vectors. Similar to ROC results, MOC values

with random forest classifier were close to the knn performance but were slightly lower. Logis-

tic regression, decision tree, and naïve Bayes classifiers’ performance was inferior to the knn or

random forest classifiers irrespective of the number of ROIs used to generate feature vectors.

Classification accuracy

In Table 2, we show the overall classification accuracy of different models with varying sets of

ROIs. It is observed that the overall accuracy improved when the number of ROIs were

reduced from 112 to lower numbers, and it was highest [0.9247] when using the dataset gener-

ated using 22 ROIs and k-nearest neighbor (knn) classifier.

Fig 4 shows the ability of top 5 performing models to classify the three stimulation conditions

with feature vectors extracted from the rs-fMRI data with 22 ROIs. For each model, bar graphs

represent classification accuracy for each class. It can be observed that in some cases, the knn

classifier is not the one which classifies with highest accuracy. However, it is our best perform-

ing model because when taken overall, it shows highest accuracy. Fig 4 also shows that the ran-

dom forest model classifies the NS and SE with the highest accuracy values while the knn model

classifies the ME category with the highest accuracy. Additionally, Fig 5 shows confusion matri-

ces for knn and random forest models generated for the dataset with 22 ROIs and 26 ROIs.

Analysis of the contributions and importance of attributes

For further analyses, we have selected the 22 ROI and 26 ROI sets because these sets showed

the best performance in machine learning predictions and took comparatively less

Table 1. ROC and MCC across different ROIs for the classification shown by various models.

Model No. of ROIs—112 No. of ROIs—38 No. of ROIs—26 No. of ROIs—22 No. of ROIs—16

ROC MCC ROC MCC ROC MCC ROC MCC ROC MCC

K Neighbors Classifier 0.6822 0.6402 0.9055 0.8593 0.9099 0.8697 0.9247 0.8459 0.8898 0.8213

Random Forest Classifier 0.7321 0.6789 0.8803 0.8207 0.8889 0.8124 0.9012 0.8411 0.8646 0.7984

Logistic Regression 0.7091 0.6211 0.8519 0.7794 0.8697 0.7985 0.8899 0.7456 0.7836 0.6732

Decision Tree Classifier 0.633 0.5154 0.7553 0.6338 0.7375 0.6741 0.8838 0.7982 0.7533 0.6173

Naive Bayes 0.654 0.4879 0.72 0.5856 0.7356 0.6569 0.7099 0.6428 0.5596 0.3215

https://doi.org/10.1371/journal.pcbi.1011012.t001

Table 2. Accuracy across different ROIs for the classification shown by various models.

Model No. of ROIs—112 No. of ROIs—38 No. of ROIs—26 No. of ROIs—22 No. of ROIs—16

K Neighbors Classifier 0.683 0.9056 0.9099 0.9247 0.8833

Random Forest Classifier 0.731 0.88 0.8889 0.9012 0.8689

Logistic Regression 0.71 0.8518 0.8697 0.8899 0.7869

Decision Tree Classifier 0.63 0.7556 0.7375 0.8838 0.75

Naive Bayes 0.6544 0.722 0.7356 0.7099 0.5574

https://doi.org/10.1371/journal.pcbi.1011012.t002
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computational time. Since Random forest algorithm was the best performing decision tree

model, we evaluated contribution and importance of attributes using Gini impurity decrease

and SHAP. The Gini impurity decrease can be used to evaluate the purity of the nodes in the

Fig 4. Accuracy of models to classify different stimulations.

https://doi.org/10.1371/journal.pcbi.1011012.g004

Fig 5. Confusion matrices for the prediction of knn model on the 22ROIs (a) and 26 ROIs(b) dataset. Confusion

matrices for the prediction of random forest model on 22 ROIs (c) and 26 ROIs (d) dataset.

https://doi.org/10.1371/journal.pcbi.1011012.g005
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decision tree, while SHAP can be used to understand the contribution of each feature to the

final prediction made by the model. This helped in identifying any biases or patterns in the

model’s predictions and understand why the model is making certain decisions.

In Fig 6, the importance plot shows the RF model’s ability to classify based on the Gini

impurity decrease for each attribute using 22 ROIs and 26 ROIs, respectively. The top ROI

pair from the data with 26 ROIs has the Gini impurity decrease of 0.174, and subsequently, the

tenth most important pair has the Gini impurity decrease of 0.031. The top ROI pair from the

data with 22 ROIs has the Gini impurity decrease of 0.246, and subsequently, the tenth most

important pair has the Gini impurity decrease of 0.019. Although the sum of the Gini impurity

decrease for all pairs is equal to 1, the top 5 ROI pairs in the 26 ROIs and 22 ROIs contribute

more than 50% towards it.

The importance rate doesn’t tell us about the contribution of each attribute towards a specific

output. The SHAP summary plot’s introduction helps in performing an in-depth analysis.

From the Fig 6B, it is observed that the top pair from the data with 26 ROIs has the highest con-

tribution of 0.086 towards the model’s output of classifying a vector into ME. In contrast, the

second ROI pair has the highest contribution of 0.081 towards the model’s output of classifying

a vector into not ME. Similarly, Fig 6D represents the SHAP values for pairs of 22 ROIs. It is

observed that the top pair has the highest contribution of 0.118 towards the model’s output of

classifying a vector into ME. In contrast, the fourth and fifth ROI pairs have the highest contri-

bution of 0.055 towards the model’s output of classifying a vector into not ME. This shows how

each ROI pair can affect a specific output by the RF model.

Fig 6. Importance rate and contribution of ROI pairs towards classifying ME stimulation using Gini impurity

decrease and SHAP value: (a & b) 26 ROIs and (c & d) 22 ROIs. Table G and Table H in S1 Document lists the ROI

pairs associated with the codes.

https://doi.org/10.1371/journal.pcbi.1011012.g006
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Time Taken for computation for processing of ROIs

We used a computer with 64 gigabytes of RAM, NVIDIA GeForce RTX 2080 of 4 gigabytes,

and AMD Ryzen 9 5900X CPU with UBUNTU 18.04 operating system. The GRETNA pro-

gram was installed on MATLAB 2021b (MathWorks, Natick, MA) which was used to carry

out the entire processing pipeline including calculation of the DFC matrices. Time required

for preprocessing steps was 11 minutes and 26 seconds and it did not differ with number of

ROIs. In contrast, the calculation of DFCs showed exponential decrease in time required with

a decrease in the number of ROIs. In Fig 7, we see that the time taken for the computation of

DFC calculation for different numbers of ROIs has inverse exponential relation with a decrease

in the number of ROIs. The maximum time taken to calculate the DFC is 6minutes and 18 sec-

onds with 112 ROIs whereas it came down to just 27 seconds when calculated for 16 ROIs.

Evaluating the accuracy of feedback system

In this study, we applied two models—best performing pre-trained model (knn) and best per-

forming tree-based model (random forest) to classify the test dataset into various conditions.

We computed the Gini impurity decrease and SHAP methods over the RF model to identify

the contribution and importance of each ROI pair.

In each test case, we found that the similarity of the top 10 ROI pairs is consistently higher

than 60% with the averaged classified list of ROI pairs for ME class. In each independent data-

set’s predictions, we identified that the top 2 contributing ROI pairs were SMA1_R–iPreCG_R

and ParOp_R–IFG3_R; those two pairs match the corresponding averaged classified list of

pairs, as shown in Fig 8.

Fig 7. Time taken for data processing up to prediction, varying the number of ROIs used.

https://doi.org/10.1371/journal.pcbi.1011012.g007
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The total time taken in this process of prediction of one test dataset was close to 18 minutes

(12 minutes of preprocessing and 6 minutes for feature extraction and classification). Such a

short time would allow researchers to continue the experiment with a 30 min break to deter-

mine engagement of a targeted brain region and adjust the electrodes if necessary to achieve

true engagement.

Evaluation of Safety and tolerability

The study using the high dose tDCS stimulation caused no significant adverse effects among

the participants. None of the participants experienced severe headaches, seizures, neurological

impairments, skin burns, or any hospitalizations that were directly related to the stimulation.

In addition, stimulation was well tolerated by all the participants. None of the participants

stopped the experiment due to the stimulation being intolerable (= VAS scores 9 and 10). Fig 9

Fig 8. The top 2 ROI pairs contributing towards the classification of multi-electrode stimulation.

https://doi.org/10.1371/journal.pcbi.1011012.g008

Fig 9. VAS tolerability scores (min = 0, max = 10) of all sessions of all participants.

https://doi.org/10.1371/journal.pcbi.1011012.g009
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shows the tolerability scores for SE and ME sessions, and a T-test between the scores showed

no significant difference (p = 0.8455).

Discussion

We developed a classification method that used a complex 4-D fMRI data set acquired during

concurrent tDCS-fMRI experiments to identify whether or not (1) stimulation was applied

and (2) electrode montage had an effect on network engagement. A multi-electrode montage

targeting nodal points of access more reliably engaged the AFN than a single electrode mon-

tage or a no-stimulation condition. Additionally, we developed a proof-of-concept feedback

system using machine learning methods to determine quickly and efficiently whether or not

the best montage modulated the targeted brain network or not. We presented a unique and

innovative approach to use machine learning applied to 4-D concurrent tDCS-fMRI data to

classify tDCS effects based on stimulation montage and to generate a near real-time feedback

system to verify engagement of the targeted network.

Advancement of the novel machine learning approaches, increase in computational pro-

cessing speed, and data analysis techniques have fueled the use of artificial intelligence (AI)

techniques to solve multi-dimensional data-intensive problems [52]. The use of AI has shown

promising results in different healthcare applications including X-ray & CT evaluation, devel-

opment of antibiotic drugs, cancer classification, biomarker detection, and diagnosis [53].

Only a limited number of research studies have evaluated the use of AI to understand the

effects of targeted tDCS parameters and their topical specificity. Al-Kaysi and colleagues used

baseline EEG spectra and mood-cognition evaluation measures from 10 participants’ data to

predict if tDCS will positively modulate the mood [30]. Kajimura and colleagues showed that

functional MR images acquired after active stimulation differed compared to sham; however,

this study suffered from two limitations: there were few participants in each group (N = 12)

and applying tDCS outside the scanner which means that the study investigated effect of tDCS

in different physical conditions [31]. In other studies, ML methods were used to perform

binary classification in complex data, outcome variables and their relationship to the stimula-

tion, and how other baseline factors affect the outcome variables [30,32–34]. All of these stud-

ies, used ML methods to either understand/investigate effects of the stimulation in two groups

namely ‘Stimulation’ and ‘No-Stimulation.’ Our study was more complex than previous stud-

ies in two aspects, first, we used concurrent tDCS-fMRI allowing us to record real time effects

of stimulation and we applied ML methods to perform classification of three categories includ-

ing two different stimulation montages. The classification accuracies demonstrate the ability of

the ML model to detect if stimulation was applied or not. Additionally, the ML model reliably

classifies condition into ME, SE, and NS stimulation categories with the ME category achieving

the highest accuracy.

Our secondary goal was to develop a near real-time feedback system that uses the shortest

fMRI acquisition time to determine if the targeted network has been engaged. Real-time has to

be defined for each system as it is a subjective measure, in this case we defined it as half an

hour or less. This period of time might be reasonable to determine whether or not the experi-

ment can be continued, or electrodes have to be repositioned. The alternative approach with-

out such a fast feedback system would be the collection of an entire dataset, the off-line

analysis of such a dataset to determine if a network has been engaged or not, and a decision

whether or not the experiment that relied on a true network engagement would have to be

repeated again. A new electrode montage would lead to a new experiment several days later

and the same cycle would start over again. Our proposed feedback system of reducing the sets

of ROIs for computing efficiency and accuracy, although potentially increasing the initial
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fMRI session’s duration, would reduce the need for subsequent sessions and time and effort to

analyze datasets that might not show an engagement of the targeted system. As shown in the

results section, ROI sets with 22 ROIs perform classification at overall accuracy close to 90%

and time required for feature calculation close to 1 minute compared to 6 minutes required

when using 112 ROI annotated over the whole brain with total computation time close to 18

minutes. In addition to identifying how many ROIs would be optimal, we also investigated

which classification model would provide the best possible accuracy, ROC, and MOC scores.

Results suggest that KNN model performs at the highest accuracy of 92% closely followed by

the random forest model with the accuracy of 90%.

The proof-of-concept feedback system used DFC between ROI pairs as an individual fea-

ture; hundreds of such features were used as input for the ML method. However, identifying

the anatomically relevant ROIs not only improved the accuracy, reduced time required, but

also improved the possibility of using ML method as a feedback system by allowing us to iden-

tify the top contributing features using the Gini impurity decrease and the SHAP method. The

top 5 out of 231 features contributed close to 50% towards the classification.

Testing of the independent fMRI dataset with the feedback system showed that the top

DFC of the two ROI pairs contributing towards the classification into stimulation type highly

matches with the top two contributing features generated from the group analysis. The top

two ROI pairs that are identified as strong contributors to the ME classification were

‘SMA1_R–iPreCG_R’ and ‘ParOp_R–IFG3_R.’ (see Fig 8 for details of the anatomical location

of these spherical ROIs). These ROI pairs represent nodal regions and relay regions of the

right AFN, connected via the AF tract (Fig 2A). Although the ROIs were anatomically defined

and chosen to be of equal size, they were specifically determined by the investigators to exam-

ine the AFN and ILF. In the future more generic ROIs derived either from atlases or defined

using resting-state discrete atoms [54] or larger established resting-state networks could be

tested. The ME montage is designed to stimulate multiple nodal regions of the right AFN with

the goal to increase connectivity between them as well as other related network regions. The

results of our classification analysis suggest that it is the change in connectivity between

regions belonging to this network that enhances the classification output. Further, 60% of the

top 10 features that contribute towards the classification are common across participants. The

number 60% is not just more than a random chance, but it is a significantly stronger measure

of commonalities in the response across participants as these pairs would contribute more

than 50% towards classification of the participant to a particular stimulation type.

There are certain limitations where the ML approach can be improved. The first one being

the time required for preprocessing, we are exploring if improving computing power and

using high speed memory devices will reduce the time required, additionally, we are also

exploring the possibility of performing these operations over high performing computing

machines to harness their processing speed. This would allow us to shorten the period from

concurrent tDCS-fMRI acquisition to the feedback on targeted engagement to the experi-

menter. Second, the current proof-of-concept feedback system could be further optimized by

the use of an MR-compatible multiplexed electrode system that can change where the current

is applied to achieve network effects using a pre-mounted array of electrodes making it less

likely that a participant would have to be moved out of and back into the scanner again and

adjusting location of the electrodes.

In conclusion, machine learning was developed to identify the best electrode montage to

show the most engagement of a targeted brain network spanning multiple lobes of the brain

with high accuracy. ROI pairs whose DFC values contributed strongly towards the multi-class

classification were identified in the order of importance. The top 5 ROI pairs, out of 231 ROI

pairs, have a cumulative importance of 50% and are all connected to the AFN targeted Arcuate
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Fasciculus Network (AFN). Furthermore, a prototype of a machine learning near real-time

feedback system was introduced which would only require 1 minute to extract the DFC calcu-

lation-parameters and 1 minute for machine learning calculations.

Supporting information

S1 Document. Supplementary document with all the additional tables from Table A to

table G listed in the manuscript. A) Information regarding specific settings used in the

GRETNA software while extracting the DFCs; B) ROI sets used for analysis and prediction of

DFCs of tDCS; C) ROC and MCC across different ROIs for the classification shown by various

models with data from only the first 5 DFC matrices is included; D) Accuracy across different

ROIs for the classification shown by various models with data from only the first 5 DFC matri-

ces is included; E) ROC and MCC across different ROIs for the classification shown by various

models data from only the first 10 DFC matrices is included; F) Accuracy across different

ROIs for the classification shown by various models data from only the first 10 DFC matrices

is included; G) Top 10 ROI Pairs contributing the classification using the dataset produced by

26 ROIs; and H) Top 10 ROI Pairs contributing the classification when used dataset produced

by 22 ROIs.
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