
RESEARCH ARTICLE

Gate-based quantum computing for protein

design

Mohammad Hassan KhatamiID
1, Udson C. Mendes2, Nathan Wiebe3,4,5, Philip

M. KimID
1,3,6*

1 Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario,

Canada, 2 CMC Microsystems, Sherbrooke, Québec, Canada, 3 Department of Computer Science,

University of Toronto, Toronto, Ontario, Canada, 4 Pacific Northwest National Laboratory, Richland,

Washington, United States of America, 5 Department of Physics University of Washington, Seattle,

Washington, United States of America, 6 Department of Molecular Genetics, University of Toronto, Toronto,

Ontario, Canada

* pi@kimlab.org

Abstract

Protein design is a technique to engineer proteins by permuting amino acids in the sequence

to obtain novel functionalities. However, exploring all possible combinations of amino acids

is generally impossible due to the exponential growth of possibilities with the number of des-

ignable sites. The present work introduces circuits implementing a pure quantum approach,

Grover’s algorithm, to solve protein design problems. Our algorithms can adjust to imple-

ment any custom pair-wise energy tables and protein structure models. Moreover, the algo-

rithm’s oracle is designed to consist of only adder functions. Quantum computer simulators

validate the practicality of our circuits, containing up to 234 qubits. However, a smaller circuit

is implemented on real quantum devices. Our results show that using Oð
ffiffiffiffi
N
p
Þ iterations, the

circuits find the correct results among all N possibilities, providing the expected quadratic

speed up of Grover’s algorithm over classical methods (i.e., OðNÞ).

Author summary

Protein design aims to create novel proteins or enhance the functionality of existing pro-

teins by tweaking their sequences through permuting amino acids. The number of possi-

ble configurations, N, grows exponentially as a function of the number of designable sites

(s), i.e., N = As, where A is the number of different amino acids (A = 20 for canonical

amino acids). The classical computation methods require OðNÞ) queries to search and

find the low-energy configurations among N possible sequences. Searching among these

possibilities becomes unattainable for large proteins, forcing the classical approaches to

use sampling methods. Alternatively, quantum computing can promise quadratic speed-

up in searching for answers in an unorganized list by employing Grover’s algorithm. Our

work shows the implementation of this algorithm at the circuit level to solve protein

design problems. We first focus on lattice model-like systems and then improve them to

more realistic models (change in the energy as a function of distances). Our algorithms

can implement various custom pair-wise energy tables and any protein structure models.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011033 April 12, 2023 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Khatami MH, Mendes UC, Wiebe N, Kim

PM (2023) Gate-based quantum computing for

protein design. PLoS Comput Biol 19(4):

e1011033. https://doi.org/10.1371/journal.

pcbi.1011033

Editor: Nir Ben-Tal, Tel Aviv University, ISRAEL

Received: November 22, 2022

Accepted: March 17, 2023

Published: April 12, 2023

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1011033

Copyright: © 2023 Khatami et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

file. The codes to create the circuits in the MR and

SP models in this study are available on Zenodo at

https://zenodo.org/record/7344649 and are

https://orcid.org/0000-0002-1340-1087
https://orcid.org/0000-0003-3683-152X
https://doi.org/10.1371/journal.pcbi.1011033
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011033&domain=pdf&date_stamp=2023-04-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011033&domain=pdf&date_stamp=2023-04-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011033&domain=pdf&date_stamp=2023-04-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011033&domain=pdf&date_stamp=2023-04-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011033&domain=pdf&date_stamp=2023-04-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011033&domain=pdf&date_stamp=2023-04-24
https://doi.org/10.1371/journal.pcbi.1011033
https://doi.org/10.1371/journal.pcbi.1011033
https://doi.org/10.1371/journal.pcbi.1011033
http://creativecommons.org/licenses/by/4.0/
https://zenodo.org/record/7344649


We have used quantum computer simulators to validate the practicality of our circuits

which require up to 234 qubits. We have also implemented a simple version of our circuits

on real quantum devices. Our results show that our circuits provide the expected qua-

dratic speed-up of Grover’s algorithm.

This is a PLOS Computational Biology Methods paper.

1. Introduction

Protein design is a procedure to construct proteins with certain configurations to achieve

novel functionality. In this regard, amino acids are mutated in the protein’s sequence to find

sets of residues that provide the lowest energy of the protein in the expected configuration.

Using computational approaches, one could consider having “s” designable sites in the

sequence and “A” different amino acids that could fill these sites, where A = 20 for the canoni-

cal amino acids. This will provide As possible sets of amino acids to find the answer. Thus, the

number of possible sets of amino acid sequences grows exponentially by increasing the desig-

nable sites.

In computer science terminology, the protein design is categorized under non-determin-

istic polynomial-time (NP)-hard problems [1,2]. The main characteristics of these problems

are that the computational time and resources needed to find their solutions scale poorly.

Thus, finding their answer using conventional computers could become either impossible or

requires a great deal of computational time. However, the validity of a proposed answer could

be evaluated in polynomial time by conventional computers [3]. Even for the simple hydro-

phobic-polar (HP) [4] protein lattice models containing only two types of residues (hydropho-

bic and polar), the protein design is shown to be in the class of NP-hard problems [5].

Statistical methods such as Markov chain Monte Carlo (MCMC) [6,7] are currently being

used to solve NP-hard problems, including protein design problems, on conventional comput-

ers [8–10]. In these methods, the algorithm uses sampling techniques and probability distribu-

tions to find the answers among all possible sets of amino acids. However, since the

probabilistic methods do not explore all sets, it is possible to miss some of the answer states.

Unlike conventional approaches, quantum computation techniques are expected to

enhance solving the NP class of problems in their exact forms [3]. In recent years, there have

been attempts to use quantum computers to solve NP-hard problems in protein studies,

mainly focused on protein folding [11–14]. In these studies, hybrid quantum-classical algo-

rithms employing gate-based quantum devices, such as the Quantum Approximate Optimiza-

tion Algorithm (QAOA) [15] and the Variational Quantum Eigensolver (VQE) [16], as well as

quantum annealing approaches [17] are implemented.

As an example of gate-based approaches, Fingerhuth et al. [14] used the QAOA method to

study the protein folding on a 9-residue protein using the HP energy model and a 3D lattice

structure. Similarly, a version of the VQE approach is employed by Robert et al. [13] to study

the protein folding of a 10-residue protein, Angiotensin, and a 7-residue neuropeptide. In the

case of implementing quantum annealers for protein folding, Perdomo-Ortiz et al. [11] stud-

ied the folding of a 6-residue peptide using a fixed energy table in a 2D lattice model, employ-

ing 81 D-Wave’s “superconducting quantum bits”. Similarly, Babej et al. [12] have worked on

folding a ten residue Chignolin protein and an eight residue Trp-Cage peptide in 2D and 3D

lattice models, respectively. This study used 2048 superconducting quantum bits of D-Wave’s

PLOS COMPUTATIONAL BIOLOGY Gate-based quantum computing for protein design

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011033 April 12, 2023 2 / 20

available on GitHub at https://github.com/

Mohammad-Khatami/grover-protein-desing.

Funding: PMK received a Canadian Institutes of

Health Research (CIHR) grant PJT-159750, which

supported this project. (https://cihr-irsc.gc.ca)

MHK’s salary was partially funded by Canadian

Institutes of Health Research (CIHR) grant PJT-

159750. The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: I have read the journal’s

policy and the authors of this manuscript have the

following competing interests: UCM is the leader of

the quantum computing team at CMC

Microsystems. PMK is a co-founder and consultant

to multiple companies, including Oracle

Therapeutics and TBG Therapeutics, and serves on

the scientific advisory board of ProteinQure. MHK

and NW declare no Competing Financial or Non-

Financial Interests.

https://doi.org/10.1371/journal.pcbi.1011033
https://github.com/Mohammad-Khatami/grover-protein-desing
https://github.com/Mohammad-Khatami/grover-protein-desing
https://cihr-irsc.gc.ca


2000Q quantum annealer device. Regardless of the approach, the studies employing quantum

computation for protein folding are mainly limited to peptides with only a handful of residues

and a very simplified or limited number of amino acid types, e.g., the HP model. In the case of

protein design, Mulligan et al. [18] have prepared a hybrid quantum-classical solver in Rosetta

software [19], called QPacker, to address the protein design problem on D-Wave’s 2000Q

quantum annealer device. Despite the attempts to use quantum computation, to the best of

our knowledge, there are no records of studies in which a pure quantum computational

method based on a pure gate-based approach is used to investigate protein design problems.

This work introduces a procedure to build gate-based quantum circuits, employing Gro-

ver’s algorithm [20], to solve protein design problems. Grover’s algorithm is a fundamental

and famous quantum computation algorithm that offers a quadratic speedup in finding

answers in an un-sorted list over classical methods [3,20–22]. In general, Grover’s algorithm is

composed of four main parts: initialization, Grover’s oracle, Grover’s diffuser and measure-

ment (Fig 1A). The initialization, the diffuser and the measurement steps are almost similar

for all systems in this study. However, the oracle step varies depending on the complexity of

the system and is the only step that requires auxiliary work qubits, in addition to the n qubits

(Fig 1B).

In the initialization step, n qubits are allocated to create a superposition of N = 2n quantum

states by applying Hadamard (H) gates i.e., H�n, representing all possible answer states in the

system. This step is similar to other quantum algorithms such as Shor’s algorithm [23], and the

Deutsch-Jozsa algorithm [24].

In the oracle, the circuit is programmed to implement energies and do all necessary calcula-

tions to find the answer states (Fig 1B). This part of the algorithm inputs the general features

of the structure (Fig 2), pre-computed pair-wise interaction energy tables (Fig 3), and a thresh-

old energy (Eth) value (all discussed in detail later in the paper). In addition, pre-computed dis-

tance features are provided as input to the oracle depending on the system’s complexity. The

oracle is designed to use only the summation operation (and multiplication, technically a form

of summation). First, the energy values are summed for each pair of interacting designable

sites to find the total energy of the sequence. Then, it is subtracted from the Eth. If the result is

negative, the oracle marks that sequence as an answer state by negating its amplitude (Fig 1B).

Note that since the probability of each state is the only quantity of a quantum state that could

be measured in the classic realm, the negative amplitude of the answer states in the oracle step

does not change the relative probabilities of states (probability = (amplitude). (amplitude)*).
In the next step of the algorithm, the diffuser increases the probability of answer states,

marked by the oracle, in the circuit (Fig 1A). In the final step, the results of the circuit are mea-

sured. To increase the probability of finding the answer states, the oracle and the diffuser steps

should be repeated for the Oð
ffiffiffiffiffiffiffiffiffiffiffi
N=M

p
Þ number of iterations (R), where M is the number of

answer states in the circuit [3].

Three main oracle models are developed in this study, each with a distinct protein structure

representation, distance dependencies, and pair-wise interaction energy tables. In the first

model, which is addressed as the “SP” (simplified) model, there are no distance dependencies

between the designable sites, and the 2D lattice model-like structures represent the protein

(Fig 2A, 2B and 2C). Moreover, only integer numbers are used for energies (Fig 3A), and the

oracle only uses the summation function. In the second model, i.e., the “MR” (more realistic)

model, the pair-wise energy table (Fig 3B) and pre-computed reciprocals of the distances (d-1)
between the designable sites are introduced in the circuit (Fig 2D and 2E). First, the distance

reciprocals are multiplied by the pair-wise energy of residues filling each designable site. Then,

the values are summed to find the system’s total energy. In this model, fixed-point decimal

PLOS COMPUTATIONAL BIOLOGY Gate-based quantum computing for protein design

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011033 April 12, 2023 3 / 20

https://doi.org/10.1371/journal.pcbi.1011033


numbers are used to calculate the results (Fig 3B). For the SP and MR models, since we are in

the noisy intermediate-scale quantum (NISQ) devices era [25],we use quantum computer sim-

ulators to study the circuits’ validity and results. However, to test the practicality of our algo-

rithms on real IBM quantum devices, a third model is developed, which is a simplified version

Fig 1. Schematic representation of our circuits. A) Different steps of Grover’s algorithm; B) Different sub-steps implemented in our Oracle. The parallel lines

represent qubits. The blue lines show the n qubits and the red lines show the work qubits. In the oracle, if |ki is an answer state, f(k) = 1, otherwise it is 0.

https://doi.org/10.1371/journal.pcbi.1011033.g001

PLOS COMPUTATIONAL BIOLOGY Gate-based quantum computing for protein design

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011033 April 12, 2023 4 / 20

https://doi.org/10.1371/journal.pcbi.1011033.g001
https://doi.org/10.1371/journal.pcbi.1011033


of the SP model, addressed as “IBM-SP”. This model uses the hydrophobic-polar energy table

in Fig 3D and the protein structure in Fig 2A.

Note that in the MR model, the d-1 mainly acts as weights of interactions, providing a

weighted impact of each pair-wise interaction in the system. However, considering

Ecoulomb ¼
kqiqj
d , where k is the Coulomb constant, q is the electric charges, and i and j are the two

Fig 2. Schematic representations of protein models. SP model with: a) Two designable sites; b) Three designable sites; c) Six designable sites with I) three, II)

four, and III) five pair-wise interactions. MR model with: d) Two designable sites; e) Three designable sites. The designable sites are shown as circles with

numbers. The red dashed lines represent the interactions among the designable sites. In a–c) the pattern of interactions between the sites are provided for each

structure. The checkered circles are non-interacting residues. In this study, there are no geometrical differences between residues, and all are being treated as
identical beads represented with circles. In d) and e) the d� 1

ij is the corresponding distance reciprocal between designable sites i and j.

https://doi.org/10.1371/journal.pcbi.1011033.g002

PLOS COMPUTATIONAL BIOLOGY Gate-based quantum computing for protein design

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011033 April 12, 2023 5 / 20

https://doi.org/10.1371/journal.pcbi.1011033.g002
https://doi.org/10.1371/journal.pcbi.1011033


Fig 3. Energy tables to represent the pair-wise interactions in our systems and the binary representation of residues. Energy tables for: a) The SP model;

b) The MR model. c) Binary representation of residues in the energy table. d) Energy table and the residue representations for the HP protein model. In a–c)

H1 and H2 represent two types of hydrophobic residues, Pol1 and Pol2 represent two types of polar residues, Pos represents a positive residue, Neg represents

a negative residue, and two types of “other” residues that do not fit in any of the previous categories are represented by X1 and X2. Note that all energies in

our tables have qualitative values. In d) H represents hydrophobic and P represents polar residues.

https://doi.org/10.1371/journal.pcbi.1011033.g003

PLOS COMPUTATIONAL BIOLOGY Gate-based quantum computing for protein design

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011033 April 12, 2023 6 / 20

https://doi.org/10.1371/journal.pcbi.1011033.g003
https://doi.org/10.1371/journal.pcbi.1011033


interacting particles, one can treat the values in Fig 3B as constants representing kqiqj between

residues i and j. Thus, the MR model is directly implementing the Coulomb potential for pro-

tein design in its current form. Moreover, since we feed the pre-computed values/tables to our

algorithms, the MR model can implement all potential energies for protein design in conven-

tional packages, such as Rosetta biomolecular modelling suite [26]. For example, one can input

the cosine value of distances or angles for the bonded or angular interactions.

Our results show that by using the quantum simulators, our circuits offer the expected

Oð
ffiffiffiffiffiffiffiffiffiffiffi
N=M

p
Þ queries to find the answers states, which confirm the utilization of Grover’s algo-

rithm’s properties in them. However, the results of real quantum computers indicate the need

for devices with much lower noise to implement our circuits.

2. Results

2.1. Number of qubits in the circuit

The number of qubits required to represent a residue in a unique binary format is given by g =

[log2(A)]. Thus, g = 3 for the eight amino acids used in both SP and MR models (Fig 3A, 3B

and 3C). Even though our energy tables with eight types of residues are simpler than the

canonical model with A = 20 (g = 5), they are still more complicated than the widely used HP

table in the IBM-SP model (g = 1).

Table 1 shows the number of qubits required by different circuits in our study. The total

number of n qubits in the circuits is given by

n ¼ g � s ð1Þ

where g = log2(number of residues). For the SP and MR models, n = 3×s, while this number for

the IBM-SP model is n = 1×s.
In addition, we require m number of qubits in the circuit set to represent each numeric

value, e.g., the energy of each pair-wise interaction, as a part of work qubits (Fig 1). The

required number of qubits to represent a numeric value can be found as

m ¼ dlog2ððjEmaxj þ jEminjÞ � i� 2Þe þ p ð2Þ

where i is the number of interactions in the system, p is the number of qubits allocated to rep-

resent the values after the decimal point, and Emin and Emax are the minimum and maximum

values in the energy table in Fig 3. In the SP model, p = 0 and i is represented as input to the

Table 1. A brief description of each circuit in this study.

Circuit (model) n N m Oracle’s work qubits Total qubits (q)

s = 2 (SP) 6 64 4 9 15

s = 3 (SP) 9 512 5 11 20

s = 6,i = 3 (SP) 18 262,144 6 13 31

s = 6,i = 4 (SP) 18 262,144 6 13 31

s = 6,i = 5 (SP) 18 262,144 7 15 33

s = 2 (MR) 6 64 9 145 151

s = 2 (MR-MP) 6 64 14 225 231

s = 3 (MR) 9 512 9 145 154

s = 3 (MR-MP) 9 512 14 225 234

s = 2 (IBM-SP) 2 4 2 5 7

https://doi.org/10.1371/journal.pcbi.1011033.t001

PLOS COMPUTATIONAL BIOLOGY Gate-based quantum computing for protein design

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011033 April 12, 2023 7 / 20

https://doi.org/10.1371/journal.pcbi.1011033.t001
https://doi.org/10.1371/journal.pcbi.1011033


circuit (Fig 2A). However, in the MR model

i ¼ imax ¼
s� ðs � 1Þ

2

� �

ð3Þ

Here, since we use fixed-point decimal numbers, setting p = 5 in Eq 2 provides the precision

of 0.03125 that is the default for MR model. We also study this model with more precision

(MR-MP), where p = 10 and the circuit can represent values smaller than ~0.001. More detail

on how to choose the minimum required number of m qubits for each system is provided in

S1 Appendix.

As shown in Table 1, the number of work qubits is 2m+1 and 16m+1 for the SP and MR

models, respectively. Since we use different calculations in the oracle, the required number of

work qubits differs for the two models (discussed in the Methods section).

From Eq 1, Eq 2 and Eq 3, we have that the maximum of total number of qubits (q) grows

as ~(3×s+c1log2(s)+c2), where c1 and c2 are constant values. Trying to calculate the distance

reciprocals on the same quantum circuit, as discussed by Bhaskar et al. [27], would add Oðs2 �

c3 � sÞ qubits to the circuit, where c3 is a positive constant value.

Moreover, since the number of qubits required for the SP and MR model is large, we use

the matrix product state (MPS) simulator [28], the only simulator that currently can simulate

circuits with this many qubits. More detail is provided in the Methods section.

2.2. Finding the answer states

Fig 4 shows the probability of finding every individual state for four different systems contain-

ing two designable sites in the SP and MR models. Here, the answer states are clearly distin-

guished with their higher probabilities over the other states in the system. The answer states

for all systems in this study are provided in detail in S2 Appendix.

In the SP model with two designable sites, by setting the Eth to –3 (using Eq 6 in the Meth-

ods section), the algorithm finds the lowest number of answer states. Here, the algorithm finds

two distinct results: Pos-Neg (i.e., residue 1 is Pos and residue 2 is Neg) and Neg-Pos, as shown

in Fig 4A and 4B. These two results are expected as they are the lowest values in the pair-wise

energy table with E = –4 in Fig 3A. Increasing Eth to –2, the circuit finds five answer states,

adding three new states to the previous two answer states from the Eth = -3 (Fig 4C and 4D).

Unlike the SP model, in the MR model, since we use decimal numbers, we can choose the

Eth value more precisely (Eq 7 in the Methods section). To choose the answer states within the

5% and 15% range of the minimum energy of the system, the Eth is set to 95%Emin and 85%
Emin, respectively. Here, the Eth = 95%Emin leads to two answer states, while choosing the Eth =
85%Emin provides three answer states (Fig 4E–4H).

The results in Fig 4 show that even with a single iteration (R = 1), finding each answer state

is more probable than finding each non-answer state for s = 2 systems. However, the total

probability of finding the answer states is less than the total probability of finding the non-

answer states at R = 1, which is generally correct unless for systems with the maximum number

of iterations (Rmax) value of 1 or 2. In other words, to have a higher probability of picking the

answer states (no matter which one) among all N possible states, the total probability of finding

the answer states should be higher than 50%. This probability increases to ~100% by increasing

the number of iterations to R = Rmax (Eq 8 in the Methods section). For example, the total

probability of answer states in the s = 2,Eth = –3 system in the SP model is only ~26% (~12.9%
each state), while the probability of finding non-answer states is ~74% (Fig 4A). Nevertheless,

PLOS COMPUTATIONAL BIOLOGY Gate-based quantum computing for protein design

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011033 April 12, 2023 8 / 20

https://doi.org/10.1371/journal.pcbi.1011033


using R = Rmax = 4, the probability of finding the answer states increases to ~100%, and the

probability of all other states becomes almost zero (Fig 4B).

It should be noted that the results for the s = 2,Eth = –3 system in the SP model (Fig 4A and

4B) are almost identical to the results of the s = 2,Eth = 95%Emin system in the MR model (Fig

4E and 4F). Regardless of the oracle complexity in each model, since these two systems have

the same number of answer states (M = 2) out of the same number of total states (N = 64), the

probability of finding each state is the same for both systems. Moreover, since the M and the N
are the same for these systems, they have the same behaviour with changing the number of

iterations, which will be discussed in more detail later in this section.

In the case of systems with s = 2, the only recognizable difference between the SP and the

MR models is the higher accuracy in choosing the Eth. Here, the role of the d-1 in the MR

model is suppressed due to the spatial symmetry in the two designable site systems. However,

the s = 3 system with different distances between each site (Fig 2E) breaks the symmetry and

illustrates the effect of d−1 in the MR model. To show this effect, we compare the results for the

structure shown in Fig 2E with a similar system with complete spatial symmetry, i.e., an equi-

lateral triangle, where the dij = 1. The same answer states are provided for the s = 3,Eth = 70%
Emin system with the symmetrical and asymmetrical configurations. The same is correct for the

s = 3,Eth = 80%Emin system. Nevertheless, by choosing the Eth = 50%Emin, the system with the

symmetrical configuration has 10 answer states while the asymmetrical system produces 19

answer states (results provided in S2 Appendix).

Fig 4. Histogram representations of the probability of finding each state (64 in total) in circuits with two designable sites. Results for circuits in the SP

model with: a) Eth = -3 and R = 1; b) Eth = -3 and R = Rmax = 4; c) Eth = -2 and R = 1; d) Eth = -2 and R = Rmax = 2. Results for circuits in the MR model with: e)

Eth = 95%Emin and R = 1; f) Eth = 95%Emin and R = Rmax = 4; g) Eth = 85%Emin and R = 1; h) Eth = 85%Emin and R = Rmax = 3.

https://doi.org/10.1371/journal.pcbi.1011033.g004

PLOS COMPUTATIONAL BIOLOGY Gate-based quantum computing for protein design

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011033 April 12, 2023 9 / 20

https://doi.org/10.1371/journal.pcbi.1011033.g004
https://doi.org/10.1371/journal.pcbi.1011033


2.3. Role of number of iterations

Fig 5 shows the probability of finding the answer states as a function of the normalized number

of iterations, R/Rmax. Here, the probability curves represent a universal pattern for different

systems in the SP and the MR models, whereby increasing the R, the probability of finding the

answer states increases, reaching *100% at R = Rmax. Since the computational cost of simulat-

ing larger systems is high, only the first few iterations are simulated for s = 6 systems in the SP

model (Fig 5A), while running them for R = Rmax would require years of simulation on CPU

and terabytes of RAM (discussed in S3 Appendix in detail). Moreover, the probability curves

in Fig 5 follow the ~sin2(αR), which is expected behaviour of Grover’s algorithm [3,29], where

α is a constant value (more detail in S4 Appendix).

The Rmax values obtained from simulations of systems in both SP and MR models, i.e., the

ones reached to the R/Rmax = 1 (Fig 5), are plotted against N/M in Fig 6. These results show

that the circuits follow the Rmax /
ffiffiffiffiffiffiffiffi
N=M

p
behaviour, the quantum advantage that Grover’s

algorithm is expected to provide.

Moreover, the results for the SP,s = 2,Eth = –3 system and the MR,s = 2,Eth = 95%Emin sys-

tem show that since N/M values are the same, the Rmax values are identical (Fig 6). The same is

correct for the SP,s = 2,Eth = –2 and the MR,s = 2,Eth = 70%Emin systems.

2.4. Number of gates used for classic and quantum algorithms

To compare conventional classical methods with our quantum circuits, assume we have a clas-

sical algorithm designed to search through all possible states to find the answers. Furthermore,

suppose the same input data we use in quantum circuits are provided for the classic models,

i.e., protein structures, interaction patterns, pre-computed pair-wise energy tables and distance

reciprocals. Also, assume that the same number of bits and qubits are allocated to represent a

value in both classic and quantum algorithms, i.e., m is the same. The latter confirms that the

number of computations and the accuracy of the calculated values are similar. Despite longer

bits/qubits providing higher accuracy, they require more computations (gates) units. Note that

even though the total number of qubits in our quantum circuits is limited to q (Table 1), the

total number of bits in the classical approach is not limited.

As discussed earlier in this paper, a classical search algorithm requires OðNÞ iterations to

find the answer states. In contrast, our quantum circuits only require Oð
ffiffiffiffi
N
p
Þ iterations. Nev-

ertheless, this comparison does not consider the number of computations used in the classic

and quantum approaches. In our quantum algorithms, the total number of computations is

given by

#ofQtot ¼ #ofQinit: þOð
ffiffiffiffi
N
p
Þ � ð#ofQorcl: þ#ofQdiff :Þ ð4Þ

where #ofQinit., #ofQorcl., and #ofQdiff. are the number of computations conducted in the ini-

tialization step, the oracle and the diffuser, respectively (Fig 1A). However, in the classic realm,

the total number of computations (#ofCtot) required to go through all possible states to find the

answers is

#ofCtot ¼ OðNÞ � ð#ofCÞ ð5Þ

where #ofC represents all computations required to find the energy of a single state.

For simplicity, we compare the SP model with a similarly complex classic model, referred

to as “SP-classic”. In the SP-classic model, similar to the SP model, the pair-wise energies of

designable sites are added together for each N combination of amino acids (sequence) and

subtracted from the Eth to find the answer states. In the classic computation, once the addition

PLOS COMPUTATIONAL BIOLOGY Gate-based quantum computing for protein design

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011033 April 12, 2023 10 / 20

https://doi.org/10.1371/journal.pcbi.1011033


Fig 5. Probability of finding answer states in different systems as a function of normalized number of iterations (R/Rmax). Results for a) The SP model; b)

The MR model; The inset in a), represents data for the first few R for systems with six designable sites.

https://doi.org/10.1371/journal.pcbi.1011033.g005

PLOS COMPUTATIONAL BIOLOGY Gate-based quantum computing for protein design

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011033 April 12, 2023 11 / 20

https://doi.org/10.1371/journal.pcbi.1011033.g005
https://doi.org/10.1371/journal.pcbi.1011033


between two numbers occurs in the SP-classic, the bits get restored and ready for the next

number. However, for the SP model, due to the quantum nature of the circuit, the qubits that

will be re-used should be “cleaned” by re-applying the gates (i.e., the computation is doubled

compared to the SP-classic case). Moreover, the oracle in the quantum circuit should be

cleaned, meaning all the gates should be re-applied (Fig 1B).

Details of calculating the number of computations for each step of circuits in the SP and

SP-classic models are provided in S5 Appendix. For the SP model, the number of computa-

tions in the initialization step is ofQinit: � Oðlog
2
ðNÞÞ gates. The oracle cost (#ofQorcl.) can be

broken into the cost of introducing the energies, cost of adders, cost of subtracting the Etot
from the Eth, and the negation cost. For introducing the energies, the total cost changes as

� O½ðlog
2
ðlog

2
ðNÞÞ � ðlog

2
ðNÞÞ2Þ�. Moreover, it is shown that the number of gates required

in adder functions is OðmÞ [30,31], requiring� O½log
2
ðlog

2
ðNÞÞ � ððlog

2
ðNÞÞ2� gates to com-

pute the Etot. Furthermore, the cost of subtracting the Etot from the Eth is� O½log
2
ðlog

2
ðNÞÞ�,

and the negation cost is� Oð1Þ. Thus,

ofQorcl: � O½log
2
ðlog

2
ðNÞÞ � fðlog

2
ðNÞÞ2 þ log

2
ðNÞ þ 1g�. Finally, in the diffuser, the number

of computations is proportional to� Oðlog
2
ðNÞÞ. Thus, using Eq 4 to find the total computa-

tion cost of computation, we have

ofQtot � O½ðlog
2
ðNÞÞ þ

ffiffiffiffi
N
p
� f½log

2
ðlog

2
ðNÞÞ � ððlog

2
ðNÞÞ2 þ log

2
ðNÞ þ 1Þ� þ log

2
ðNÞg�.

For the SP-classic model, we ignore the cost of introducing the energies to the classic cir-

cuits due to the lack of information on this part. Thus, we only consider the cost of adding the

Fig 6. The maximum number of iterations (Rmax) values as a function of normalized number of states (N/M). The circles represent the data for the SP

model and the stars are the data for the MR model. The magenta dashed line shows the Rmax threshold for Grover’s algorithm, while the black dashed line is the

threshold of the classic realm.

https://doi.org/10.1371/journal.pcbi.1011033.g006

PLOS COMPUTATIONAL BIOLOGY Gate-based quantum computing for protein design

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011033 April 12, 2023 12 / 20

https://doi.org/10.1371/journal.pcbi.1011033.g006
https://doi.org/10.1371/journal.pcbi.1011033


energy values to find the Etot and subtracting it from Eth to find the answer states. In this case,

the cost of the computation for the SP-classic model from Eq 5 is

ofCtot � OðN � ½log
2
ðlog

2
ðNÞÞ � ðlog

2
ðNÞ þ 1Þ�Þ:

These estimations show that for N>56, the number of computations in classic circuits is

larger than the quantum algorithm, despite ignoring the cost of introducing the energy values

to the classic circuit. Note that for the smallest case of s = 2, N is 64, indicating that the number

of computations in classic form is higher than the quantum circuit for all systems. Similar is

correct for the MR model, which is discussed in more detail in S5 Appendix.

2.5. Real devices and the effect of noise in simulators

The IBM-SP model circuit of our algorithms implemented on real quantum devices has four

possible answer states, i.e., HH, HP, PH and PP. As expected from the energy table (Fig 3D), by

setting the Eth = 0 and using the ideal noise-free QASM [32] simulator, the circuit finds the

HH state as the answer (Fig 7A).

In addition to the ideal simulations, we implement selective noise properties of the ibmq_-
toronto (Fig 7B-I) and the ibmq_montreal (Fig 7C-I) devices in the QASM simulator. Detail is

provided in the Methods section. Implementing the gate, measurement and initialization fidel-

ities, as well as the qubit connection mapping properties of the ibmq_toronto and the ibmq_-
montreal devices show that the simulations predict the expected answer state with the average

probabilities of ~53.7% and ~33.5%, respectively. These results show that by only considering

the selected noise sources, the real quantum devices are expected to distinguish the answer

state from the others. Moreover, since the ibmq_toronto and the ibmq_montreal have the same

qubit connection mappings, the large difference between the predicted results in Fig 7B-I and

c-I implies lower gate, measurement and initialization fidelities for the ibmq_toronto com-

pared to the ibmq_montreal quantum computer. These results suggest that despite having

lower quantum volume (QV) [33], the ibmq_toronto device is more likely to distinguish the

answer state clearly.

As expected from the results of the noise-included simulations, running the circuit on the

ibmq_toronto device provides the answer state with the highest average probability of ~28.8%,

while the ibmq_montreal device provides almost the same probabilities for all four states (Fig

7B-II and 7C-II). The probability of finding the HH state using the ibmq_toronto device is

28.77±2.39%, while for the second probable state, i.e., HP, this value is 24.94±1.26. These

results indicate that the HH state has a higher probability considering the standard deviations.

Note that despite having a higher probability, the probability of finding the answer states is

only ~28.8%, while the probability of finding non-answer states is ~71.2%.

The difference between the results of the simulations considering the gates fidelities and the

qubit mappings (Fig 7B-I and 7C-I) and the real quantum devices (Fig 7B-II and 7C-II) show

the role of the performance parameters, such as coherence, crosstalk and spectator errors on

the probability of the states. In the case of the ibmq_toronto, these performance parameters

cause a significant loss in the probability of finding the answer state. These results are in agree-

ment with the expected results of quantum devices in the NISQ era. As Chia et al. [34] and Li

et al. [35] have discussed, circuits that could run on currently available real quantum devices

are mostly limited to the circuit depth of only a few tens of gates, with a maximum of ~55.

These studies suggest that the depth of our circuit transpiled on real quantum devices (i.e.,

~160) is much larger than the current limit of the NISQ era quantum computers. Thus, even

though the noise-included simulators predict the answer states with a high probability (Fig

7B-I and 7C-I), the “large” circuit depth hinders the answer state on real quantum devices

(Fig 7B-II and 7C-II).

PLOS COMPUTATIONAL BIOLOGY Gate-based quantum computing for protein design

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011033 April 12, 2023 13 / 20

https://doi.org/10.1371/journal.pcbi.1011033


3. Discussions

This work studies developing gate-based circuits to address protein design problems by imple-

menting a pure quantum computing algorithm, i.e., Grover’s algorithm. Using ideal quantum

computer simulators shows that our quantum circuits can find the M desired answer states

among N total states for systems with different complexities. Furthermore, the results confirm

that using the maximum number of iterations (Oð
ffiffiffiffiffiffiffiffiffiffiffi
N=M

p
Þ) provides the maximum

Fig 7. Histogram representations of probabilities for each state in the IBM-SP model circuit. a) Results of the circuit, using the ideal MPS quantum

computer simulator. b) Results of the circuit using: I) gate fidelity, measurement fidelity, initialization fidelity and qubit mapping of ibmq_toronto in the

simulator; II) Real ibm_toronto device averaged over 20 different runs. c) Results of the circuit using: I) gate fidelity, measurement fidelity, initialization fidelity

and qubit mapping of ibmq_montreal in the simulator; II) Real ibm_montreal device averaged over 30 different runs. In b) and c), the data bars with different

colours show results for five separate runs. The error bars represent the standard deviation from the mean value. The numbers on each set of bars show the

average probability of the state. The number of samplings for all plots is set to 8,192 shots.

https://doi.org/10.1371/journal.pcbi.1011033.g007

PLOS COMPUTATIONAL BIOLOGY Gate-based quantum computing for protein design

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011033 April 12, 2023 14 / 20

https://doi.org/10.1371/journal.pcbi.1011033.g007
https://doi.org/10.1371/journal.pcbi.1011033


probability of finding the answer states (~100%), indicating the quadratic advantage of our

approach over classical methods on conventional computers in search for answer states.

Moreover, the maximum number of computations required in our quantum circuits is

smaller than the least number of computations required for classical models, confirming the

quantum advantage of our circuits over conventional methods. Furthermore, our results show

that the MPS simulator can correctly simulate highly entangled algorithms such as Grover’s

algorithm, with a large number of qubits in the circuit (up to 234 qubits).

In this work, the simplified model, i.e., the SP model, implements protein configurations

similar to the 2D square lattice model, using integer numbers for calculating the energies.

However, due to the limitation of the CPU times and computational resources, the largest cir-

cuits are limited to systems with six designable sites, simulating a simple hair-pin protein

structure (Fig 2C-I) or complex and compact intra-protein configurations (Fig 2C-II and

2C-III). Adding more complexity to the system in the MR model, i.e., introducing the dis-

tances reciprocals and decimal numbers, limits the number of simulatable designable sites in a

system to three. However, this model enables us to use more realistic energy terms in the Ham-

iltonian of a protein design problem on quantum computers, i.e., mimicking the Coulomb

energies. Nonetheless, all different types of potentials used in conventional protein design

methods could similarly be implemented in our algorithm. Moreover, our approach in imple-

menting the pre-calculated distances reciprocals and decimal numbers and using multiplica-

tion functions could also be employed in the protein folding studies with quantum computers

currently limited to uniform lattice models [11–14].

At the current NISQ stage, the number of available qubits, their connectivity and the noise

associated with using each gate limit studying pure quantum algorithms on real quantum

devices. In these devices, since the depth of circuits is restricted to a few tens of gates, even run-

ning a small protein design circuit (i.e., IBM-SP) does not provide a definitive result due to the

noise and requires further improvements in quantum computers. Moreover, for the SP,s = 2

system, the depth of the circuit in a fully connected simulator is ~400 gates, while after transpi-

lation, the depth of the circuit on real quantum devices could reach ~17,000 gates. As an alter-

native approach, it would be of interest to use popular hybrid approaches in the NISQ era, e.g.,

the QAOA method, to study the protein design problem and compare results with those pro-

vided by circuits using Grover’s algorithm in the simulations. Nevertheless, improving the

quantum devices at the current pace encourages us that in the near future, our circuits can be

implemented on real quantum computers and show the advantage of quantum computers in

protein design problems.

4. Methods

System setup & simulations

Following the Grover’s algorithm in Fig 1, after the initialization, the oracle is programmed to

implement energies and conduct required calculations to find and mark the answer states. The

oracle has different sub-steps associated with it. First, the classically-calculated values in the

energy tables (Fig 3) are introduced to the oracle, based on the protein structure and the inter-

action pattern (Fig 2). Implementing the pair-wise energies in the oracle is described in the S6

Appendix. Next, the energy values for every pair-wise interaction in the structure are summed

using quantum computing adders to find the total energy, Etot, for each sequence of residues

(i.e., each state). This part of the oracle is the only part of the algorithm with different setups

for the SP and the MR models, which is discussed in detail later in this section. Then, the Etot is

subtracted from a threshold energy value of the circuit for each state, and the ones with the

negative result are the answer. The Eth is explicitly set for each circuit, and by changing its

PLOS COMPUTATIONAL BIOLOGY Gate-based quantum computing for protein design

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011033 April 12, 2023 15 / 20

https://doi.org/10.1371/journal.pcbi.1011033


value, the answer states change. Details on how the Etot and Eth are calculated for the SP and

MR models will be discussed later in this section. Finally, the oracle negates the amplitude of

the answer states. After marking the answer states (i.e., the negation), the oracle un-computes

all previous steps (except for the negation step) to clear the work qubits and prevent them

from affecting the final results [36].

In the SP model, the oracle calculates the total energy of the state k (out of N states) using:

Etot� SPðkÞ ¼
P

a>bEa;bðkÞ;

where Ea,b(k) is the energy value of the interaction between designable sites a and b in the

structure (Fig 2A–2C), while specific residues in the set k fill these sites (Fig 3A). Here, since

there are no distance dependencies, all pair-wise interactions contribute equally to the total

energy of the system. Moreover, the lowest Eth value in the SP model is defined as:

Eth� SPðkÞ ¼ ðEmin � iÞ þ 1 ð6Þ

This Eth−SP provides the lowest number of answer states for each circuit in the SP model

(and similarly in the IBM-SP model).

In the MR model, the total energy of the state k in the oracle is calculated using:

Etot� MRðkÞ ¼
P

a>bEa;bðkÞ � d� 1

a;b;

where d� 1
a;b is a dimensionless matrix representing the distance reciprocal between designable

sites a and b. Thus, nearer designable sites have more contributions to the Etot−MR. In the MR

model, the Eth is defined as:

Eth� MRðkÞ ¼ B� ðEmin �
P

a>bd
� 1

a;bÞ ð7Þ

where B is a unitless constant decimal number, less than 1. For simplicity, if B is set to 0.95 the

Eth−MR is referred to as Eth−MR = 95%Emin in this paper. Note that in this work, the Eth−SP and

Eth−MR can be distinguished by their values, i.e., being equal to an integer number and being a

percentage of the Emin, respectively. Thus, in the paper, we refer to both as Eth, removing the

“SP” and “MR” subscripts.

Moreover, it should be noted that the Eth value calculated for the SP model system (Eq 6)

captures the lowest energy structures for different numbers of designable sites (see results in

S2 Appendix). However, the Eth value calculated for the MR model (Eq 7) does show the limit

below which there are no answer states (for B = 1). Due to the presence of distance reciprocals

and the fact that all designable sites interact in the MR model circuits, one should carefully set

the B value to attain the desired results. As the number of designable sites increases, the B

value and, equivalently, the Eth value to find the state with the lowest energy decreases (see

results in S2 Appendix for the MR,s = 2 and MR,s = 3 systems). Unlike the SP model, the Eth in

the MR model does not define the lowest energy states but a heuristic threshold from an

empirical experience to find low energy states.

In the oracle, a version of the quantum ripple-carry adder introduced by Cuccaro et al. [30]

is used for adding (and subtracting) the values for both SP and MR models, which requires 2m
+1 qubits to add numbers, each represented with m qubits. This adder is also implemented as

a part of the multiplication function employed in the MR model, using 16m+1 qubits to multi-

ply the two numbers.

The role of Grover’s diffuser (Fig 1) is to act on the n qubits and increase the probability of

answer states over all the other states in the circuit. To accomplish this, the diffuser changes

the negative amplitude of the answer states (marked in the oracle) to positive and then

increases the amplitude of these flipped states [3]. Note that since the total probability of all

PLOS COMPUTATIONAL BIOLOGY Gate-based quantum computing for protein design

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011033 April 12, 2023 16 / 20

https://doi.org/10.1371/journal.pcbi.1011033


states is one, increasing the amplitude of the answer states (and thus the probability of finding

them) decreases the amplitude of the non-answer states.

The final step of the algorithm is the measurement (Fig 1), which is done on all n qubits to

find the M answer states among all N possible states. Note that the work qubits are not mea-

sured and are discarded.

In Grover’s algorithm, the upper bound of the number of iterations required to get the

answer states with the highest probability is:

Rmax � d 1

2

p

2� arcsin
ffiffiffi
M
N

p� �e þO

ffiffiffiffiffi
M
N

r !

;

while, in the N�M limit, the equation changes to:

Rmax �d p4
ffiffiffiffiffi
N
M

r

e ð8Þ

We use IBM’s Qiskit package [37] to generate the circuits and simulate them in this study.

Better known simulators such as the QASM require large amounts of RAM for the simulations,

scaling as 16×2q, requiring at least 128 GB of RAM for the largest SP model circuit with q = 33

(Table 1). However, for circuits using more than 150 qubits in the MR model, this number

reaches* 2×1034 TB of RAM. Thus, due to the unprecedented size of our systems, we use the

MPS simulators as the only possible choice to simulate all circuits. We use the computational

resources provided by the Cedar cluster [38] to run our circuits on the quantum computer

simulator.

Real quantum devices and noise-containing simulators

The quantum circuits in this work are composed of several single-qubit and multi-qubit

(including two or more qubits) gates. Generally, several single-qubit and multi-qubit gates

with low complexities are predefined in quantum computer simulators (details vary by simula-

tor packages). However, in the case of more complex gates such as the CC–NOT (Toffoli) gate,

the simulators decompose them into the simpler predefined gates.

Unlike simulators, real quantum devices only support a handful of native gates. Therefore,

all gates are decomposed into the native gates when simulating our circuits on real quantum

computers. However, depending on the type of the device and its manufacturer, these native

gates may vary.

In addition to supporting only a few native gates, using the real quantum devices has further

limitations. Since we are currently in the NISQ era, the qubits and gates contain noise while

transferring data. Currently, IBM quantum devices have error rates of Oð10� 2Þ and Oð10� 4Þ

for the C-NOT and single-qubit gates, respectively [39]. Moreover, IBM quantum devices have

limited connectivity between qubits [39]. Thus, swap gates are required to perform two-qubit

gates between not directly connected qubits, increasing the number of gates and the quantum

computational cost of the circuit.

We use the circuit depth metric to measure and compare the complexity of circuits in this

study. The circuit depth represents the number of gates in the longest path in a circuit [40],

i.e., from the initialization to the measurement in our systems (Fig 1). For the circuit of two

designable sites (Fig 1A) at R = 1 in the SP model, the simplest system studied on quantum

computer simulators in our study, the circuit depth in the decomposed stage on an ideal device

with fully connected qubits is ~17,000 (more discussion is provided in S7 Appendix). In the

PLOS COMPUTATIONAL BIOLOGY Gate-based quantum computing for protein design

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011033 April 12, 2023 17 / 20

https://doi.org/10.1371/journal.pcbi.1011033


current NISQ era, it is impossible to run a circuit with such a “large” depth on a real device

due to the noise introduced to the results, owing to the gate fidelities and the system decoher-

ence for deeper circuits [25]. Note that the depth of the circuit will increase significantly if the

qubits are not fully connected on a quantum computer.

The IBM-SP model, executed on real quantum devices, requires seven qubits in total with

n = 2 (Table 1). By setting the Eth to 0, the circuit will have one answer state (Fig 3D) and the

Rmax = 1. We employ two IBM quantum computers, the ibmq_toronto (v1.6.1 and v1.6.2) with

the IBM Quantum Falcon r4 processors and the ibmq_montreal (v1.10.11) with the IBM

Quantum Falcon r4 processors, both having 27 qubits and the same pattern of connectivity.

To run the IBM-SP model on these devices, we use optimization level 2 and a selective pattern

of qubits to transpile the ideal circuit on them. Moreover, we apply the transpilation 500 times

for each run and select the circuit with the lowest depth, ranging between 158 and 167, as an

input for the real quantum devices. To compare these quantum computers, we use the quan-

tum volume, a unitless number, quantifying the largest random circuit that a quantum com-

puter can implement successfully [33]; thus, the more, the better.

Supporting information

S1 Appendix. Number of required qubits in the circuit and the general algorithm.

(PDF)

S2 Appendix. Explicit results of each system.

(PDF)

S3 Appendix. Computational costs of the simulations on conventional computers.

(PDF)

S4 Appendix. Role of number of iterations.

(PDF)

S5 Appendix. Computational costs in the circuits.

(PDF)

S6 Appendix. Implementing energies in the circuit.

(PDF)

S7 Appendix. Computational Cost of Simulations and Circuit Depth.

(PDF)

Acknowledgments

The authors would like to thank WestGrid (www.westgrid.ca) and Compute Canada (www.

computecanada.ca) for providing computational resources for this project.

We acknowledge the use of IBM Quantum services for this work. The views expressed are

those of the authors, and do not reflect the official policy or position of IBM or the IBM Quan-

tum team.

We also would like to acknowledge CMC Microsystems for facilitating this research, specif-

ically through their member access to the IBM Quantum Hub at Institut quantique.

Author Contributions

Conceptualization: Mohammad Hassan Khatami, Nathan Wiebe, Philip M. Kim.

Data curation: Mohammad Hassan Khatami, Udson C. Mendes.

PLOS COMPUTATIONAL BIOLOGY Gate-based quantum computing for protein design

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011033 April 12, 2023 18 / 20

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011033.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011033.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011033.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011033.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011033.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011033.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011033.s007
http://www.westgrid.ca/
http://www.computecanada.ca/
http://www.computecanada.ca/
https://doi.org/10.1371/journal.pcbi.1011033


Formal analysis: Mohammad Hassan Khatami.

Funding acquisition: Philip M. Kim.

Investigation: Mohammad Hassan Khatami.

Methodology: Mohammad Hassan Khatami, Nathan Wiebe.

Resources: Udson C. Mendes.

Supervision: Philip M. Kim.

Validation: Mohammad Hassan Khatami, Philip M. Kim.

Visualization: Mohammad Hassan Khatami.

Writing – original draft: Mohammad Hassan Khatami.

Writing – review & editing: Mohammad Hassan Khatami, Udson C. Mendes, Nathan Wiebe,

Philip M. Kim.

References

1. Pierce NA, Winfree E. Protein design is NP-hard. Protein Eng. 2002; 15: 779–782. https://doi.org/10.

1093/protein/15.10.779 PMID: 12468711

2. Knuth DE. Postscript about NP-hard problems. ACM SIGACT News. 1974; 6: 15–16.

3. Nielsen MA, Chuang I. Quantum computation and quantum information. Cambridge University Press;

2010.

4. Dill KA. Theory for the folding and stability of globular proteins. Biochemistry. 1985; 24: 1501–1509.

https://doi.org/10.1021/bi00327a032 PMID: 3986190

5. Lathrop RH. The protein threading problem with sequence amino acid interaction preferences is NP-

complete. Protein Engineering, Design and Selection. 1994; 7: 1059–1068. https://doi.org/10.1093/

protein/7.9.1059 PMID: 7831276

6. Gilks WR, Richardson S, Spiegelhalter D. Markov chain Monte Carlo in practice. CRC press; 1995.

7. Gamerman D, Lopes HF. Markov chain Monte Carlo: stochastic simulation for Bayesian inference.

CRC Press; 2006.

8. Thomas J, Ramakrishnan N, Bailey-Kellogg C. Protein design by sampling an undirected graphical

model of residue constraints. IEEE/ACM Trans Comput Biol Bioinform. 2008; 6: 506–516.

9. Sun MGF, Kim PM. Data driven flexible backbone protein design. PLoS Comput Biol. 2017; 13:

e1005722. https://doi.org/10.1371/journal.pcbi.1005722 PMID: 28837553

10. Anishchenko I, Chidyausiku TM, Ovchinnikov S, Pellock SJ, Baker D. De novo protein design by deep

network hallucination. bioRxiv. 2020.

11. Perdomo-Ortiz A, Dickson N, Drew-Brook M, Rose G, Aspuru-Guzik A. Finding low-energy conforma-

tions of lattice protein models by quantum annealing. Sci Rep. 2012; 2: 1–7. https://doi.org/10.1038/

srep00571 PMID: 22891157

12. Babej T, Fingerhuth M, others. Coarse-grained lattice protein folding on a quantum annealer. arXiv pre-

print arXiv:181100713. 2018.

13. Robert A, Barkoutsos PK, Woerner S, Tavernelli I. Resource-efficient quantum algorithm for protein

folding. npj Quantum Inf. 2021; 7: 1–5.

14. Fingerhuth M, Babej T, others. A quantum alternating operator ansatz with hard and soft constraints for

lattice protein folding. arXiv preprint arXiv:181013411. 2018.

15. Farhi E, Goldstone J, Gutmann S. A quantum approximate optimization algorithm. arXiv preprint

arXiv:14114028. 2014.

16. Peruzzo A, McClean J, Shadbolt P, Yung M-H, Zhou X-Q, Love PJ, et al. A variational eigenvalue solver

on a photonic quantum processor. Nat Commun. 2014; 5: 1–7. https://doi.org/10.1038/ncomms5213

PMID: 25055053

17. Ruiz A de la F. Quantum annealing. arXiv; 2014. https://doi.org/10.48550/ARXIV.1404.2465

18. Mulligan VK, Melo H, Merritt HI, Slocum S, Weitzner BD, Watkins AM, et al. Designing peptides on a

quantum computer. bioRxiv. 2020; 752485.

PLOS COMPUTATIONAL BIOLOGY Gate-based quantum computing for protein design

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011033 April 12, 2023 19 / 20

https://doi.org/10.1093/protein/15.10.779
https://doi.org/10.1093/protein/15.10.779
http://www.ncbi.nlm.nih.gov/pubmed/12468711
https://doi.org/10.1021/bi00327a032
http://www.ncbi.nlm.nih.gov/pubmed/3986190
https://doi.org/10.1093/protein/7.9.1059
https://doi.org/10.1093/protein/7.9.1059
http://www.ncbi.nlm.nih.gov/pubmed/7831276
https://doi.org/10.1371/journal.pcbi.1005722
http://www.ncbi.nlm.nih.gov/pubmed/28837553
https://doi.org/10.1038/srep00571
https://doi.org/10.1038/srep00571
http://www.ncbi.nlm.nih.gov/pubmed/22891157
https://doi.org/10.1038/ncomms5213
http://www.ncbi.nlm.nih.gov/pubmed/25055053
https://doi.org/10.48550/ARXIV.1404.2465
https://doi.org/10.1371/journal.pcbi.1011033


19. Renfrew PD, Choi EJ, Bonneau R, Kuhlman B. Incorporation of noncanonical amino acids into Rosetta

and use in computational protein-peptide interface design. PLoS One. 2012; 7: e32637. https://doi.org/

10.1371/journal.pone.0032637 PMID: 22431978

20. Grover LK. A fast quantum mechanical algorithm for database search. Proceedings of the twenty-eighth

annual ACM symposium on Theory of computing. 1996; 212–219.

21. Walther P, Resch KJ, Rudolph T, Schenck E, Weinfurter H, Vedral V, et al. Experimental one-way quan-

tum computing. Nature. 2005; 434: 169–176. https://doi.org/10.1038/nature03347 PMID: 15758991

22. Durr C, Hoyer P. A quantum algorithm for finding the minimum. arXiv preprint quant-ph/9607014. 1996.

23. Shor PW. Algorithms for quantum computation: discrete logarithms and factoring. Proceedings 35th

annual symposium on foundations of computer science. 1994. pp. 124–134.

24. Deutsch D, Jozsa R. Rapid solution of problems by quantum computation. Proc R Soc Lond A Math

Phys Sci. 1992; 439: 553–558.

25. Saki AA, Alam M, Ghosh S. Study of Decoherence in Quantum Computers: A Circuit-Design Perspec-

tive. arXiv preprint arXiv:190404323. 2019.

26. Alford RF, Leaver-Fay A, Jeliazkov JR, O’Meara MJ, DiMaio FP, Park H, et al. The Rosetta all-atom

energy function for macromolecular modeling and design. J Chem Theory Comput. 2017; 13: 3031–

3048. https://doi.org/10.1021/acs.jctc.7b00125 PMID: 28430426

27. Bhaskar MK, Hadfield S, Papageorgiou A, Petras I. Quantum algorithms and circuits for scientific com-

puting. arXiv preprint arXiv:151108253. 2015.

28. Vidal G. Efficient classical simulation of slightly entangled quantum computations. Phys Rev Lett. 2003;

91: 147902. https://doi.org/10.1103/PhysRevLett.91.147902 PMID: 14611555

29. Botsinis P, Babar Z, Alanis D, Chandra D, Nguyen H, Ng SX, et al. Quantum error correction protects

quantum search algorithms against decoherence. Sci Rep. 2016; 6: 1–13.

30. Cuccaro SA, Draper TG, Kutin SA, Moulton DP. A new quantum ripple-carry addition circuit. arXiv pre-

print quant-ph/0410184. 2004.

31. Gidney C. Halving the cost of quantum addition. Quantum. 2018; 2: 74. https://doi.org/10.22331/q-

2018-06-18-74

32. Svore KM, Aho A v, Cross AW, Chuang I, Markov IL A layered software architecture for quantum com-

puting design tools. Computer (Long Beach Calif). 2006; 39: 74–83.

33. Cross AW, Bishop LS, Sheldon S, Nation PD, Gambetta JM. Validating quantum computers using ran-

domized model circuits. Phys Rev A (Coll Park). 2019; 100: 032328.

34. Chia N-H, Chung K-M, Lai C-Y. On the need for large quantum depth. Proceedings of the 52nd Annual

ACM SIGACT Symposium on Theory of Computing. 2020. pp. 902–915.

35. Li R, Wu B, Ying M, Sun X, Yang G. Quantum Supremacy Circuit Simulation on Sunway TaihuLight.

2018.

36. Aaronson S. Quantum lower bound for recursive fourier sampling. arXiv preprint quant-ph/0209060.

2002.

37. Abraham H, AduOffei, Agarwal R, Akhalwaya IY, Aleksandrowicz G, Alexander T, et al. Qiskit: An

Open-source Framework for Quantum Computing. 2019.

38. Cedar cluster: https://docs.computecanada.ca/wiki/Cedar (accessed: 06.02.2022).

39. Ibm real quantum devices: https://quantum-computing.ibm.com/services?services=systems (last

accessed: 06.02.2022).

40. Sipser M. Introduction to the Theory of Computation. Cengage learning; 2012.

PLOS COMPUTATIONAL BIOLOGY Gate-based quantum computing for protein design

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011033 April 12, 2023 20 / 20

https://doi.org/10.1371/journal.pone.0032637
https://doi.org/10.1371/journal.pone.0032637
http://www.ncbi.nlm.nih.gov/pubmed/22431978
https://doi.org/10.1038/nature03347
http://www.ncbi.nlm.nih.gov/pubmed/15758991
https://doi.org/10.1021/acs.jctc.7b00125
http://www.ncbi.nlm.nih.gov/pubmed/28430426
https://doi.org/10.1103/PhysRevLett.91.147902
http://www.ncbi.nlm.nih.gov/pubmed/14611555
https://doi.org/10.22331/q-2018-06-18-74
https://doi.org/10.22331/q-2018-06-18-74
https://docs.computecanada.ca/wiki/Cedar
https://quantum-computing.ibm.com/services?services=systems
https://doi.org/10.1371/journal.pcbi.1011033

