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Abstract
Low complexity sequences (LCRs) are well known within coding as well as non-coding sequences. A low complexity 
region within a protein must be encoded by the underlying DNA sequence. Here, we examine the relationship be
tween the entropy of the protein sequence and that of the DNA sequence which encodes it. We show that they 
are poorly correlated whether starting with a low complexity region within the protein and comparing it to the cor
responding sequence in the DNA or by finding a low complexity region within coding DNA and comparing it to the 
corresponding sequence in the protein. We show this is the case within the proteomes of five model organisms: Homo 
sapiens, Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabditis elegans, and Arabidopsis thaliana. We 
also report a significant bias against mononucleic codons in LCR encoding sequences. By comparison with simulated 
proteomes, we show that highly repetitive LCRs may be explained by neutral, slippage-based evolution, but compos
itionally biased LCRs with cryptic repeats are not. We demonstrate that other biological biases and forces must be 
acting to create and maintain these LCRs. Uncovering these forces will improve our understanding of protein LCR 
evolution.
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Introduction
Low complexity regions (LCRs) are segments of a protein 
or DNA sequence which are biased in composition 
(Wootton and Federhen 1993). LCRs can present as peri
odic repeats, ambiguous cryptic repeats, or can contain 
no apparent pattern at all, but simply deviate from a ran
domized composition (Tautz et al. 1986; Wootton 1994a). 
LCRs contain low information and have a low entropy 
(Wootton and Federhen 1993). Entropy, as measured by 
Shannon’s Entropy equation (Shannon 1948), is a measure 
of compositional complexity which uses the proportion of 
residue(s) in a subsequence to measure the compositional 
state of that subsequence (Wootton 1994b). A lower var
iety of residues would result in a lower entropy for that 
subsequence. Thus, minimal entropy would contain a sub
sequence consisting of only a single residue, whereas max
imal entropy would contain all possible residues in an 
alphabet in equal proportions. In proteins, LCRs are typic
ally composed of hydrophilic and small amino acid resi
dues (Faux et al. 2005).

Interest in protein LCRs has grown in recent decades as 
involvement of LCRs in protein function and disease has 
been further illuminated. Due to a lack of motif conserva
tion and a tendency to form non-globular protein do
mains, LCRs were once considered to be merely 
tolerated within their protein, offering no functional, bio
logic contribution (Huntley and Golding 2000, 2002). It is 
now believed that LCRs may offer a range of functions to 

various proteins, many which are linked to this non- 
globular, intrinsically disordered nature. Intrinsically disor
dered regions can allow for longer, more accessible protein 
domains, protein flexibility, and plasticity in molecular 
binding partners (Dosztányi et al. 2006; Ekman et al. 
2006). As such, LCRs are often found in proteins involved 
in signaling pathways and can act as scaffolds in the forma
tion of large protein complexes (Dyson and Wright 2005; 
Coletta et al. 2010). They are also enriched in transcription 
factors (Millard et al. 2020), developmental proteins 
(Huntley and Clark 2007) and can offer accessible regions 
for posttranslational modifications (Jeronimo et al. 2016; 
Monahan et al. 2017).

As protein LCRs are ultimately the result of changes to 
the underlying DNA, their evolution is likely similar to that 
of intergenic, non-coding DNA microsatellites (DePristo 
et al. 2006). Microsatellites are believed to evolve rapidly 
by expansion or contraction via two main mechanisms: 
the first and predominant mechanism being polymerase 
slippage, in which the DNA template and coding strand 
shift relative to one another and re-anneal with another re
peat unit causing either insertion or deletion of a repeat 
unit (Levinson and Gutman 1987; Viguera et al. 2001). 
The second mechanism is unequal recombination which 
occurs via the misalignment of homologous repeat se
quences during meiosis and results in the gain of repeats 
in the sequence of one chromosome and loss of repeats 
in other (Richard and Paques 2000). Other factors, 
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including mismatch repair mechanisms (Levinson and 
Gutman 1987), repeat unit length (Schug et al. 1998), abil
ity of the DNA to form structures (Moore et al. 1999; Dere 
et al. 2004; Murat et al. 2020), and repeat unit composition 
(Gragg et al. 2002) play a role in the rate of microsatellite 
slippage. Microsatellites above a certain threshold repeat 
length will undergo slippage and expand or contract, 
with longer microsatellites being more unstable and 
more likely to undergo slippage (Lai and Sun 2003). In cod
ing regions, slippage of repeats whose units are multiples of 
three are more likely to be permitted compared with other 
repeat unit lengths because an insertion or deletion will 
not cause a frameshift mutation in the downstream coding 
sequence (Metzgar et al. 2000). Thus, they will be less likely 
to result in a deleterious mutation that will be selected 
against (Metzgar et al. 2000).

Codon homogeneity is also an important factor in LCR 
evolution. Because LCRs are believed to arise primarily via 
polymerase slippage, microsatellites of homogeneous co
don runs are thought to be more unstable, evolve faster, 
and to be less conserved than sequences encoded by a het
erogeneous mixture of synonymous codons (Albà et al. 
1999). Over time, accumulation of synonymous mutations 
in LCR coding regions can help to conserve the LCR by 
breaking up repeats and reducing the chance of slippage 
(Albà et al. 1999).

With important physiological roles and high mutation 
rates, it follows that LCRs have the potential for pathogen
esis. In humans, one of the most notable examples is 
Huntington’s disease (Everett and Wood 2004). Slippage 
of long tracts of CAG trinucleotide repeats result in an ex
panded polyglutamine tract. The mutant Huntingtin pro
tein develops a toxic gain of function effect within the cell 
(Everett and Wood 2004). Other neurodegenerative dis
eases resulting from trinucleotide repeat expansion in
clude spinocerebellar ataxia and muscular dystrophy, 
encoding polyglutamine, and polyalanine tracts, respect
ively (Brown and Brown 2004; Everett and Wood 2004). 
As well, LCRs have been shown to contribute to antigenic 
variation and immune system evasion of human patho
gens (Verstrepen et al. 2005; Velasco et al. 2013; Kebede 
et al. 2019).

Various studies have suggested that low entropy in nu
cleotide content correlates with LCRs in proteins. Li et al. 
(2015) showed how GC content constrains the types of 
amino acids which can be encoded, resulting in a bias to
wards amino acids encoded by codons with a high GC pro
portion and a bias against those with a lower GC 
proportion. The malaria parasite, Plasmodium falciparum, 
contains a high genomic AT content, which is strongly as
sociated with the presence of protein LCRs, leading to pref
erence for certain codons and amino acid types over 
others (DePristo et al. 2006). Xue and Forsdyke (2003) sug
gest that LCRs at the protein level are a result of AG con
tent bias at the nucleotide level, and thus pressures at the 
DNA level can explain the presence of LCRs at the protein 
level. This was further supported by analyzing the nucleo
tide composition at first, second, and third codon bases, 

where AG content was higher in the first two, suggesting 
the importance of AG content to encode particular amino 
acids (Xue and Forsdyke 2003).

The structure of codons can significantly impact the en
tropy of the sequence they make up. Codons can be clas
sified by the number of unique nucleotides in the codon, a 
property that we will refer to as nucleodicity. The DNA le
vel entropy varies significantly among these codons: 
mononucleic codons such as AAA have an entropy of 
zero, dinucleic codons such as AGA have an entropy of 
0.918, and trinucleic codons such as AGC have an entropy 
1.58. However, this property can only affect entropy at the 
DNA level as the information is lost when the codon is 
translated to a single amino acid. LCRs with codons of dif
ferent nucleodicities may evolve differently as the repeats 
have variable abilities to form secondary structure during 
transcription and translation (Barik 2017). This property 
is thought to be an influencing factor in the likelihood of 
polymerase slippage (Murat et al. 2020).

Polymerase slippage, such as that seen in microsatellite 
expansion, is suggestive of a neutral model of evolution 
whereby the unstable LCR is merely tolerated within the 
protein so long as it does not impart deleterious effects 
(Radó-Trilla and Albà 2012). The LCR can then be prefer
entially retained if it confers a selective advantage. This is 
in contrast to a strict selective model of LCR evolution 
which maintains that LCRs within a protein are a result 
of selective pressures constraining the types and ordering 
of amino acids so as to create an amino acid motif which 
confers a particular function (Haerty and Golding 2010).

There have been multiple studies supporting both neu
tral evolution as well as selective evolution, with LCRs 
being created due to forces acting on the protein/amino 
acid level. Evidence for selective neutrality includes a large 
variation in LCR tract size both intra and interspecifically 
(Haerty and Golding 2010). Such high length polymorphic 
variability is also associated with a homogeneous codon 
tract and high slippage rates (Mularoni et al. 2007). 
Whereas conservation of LCR motifs and selective evolu
tion may entail a heterogeneous codon tract of synonym
ous codons. That is, assuming the codons were a result of 
pressure from the protein level and not due to the degen
eration of trinucleotide repeats (Albà et al. 1999; Huntley 
and Golding 2006). Neutral proteins could contain a 
high variation in repeat tract size as a result of unstable 
replicative slippage and also could undergo non- 
synonymous mutations which would be permitted due 
to the lack of purifying selection (Mularoni et al. 2007). 
However, increased repeat length has been observed to 
correspond with low non-synonymous mutation rate, sug
gesting the conservation of long LCRs (Mularoni et al. 
2007). Studies showing synonymous mutations closer to 
LCRs have indicated that these regions may be evolution
arily conserved and hold functional significance (Lenz et al. 
2014).

In this study, we have identified LCRs in proteins and as
sessed the correlation between their entropy and their cor
responding DNA sequence entropy. We also identified 

2

https://doi.org/10.1093/molbev/msad084


Low Complexity Regions · https://doi.org/10.1093/molbev/msad084 MBE

LCRs in DNA sequences and compared their entropy to 
that of their corresponding amino acid sequence. If the ori
gin and evolution of LCRs were primarily a result of muta
tion acting at the DNA level via polymerase slippage and 
LCR expansion being allowed due to low selective con
straints, we would expect to see a high correlation be
tween protein entropy and its corresponding coding 
sequence entropy in LCRs. As DNA entropy decreased, co
don types would be constrained thereby constraining and 
lowering the protein entropy as well as increasing chances 
of polymerase slippage for further LCR generation. If selec
tion was the predominant mechanism by which LCRs were 
formed, we would expect to see a lower correlation be
tween DNA and protein sequence entropy of correspond
ing sequences. This is because selection, unlike slippage, 
would not necessarily favor a homogeneous run of codons, 
but could instead allow a more random collection of syn
onymous codons for a particular amino acid residue. 
Ultimately, this would allow for a wider range of possible 
DNA entropies given a particular protein LCR.

Materials and Methods
All custom scripts and commands used in this analysis can 
be found on GitHub at https://github.com/ 
JohannaEnright/LCREntropyProject/.

Sequence Data
Two correlation studies of sequence entropy were con
ducted. The first identified LCRs in proteins from the en
tire proteome of five model organisms S. cerevisiae, H. 
sapiens, A. thaliana, C. elegans, and D. melanogaster. For 
each protein, we identified LCRs and compared the en
tropy in the corresponding coding DNA sequence. The se
cond study did the inverse; identifying LCRs in the coding 
DNA sequences and compared their entropy to the en
tropy of the amino sequence that they encode. The gen
omes of the five organisms were downloaded from NCBI. 
Access dates and accession numbers are listed in 
supplementary table S1, Supplementary Material online.

Annotated sequences representing a haploid assembly 
for each organism were downloaded in genbank and fasta 
format. A custom python script was written to identify 
LCRs within coding sequences and locate their corre
sponding amino acid sequences and vice versa (Van 
Rossum and Drake 2009). LCRs were identified using the 
Seg algorithm (Wootton and Federhen 1993). 
Adjustments were made to Seg to account for alphabet 
size depending on the sequence type. Ambiguous charac
ters were accounted for when identifying regions of low 
complexity by adding a fractional count to each residue re
presented by the ambiguous character. When searching 
for LCRs within proteins, Seg parameters were set to a 
window length (W) of 15, a trigger complexity (K1) of 
1.9, and an extension complexity (K2) of 2.2 (see 
supplementary table S2, Supplementary Material online 
for alternate parameters examined). To identify LCRs in 

coding sequences, parameters were set to 45 for W (three 
times the length used for amino acids) 1.3 for K1, and 1.5 
for K2 (see supplementary table S3, Supplementary 
Material online for alternate parameters examined).

A non-redundant set of coding sequences was selected 
by retaining only the longest isoform for each gene. This 
was done to reduce redundancy introduced by splice var
iants, duplicate genes in the pseudo-autosomal regions of 
the X and Y chromosomes, and duplicate genes present in 
alternate assemblies. If isoforms were the same length, the 
one which mapped to a chromosome was chosen over 
that from an alternate assembly. As well, an X chromo
some isoform was chosen over a Y chromosome isoform. 
In addition, any coding sequences which encoded only a 
portion of a final protein product, such as immunoglobulin 
gene segments, or sequences which were not exactly three 
times the length of the amino acid sequence, were ex
cluded as a direct mapping between amino acid sequence 
and coding sequence could not be made. For later simula
tions, the codon frequency, protein length, and proportion 
of proteins containing LCRs were calculated using this set.

For LCR analysis, only the longest LCR from each iso
form was taken. We have observed in human data that 
less than 10% of LCR-containing proteins have multiple 
LCRs, and the composition of LCRs tends to be similar 
within the same protein. Taking the longest allows for a 
simpler analysis with one signal per protein. If multiple 
LCRs from a single sequence were the same length, the 
one with the lowest entropy was chosen. Once all LCRs 
were obtained, the entropy of the corresponding amino 
acid or DNA sequence was calculated using Shannon’s 
Entropy equation (Shannon 1948):

H =
􏽘n

i=1

pi log2 pi, (1) 

where pi refers to the proportion of each unique letters in a 
sequence and n refers to the total number of unique letters 
(eq. 1).

While calculating entropy, ambiguous characters were 
handled in the same manner as above. DNA LCRs were 
trimmed at the ends to ensure a direct correspondence be
tween a codon and its amino acid. These end adjustments 
were taken into account before determining the longest 
LCR from a coding sequence.

Scatter plots were created for each organism and set of 
parameters. A linear regression and correlation coefficient 
calculation was performed for each plot in R (R Core Team 
2022).

For the purpose of later simulations, the codons in the 
LCRs were classified by nucleodicity, the number of unique 
nucleotides in a codon. The nucleodicity of the LCR as 
whole was set to match the most frequent nucleodicity 
class amongst its codons. For example, an LCR made up 
of 6 AAA, 2 ATC, and 1 GCA would be assigned a nucleo
dicity of 1. In the case of a tie for the most frequent nucleo
dicity, an LCR would be partially assigned all tied 
nucleodicities. For example, an LCR with equal counts of 
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mono-, di-, and tri- nucleic codons would be counted as 
one-third for each class. Using these potentially partial 
counts the number of observed LCRs of each nucleodicity 
was counted. The number of expected LCRs for each nu
cleodicity class was calculated based on the codon usage 
for each organism by multiplying the total frequency for 
each class by the total number of observed LCRs. As an ex
ample, with completely unbiased codon usage, 6.6% ( 4

61) of 
LCRs would be expected be mononucleic, 57% (35

61) dinu
cleic, and 36% (22

61) trinucleic. The actual proportions vary 
between species based their codon usage.The significance 
of differences between observed and expected numbers of 
LCRs in each class was evaluated using a χ2 test. A prefer
ence coefficient was calculated for each nucleodicity class 
to represent the observed preference for a codon class 
relative to the expected value. The coefficients are normal
ized relative to the most preferred codon class and are cal
culated as

Pi,j =
Oi,j/Ei,j

maxk (Oi,k/Ei,k)
, (2) 

where P is the preference coefficient, O is the observed 
number of LCRs, E is the expected number of LCRs, organ
isms are indexed by i organism, and the number of unique 
codons in a codon class is indexed by j and k.

LCR Simulations
It was critical to have null expectations to which to 
compare the biologically observed values for entropy 
and correlation. To that end, several simulations were im
plemented with the python language (Van Rossum and 
Drake 2009). Simulations were performed separately for 
each organism studied and for several models of evolution. 
In each simulation, a set of 100,000 equal length coding 
sequences were generated according to the relevant evolu
tionary model as well as the organism’s codon usage. Each 
coding sequence had as many codons as the organism’s 
average protein length (n) and a stop codon, for a total 
of n + 1 codons. The evolutionary models considered are 
intended to simulate varying levels of replication slippage, 
codon nucleodicity class, and substitution. Overall, five 
models were used: Null, Slip, Slip + CC, Slip + Syn, and 
Slip + CC + Syn.

The first model, Null, is the simplest and is intended as a 
naïve model. Each coding sequence was constructed by 
randomly sampling from the 61 amino acid encoding co
dons. Each codon had an equal probability of being 
sampled. This model does not generate a significant num
bers of LCRs.

In the Slip model, codons are randomly selected accord
ing to each specific organism’s genomic codon bias. 
However, once the same codon has been sampled at least 
twice the weighting for that codon is increased. As a result, 
runs of identical codons which encode LCRs are more like
ly. This elevated weighting is maintained until a different 
codon is selected at which point it returns to using the 

original genomic codon bias. The amount by which the 
probability is increased, the “slope,” is dynamically set 
such that the overall proportion of LCR containing pro
teins in the generated proteome matches that observed 
in the organism. The increase in weight is applied each 
time the codon is consecutively sampled. As a result, the 
probability of slippage increases linearly with the length 
of the LCR. Slippage on the basis of codons was used in
stead of nucleotide-based slippage as there is strong selec
tion against frameshift mutations in coding sequences 
(Metzgar et al. 2000).

There may be biological preferences for or against runs 
of identical codons in each nucleodicity class. Hence, the 
Slip+CC model generates sequences according to the 
Slip model and has a later additional step which attempts 
to mimic the species-specific use of nucleodicity class. 
After a protein was constructed, according to the Slip 
model, Seg is used to identify any LCRs. The LCR is clas
sified by its nucleodicity and is retained with a probability 
equal to the organism-specific preference coefficient (See 
eq. 2). If a protein is not retained, a new protein is gener
ated. This process continues until a proteome of 100,000 
proteins with the same proportion of LCRs as observed 
biologically is constructed. In addition, this will generate 
a proteome which has LCRs in each nucleodicity class 
with the same proportions as is biologically observed.

As a final step, subsequent synonymous substitutions 
maintaining the amino acid sequence were simulated for 
the Slip model (Slip+Syn), and the Slip+CC model (Slip 
+CC+Syn). This was implemented by randomly selecting 
a codon within the previously simulated sequence. Any co
don in the artificial protein could be selected, regardless of 
inclusion in an LCR. Then the first or third position nucleo
tide was randomly selected and randomly changed to any 
of the three other nucleotides with equal weight. This 
change was only accepted if the resulting codon was syn
onymous with the original. This process was repeated until 
1,000 accepted synonymous mutations were made. Each 
attempt was completely independent of any previous 
iterations, therefore potential mutation sites were sampled 
with replacement. Differences in probability between tran
sitions and transversions were not explicitly accounted for, 
however the nature of the genetic code forces more syn
onymous transitions than synonymous transversions 
(Koonin and Novozhilov 2009) since transitions are more 
likely to be synonymous than transversions. The process 
of adding 1,000 synonymous mutations was repeated for 
each of the proteins in the simulated proteome.

For all simulations, the same python script and Seg 
parameters described in the previous section were used 
to identify protein LCRs, calculate their entropy, and calcu
late the entropy of their corresponding coding sequences. 
The same was done for LCRs within coding sequences. See 
supplementary tables S4–S8, Supplementary Material on
line, for alternate parameters examined in the Null, Slip, 
and Slip+Syn simulations. Each pair of entropy values 
were plotted and a linear regression and correlation coef
ficient were calculated (R Core Team 2022).
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Confidence Intervals for Correlation Coefficient
To determine if the entropy correlations were significantly 
different, 95% confidence intervals (α = 0.05) for the cor
relation coefficient were calculated. A Fisher transform
ation (eq. 3) was first performed on the r values to 
improve normality with increasing sample size (David 
Shen 2006). The lower and upper confidence limits were 
then calculated (eq. 4) and these limits were transformed 
back (eq. 5) (David Shen 2006).

Calculations were performed using the following equa
tions:

fr = 0.5 ln
1 + r
1 − r

􏼒 􏼓

(3) 

ζ l = fr − z(1−α/2)

������
1

n − 3

􏽲

ζ u = fr + z(1−α/2)

������
1

n − 3

􏽲 (4) 

rl = tanh(ζ l)

ru = tanh(ζ u).
(5) 

Identifying LCRs in Codons
LCRs at the codon level were identified and compared 
against the entropy of their encoded protein sequences. 
Seg was modified to be able to use an alphabet with 61 
letters. Seg parameters used to identify codon LCRs 
were 15 for W, 2.5 for K1, and 2.9 for K2. All additional 
steps were performed as in the previous sections.

Identifying Periodic Repeats in LCRs
Mono-, di-, and tri- periodic repeats were identified at the 
protein level from the previously determined protein and 
DNA LCRs using a custom python script. Minimal repeat 
lengths for mono-, di-, and tri- repeats were 6, 5, and 4, re
spectively. LCRs which contained one or more of the three 
repeat types were classified as periodic LCRs, whereas LCRs 
which did not contain any of the three repeat types were 
classified as cryptic LCRs. Minimal repeat length para
meters were varied to ensure consistent trends in se
quence correlation for periodic repeats. Results for 
periodic LCRs and cryptic LCRs of alternate repeat lengths 
can be found at supplementary tables S9 and S10, 
Supplementary Material online, respectively.

Results
Entropy of LCRs in Protein and DNA Correlate Poorly 
with Corresponding Sequence Entropies
Protein and DNA sequence entropy comparisons 
were performed on the genome and proteome of five 
model organisms Saccharomyces cerevisiae, Homo sapiens, 
Arabidopsis thaliana, Caenorhabditis elegans, and 

Drosophila melanogaster. In general, we observed a low 
correlation between corresponding sequence entropies 
when LCRs were identified in both coding regions and pro
teins. This lack of correlation was observed for all organisms, 
all of which had correlation coefficients at or below r = 
0.579 for both LCR types. The low correlation suggests 
that DNA LCRs can encode a variety of amino acid sequence 
compositional complexities and that protein LCRs can be 
encoded by a mixture of nucleotide complexities and by a 
heterogeneous mixture of synonymous codons. To avoid 
being redundant, only the results from S. cerevisiae and H. 
sapiens will be described in detail. Corresponding results 
and figures for A. thaliana, C. elegans, and D. melanogaster 
can be found in the supplementary material at S1, S2, and 
S3, Supplementary Material online.

Despite the consistently low correlation between se
quence entropies, there were significant differences in cor
relation coefficient values between LCR sequence types in 
some, but not all organisms. For example in S. cerevisiae, 
sequence entropy comparisons in protein LCRs yield a cor
relation coefficient of r = 0.488 (95% CI: 0.435–0.538; 
fig. 1A). The correlation between DNA LCRs and their cor
responding protein sequences in S. cerevisiae was lower 
than for protein LCRs, although not significantly 
(r = 0.428, 95% CI: 0.281–0.555; fig. 2A). In H. sapiens, 
the correlation coefficient for sequences entropies be
tween protein LCRs and DNA was r = 0.374 (95% CI: 
0.347–0.400; fig. 1B). However, the correlation coefficient 
between DNA LCRs and their corresponding amino acid 
sequences was significantly higher at r = 0.579 (95% CI: 
0.541–0.614; fig. 2B). A summary of results for all five or
ganisms can be found in supplementary table S11, 
Supplementary Material online.

Next, we examined the general trends in the entropy 
distributions. The majority of protein and DNA LCRs 
have entropies near or within the low and high cut Seg 
parameter values and quickly taper off as they near 
more extreme entropies. Protein LCRs are encoded pre
dominantly by higher entropy coding sequences with 
very few being encoded by low entropy coding sequences 
(fig. 1). Comparatively, DNA LCRs typically encode rela
tively midrange entropy protein sequences and are more 
evenly distributed within the possible protein sequence 
entropy range (fig. 2). This indicates that low entropy 
DNA sequences encode comparatively lower entropy pro
tein sequences whereas, low entropy protein sequences 
can still be encoded by relatively high entropy DNA se
quences. At the extremes of the distribution, a vertical 
line at a protein entropy of 0 was observed in protein 
and DNA LCRs of both species (figs. 1 and 2). This line cor
responds to homopeptide repeats of a single amino acid 
residue which was evidently encoded by codons with vari
ous nucleotide compositions as well as a potential mix of 
heterogeneous, synonymous codons, hence the wide range 
of corresponding DNA entropies.

Other examples of extreme deviations include having 
high protein entropy but low DNA entropy or vice versa. 
Examples of both are shown in figure 3, and provide insight 
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into the low sequence correlations observed. Protein LCRs 
with high protein entropy and unexpectedly low DNA en
tropy consist of amino acid residues whose codons share 
the same nucleotides and contain two or fewer different 

nucleotides (fig. 3). For example, the protein LCR with rela
tively higher entropy composed of R, E, and K are encoded 
by the codons AGA, AGG (R), GAG, GAA (E), and AAG, 
AAA (K), all of which share the nucleotides, A and/or 

A B

FIG. 1. Entropy comparisons of protein LCRs and corresponding sequences in the S. cerevisiae and H. sapiens genome. Distributions of sequence 
entropies can be found along the vertical and horizontal axes with values indicating the mode. (A) 1,034 LCRs were identified from 6,016 protein 
sequences in S. cerevisiae and their entropies were plotted against the entropies of the corresponding coding sequences (r = 0.488). (B) 5,005 
LCRs were identified from 133,689 protein sequences in H. sapiens and their entropies were plotted against the entropies of the corresponding 
coding sequences (r = 0.374).

A B

FIG. 2. Entropy comparisons of LCRs and corresponding sequences in the S. cerevisiae and H. sapiens genome. Distributions of sequence entropies 
can be found along the vertical and horizontal axes with values indicating the mode. (A) 171 LCRs were identified from 6,016 coding sequences 
and their entropies were plotted against the entropies of the corresponding protein sequences (r = 0.428). (B) 1,571 DNA LCRs were identified 
from 133,689 coding sequences and their entropies were plotted against the entropies of the corresponding protein sequences (r = 0.579).
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G. In contrast, low entropy protein regions with high en
tropy DNA sequences can be the result of a DNA sequence 
composed of distinct, but synonymous codons which are 
composed of three different nucleotides. In this case, the 
aspartic acid homopolymer encoded GAC and GAT. The 
DNA LCRs with low entropies and unexpectedly high pro
tein entropies again tend to be encoded by codons which 
all share the same nucleotides in different rearrangements, 
but encode different amino acids. Additionally, few dis
tinct, synonymous codons are used for each amino acid. 
In this case, the sequences are composed of: G (GGT), F 
(TTT), L (TTG), V (GTT), and C (TGT). In DNA LCRs 
with relatively high DNA entropy and comparatively low 
protein entropy, different residues are encoded by syn
onymous codons which often do not share the same nu
cleotides. Hence, the degree of codon homogeneity, the 
codon nucleodicity, as well as the potential for shared nu
cleotides between codons, all affect the degree of correl
ation between entropies of protein and DNA sequences 
in LCRs.

Using Slippage and Substitution Models to Compare 
and Explain Observed Entropy Correlations in 
Biological Sequences
To further examine the significance of the sequence en
tropy correlations, proteomes were simulated according 
to five different slippage and substitution models. The first 
proteome, generated according to the Null model, con
tained only 70 proteins with LCRs. The correlation be
tween protein and coding sequence entropy for these 
LCRs was low at r = 0.126 (95% CI: −0.139–0.374; fig. 4). 
The correlation coefficient for the random simulation 
was lower than that in both H. sapiens and S. cerevisiae, 

although this difference was only significant in S. cerevisiae. 
There was only one DNA LCR which was identified from 
the 100,000 Null model DNA sequences. Due to the lack 
of data points, a linear regression could not be performed. 
The small number of LCRs identified from the Null model 
sequences in both proteins and DNA, as well as the low 
sequence entropy correlation in protein LCRs suggests, 
not surprisingly, that LCRs are not the sole result of 

FIG. 3. Example entropy comparisons from the opposing extremes among H. sapiens sequences, obtained from LCRs in protein sequences 
(Protein LCRs) and LCRs in DNA sequences (DNA LCRs). Protein LCRs) On the top, a relatively higher entropy protein LCR is encoded by a 
comparatively low entropy DNA sequence. On the bottom, an extremely low entropy protein LCR is encoded by a high entropy DNA sequence. 
DNA LCRs) On the top, a low entropy DNA LCR codes for a relatively high entropy protein sequence. On the bottom, a relatively higher entropy 
DNA LCR codes for a relatively low entropy protein sequence.

FIG. 4. Entropy of LCRs from the null simulated proteomes. 
Distributions of sequence entropies can be found along the vertical 
and horizontal axes with values indicating the mode. 70 LCRs were 
identified from a sample of 100,000 protein sequences.
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randomness in nature and are the result of some biological 
driving force. This is consistent with the literature which 
shows that LCRs are caused by replication error events 
like polymerase slippage which are exacerbated by an in
crease in repeat length (Levinson and Gutman 1987; 
Viguera et al. 2001; Lai and Sun 2003).

The second proteome, generated according to the Slip 
model, consisted of sequences with a propensity to form 
LCRs in a repeat length-dependent manner in an attempt 
to mimic LCR formation by DNA polymerase slippage. In 
general, the Slip model resulted in higher LCR sequence 

entropy correlations than in the biological LCRs. When look
ing at protein LCRs and their corresponding DNA sequences 
in the S. cerevisiae specific simulation, the correlation coeffi
cient was significantly higher than for the S. cerevisiae bio
logical sequences at r = 0.566 (95% CI: 0.555–0.577) 
(fig. 5A). DNA LCRs and their corresponding protein se
quences in S. cerevisiae had a correlation coefficient of r = 
0.591 (95% CI: 0.573–0.608) (fig. 5B) which was also signifi
cantly higher than the biological S. cerevisiae DNA LCRs. In 
the Slip simulation specific to H. sapiens, when looking at 
protein LCRs and their corresponding DNA sequences, the 

A B

C D

FIG. 5. Entropy of LCRs from the Slip simulated proteomes specific to S. cerevisiae and H. sapiens. Distributions of sequence entropies can be 
found along the vertical and horizontal axes with values indicating the mode. LCRs were identified from a sample of 100,000 sequences. (A) 
17,239 LCRs were identified from protein sequences in S. cerevisiae and their entropies were plotted against the entropies of their corresponding 
coding sequences (r = 0.566). (B) 6,615 LCRs were identified from coding sequences in S. cerevisiae and their entropies were plotted against the 
entropies of their corresponding protein sequences (r = 0.591). (D) 3,765 LCRs were identified from protein sequences in H. sapiens and their 
entropies were plotted against the entropies of their corresponding coding sequences (r = 0.658). (D) 488 LCRs were identified from coding 
sequences in H. sapiens and their entropies were plotted against the entropies of their corresponding protein sequences (r = 0.573).
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correlation coefficient was significantly higher than for the 
biological protein LCRs in H. sapiens at r = 0.658 (95% CI: 
0.637–0.678; fig. 5C). The correlation coefficient for the 
DNA LCRs and their corresponding protein sequences in 
the H. sapiens Slip model was slightly lower than the H. sapi
ens biological sequences although not significantly at r = 
0.573 (95% CI: 0.503–0.636; fig. 5D). Overall, the higher cor
relations in the Slip model suggest that if LCRs were formed 
strictly in a neutral manner by DNA polymerase slippage, we 
would expect to see higher correlations in the biological se
quences than what were actually observed.

To simulate conservation of the amino acid sequences, 
1,000 synonymous mutations were added to the coding se
quences from the Slip model, generating a third proteome, 
the Slip+Syn model. In general, implementing synonymous 
mutations into the coding sequences decreased the correl
ation compared with the Slip model. Correlations when 
going from the Slip model to the Slip+Syn model in the S. 
cerevisiae specific simulation were significantly lower for pro
tein LCRs and their corresponding sequences (r = 0.459; 95% 
CI: 0.446–0.472; fig. 6A) as well as the reverse (r = 0.517; 95% 
CI: 0.489–0.544; fig. 6B). In the H. sapiens specific Slip+Syn 

A B

C D

FIG. 6. Entropy of LCRs from the Slip+Syn simulated proteomes specific to S. cerevisiae and H. sapiens. Distributions of sequence entropies can be 
found along the vertical and horizontal axes with values indicating the mode. LCRs were identified from a sample of 100,000 sequences. (A) 
17,239 LCRs were identified from protein sequences in S. cerevisiae and their entropies were plotted against the entropies of their corresponding 
coding sequences (r = 0.459). (B) 3,315 LCRs were identified from coding sequences in S. cerevisiae and their entropies were plotted against the 
entropies of their corresponding protein sequences (r = 0.517). (C) 3,765 LCRs were identified from protein sequences in H. sapiens and their 
entropies were plotted against the entropies of their corresponding coding sequences (r = 0.585). (D) 260 LCRs were identified from coding 
sequences in H. sapiens and their entropies were plotted against the entropies of their corresponding protein sequences (r = 0.588).
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simulation, protein LCRs and their corresponding sequences 
had a significantly lower correlation compared with the Slip 
model (r = 0.585; 95% CI: 0.561–0.608; fig. 6C). However, 
DNA LCRs and their corresponding sequences were slightly 
higher although this was not significant (r = 0.588; 95% CI: 
0.492–0.670; fig. 6D). This helped confirm that we could ex
pect LCR sequence entropy correlation to be lower if a 
homogeneous run of codons was broken up by synonymous 
mutations and the LCR had thus been conserved or selected 
for. When comparing Slip+Syn simulations to the biological 
sequences, there were varying results depending on the or
ganism and LCR sequence type. For protein LCRs and corre
sponding sequences in S. cerevisiae, the correlation was 
insignificantly lower. For DNA LCRs and their encoded pro
tein sequences, the correlation was insignificantly higher. In 
H. sapiens, the correlation for protein LCRs and correspond
ing sequences had a significantly higher correlation and DNA 
LCRs and corresponding sequences had an insignificantly 
higher correlation. Thus, the biological sequences have LCR 
sequence entropy correlation more similar to the LCRs gen
erated from slippage followed by synonymous mutations al
though this model may still be limited in its ability to 
describe and predict LCR evolution.

The Slip and Slip+Syn simulations did have a greater ten
dency to generate mono-codon runs of LCRs as made evi
dent by the large fraction of both DNA and protein LCRs 
with a protein entropy of 0. Since this trend was not ob
served in the biological sequences, this suggested that per
haps biology has a preference against runs of identical 
codons in LCRs. Thus, a preference for codon nucleodicity 
class was investigated in each organism. In the coding se
quences for protein LCRs a strong nucleodicity class bias 
was observed for S. cerevisiae (χ2 = 9.749 × 10−30) and H. sa
piens (χ2 = 1.138 × 10−280). Sequences in both organisms 
showed a greater number of codons with a nucleodicity of 
two and fewer codons with a nucleodicity of one and three. 
The fourth proteome, Slip+CC was generated taking this co
don nucleodicity bias into account. Correlation coefficients 
from this model specific to S. cerevisiae were r = 0.699 
(95% CI: 0.690–0.707; fig. 7A) for Protein LCRs and corre
sponding coding sequences. This was significantly higher 
than the corresponding correlation coefficient for the S. cer
evisiae Slip simulation as well as the S. cerevisiae biological se
quences. A correlation coefficient of r = 0.553 (95% CI: 
0.534–0.572; fig. 7B) was observed for DNA LCRs and their 
encoded protein sequences which was significantly lower 
than in the corresponding Slip simulation and insignificantly 
higher than for the biological S. cerevisiae DNA LCRs. For the 
H. sapiens specific model, the correlation coefficient for pro
tein LCRs and their corresponding sequences was r = 0.808 
(95% CI: 0.795–0.820; fig. 7C). Again, this was significantly 
higher than in the corresponding Slip simulation as well as 
for the H. sapiens biological sequences. The correlation coef
ficient for DNA LCRs and their corresponding sequences was 
r = 0.546 (95% CI: 0.479–0.607; fig. 7D) which was insignifi
cantly lower than in the Slip simulation as well as for the bio
logical H. sapiens DNA LCRs. Thus, the Slip+CC simulation 
did not model the LCR sequences as anticipated and result 

in higher correlations for protein LCRs and their correspond
ing sequences but have less of a discernible effect on the cor
relation of DNA LCRs and their corresponding sequences.

Lastly, 1,000 synonymous mutations were added into the 
coding sequences from the Slip+CC simulations to produce a 
fifth proteome, Slip+CC+Syn. Similarly to the Slip and Slip 
+Syn simulations, the correlations from Slip+CC+Syn com
pared with Slip+CC were lower for both the S. cerevisiae 
and H. sapiens in both LCR sequence types. This was signifi
cant for all values except DNA LCRs and corresponding se
quences in H. sapiens. In the S. cerevisiae specific version of 
this simulation, the correlation for protein LCRs and their 
corresponding sequences was close compared with the bio
logical S. cerevisiae protein LCRs at r = 0.490 (95% CI: 0.477– 
0.503; fig. 8A). The correlation for DNA LCRs and their corre
sponding sequences was r = 0.430 (95% CI: 0.397–0.462; 
fig. 8B) which was also close to the biological S. cerevisiae 
DNA LCRs. For the H. sapiens specific simulation, the correl
ation between protein LCRs and their corresponding se
quences was significantly higher than in the biological 
sequences at r = 0.620 (95% CI: 0.598–0.641; fig. 8C). The cor
relation between DNA LCRs and their corresponding se
quences was insignificantly lower at r = 0.536 (95% CI: 
0.446–0.615; fig. 8D). Thus, while this simulation seemed a 
good model for S. cerevisiae, this was not the case for H. sapiens 
suggesting length dependent slippage and incorporation of co
don nucleodicity preferences followed by synonymous muta
tions is not sufficient to explain the correlations observed and 
therefore the mode of LCR evolution. Figure 9 summarizes the 
entropy correlations from the five simulations and compares 
them to the entropy correlations from the biological se
quences. A summary table of the main results can be found 
in supplementary table S11, Supplementary Material online.

Comparing Correlations Between LCRs Categorized 
as Periodic or Cryptic Repeats in Biological Sequences
The original analysis of LCRs and corresponding sequences 
of the five model organisms looked at sequence entropy 
correlations of LCRs as a whole. However, some studies 
have suggested that different types of LCRs, particularly 
protein LCRs with tandem periodic amino acid repeats 
may evolve differently than cryptic repeat LCRs with peri
odic repeat LCRs being more likely to have evolved 
through DNA polymerase slippage (Battistuzzi et al. 
2016). To test this theory, LCRs from the biological se
quences were divided into two categories, those with peri
odic amino acid repeats and those without periodic amino 
acid repeats (cryptic repeats). Sequence entropy correla
tions between these two LCR classes were only investi
gated for protein LCRs as this seemed more biologically 
relevant for repeats at the amino acid level and because 
tri- or hexa- repeats at the DNA level would lead to repeats 
at the corresponding amino acid level and thus would like
ly not be informative of LCR evolution. For all organisms, 
LCR sequence entropy correlations were always signifi
cantly higher in periodic repeat LCRs compared with cryp
tic repeat LCRs (fig. 10). Correlations for LCRs with 
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periodic repeats were also either higher or significantly 
higher than the correlation for both LCR types combined, 
and correlations in cryptic repeats were significantly lower 
than the correlation for both LCR types combined. For 
S. cerevisiae, the correlation between protein LCRs and cor
responding sequences with periodic repeats and cryptic re
peats was r = 0.573 (95% CI: 0.481–0.652) and r = 0.322 
(95% CI: 0.248–0.392), respectively. For H. sapiens, the cor
relations for periodic repeats versus cryptic repeats were 
r = 0.488 (95% CI: 0.402–0.492) and r = 0.242 (95% CI: 
0.207–0.277), respectfully (fig. 10). Overall, these results 

suggest that LCRs containing periodic amino acid repeats 
are more likely to evolve via DNA polymerase slippage 
whereas cryptic repeat LCRs are more likely to be selected 
for. Thus, of the five slippage and substitution models, the 
Slip simulation should be the most accurate model for the 
evolution of the periodic repeat LCRs. Overall, the Slip 
simulation did bear the closest resemblance in correlation 
to the biological sequences with the correlation being 
similar between Slip and periodic LCRs in S. cerevisiae 
but significantly higher compared with periodic LCRs in 
H. sapiens (fig. 10). On the contrary, the cryptic LCRs did 

A B

C D

FIG. 7. Entropy of LCRs from the Slip+CC simulated proteomes specific to S. cerevisiae and H. sapiens. Distributions of sequence entropies can be 
found along the vertical and horizontal axes with values indicating the mode. LCRs were identified from a sample of 100,000 sequences. (A) 
17,255 LCRs were identified from protein sequences in S. cerevisiae and their entropies were plotted against the entropies of their corresponding 
coding sequences (r = 0.699). (B) 6,505 LCRs were identified from coding sequences in S. cerevisiae and their entropies were plotted against the 
entropies of their corresponding protein sequences (r = 0.553). (C) 3,767 LCRs were identified from protein sequences in H. sapiens and their 
entropies were plotted against the entropies of their corresponding coding sequences (r = 0.808). (D) 579 LCRs were identified from coding 
sequences in H. sapiens and their entropies were plotted against the entropies of their corresponding protein sequences (r = 0.546).
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not bear resemblance to any of the slippage or substitution 
models and were significantly below the correlations for all 
species-specific models in all organisms (fig. 10).

Discussion
At the outset, the fact that information flows from coding 
sequence to protein sequence might lead one to have a 
naïve expectation that the entropies of LCRs at each level 
would be highly correlated. However, for each of the 

genomes from the model organisms examined the correla
tions observed were low to moderate.

To ensure that the choice of parameters chosen for the 
measurement of LCRs via Seg was not the cause of this 
unusual effect, LCRs were identified using varying sets of 
parameters. To identify protein LCRs, parameters were 
chosen based on previous studies which found these para
meters to work well for identifying highly repetitive LCRs 
while avoiding sequences that had higher complexity 
(Huntley and Golding 2002; Haerty and Golding 2010; 

A B

C D

FIG. 8. Entropy of LCRs from the Slip+CC+Syn simulated proteomes specific to S. cerevisiae and H. sapiens. LCRs were identified from a sample of 
100,000 sequences. Distributions of sequence entropies can be found along the vertical and horizontal axes with values indicating the mode. (A) 
17,255 LCRs were identified from protein sequences in S. cerevisiae and their entropies were plotted against the entropies of their corresponding 
coding sequences (r = 0.490). (B) 3,004 LCRs were identified from coding sequences in S. cerevisiae and their entropies were plotted against the 
entropies of their corresponding protein sequences (r = 0.430). (C) 3,767 LCRs were identified from protein sequences in H. sapiens and their 
entropies were plotted against the entropies of their corresponding coding sequences (r = 0.620). (D) 340 LCRs were identified from coding 
sequences in H. sapiens and their entropies were plotted against the entropies of their corresponding protein sequences (r = 0.536).
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Battistuzzi et al. 2016). These were then increased and de
creased to explore the effect of the parameters as shown in 
supplementary table S2, Supplementary Material online. It 
was difficult to determine the biologically equivalent para
meters for finding DNA LCRs as there are no known 

studies which have used Seg for DNA LCRs previously. 
We therefore chose to use the parameters suggested in 
the Seg manual and varied the parameters around these 
values as shown in supplementary table S3, Supplementary 
Material online. As can be seen in these tables, adjusting 
window length, low cut, and high cut parameters overall 
had little impact on the degree of correlation for the bio
logical sequences (supplementary tables S2 and S3, 
Supplementary Material online). The value of the high 
cut parameter (K2) had the greatest impact on correlation. 
In general, and particularly in the DNA-based results, in
creasing the values of the three parameters (window 
length, low, and high cutoffs) resulted in higher correlation 
coefficients but at an extreme cost of many fewer regions 
considered to be low complexity. This could be because 
low entropies at long window lengths are less common, 
and higher low cut and high cut parameters results in 
less extreme LCRs being considered. A visual summary of 
the excess correlation can be found in supplementary fig. 
S4, Supplementary Material online. 

The analysis of the simulated proteomes Null, Slip, and 
Slip+Syn were also performed with the Seg parameter 
sets described above (supplementary tables S4–S8, 
Supplementary Material online). Regardless of the set of 
parameters used, organism examined, and sequence type 
in which the LCRs were identified in, the results were quali
tatively the same: The correlations observed in biological 
data were lower than the correlations produced in any 
simulation. In most cases, the biological correlations 
were significantly lower, however the exceptions were con
centrated at the high complexity extreme of Seg para
meters tested. For example, in the instances where the 
biological correlation was significantly higher than the 

A B

FIG. 9. A summary of the LCR entropy correlation coefficients and 95% confidence intervals for each model organism and species-specific simu
lated proteome. Exact correlation coefficient values can be found in supplementary table S11, Supplementary Material online. (A) Correlation 
coefficients are from protein LCRs and corresponding coding sequence linear regressions. The non-species-specific Null proteome is also in
cluded (the shaded area which spans all five species). (B) Correlation coefficients are from DNA LCRs and corresponding protein sequence linear 
regressions. A linear regression could not be performed for DNA LCRs from the Null simulation due to lack of data points.

FIG. 10. A summary of the correlation coefficients with 95% confi
dence intervals for protein LCRs with periodic amino acid repeats, 
all LCR types combined, and cryptic repeats for the five model or
ganisms. The correlations for the four species-specific slippage and 
substitution models and the Null model with 95% confidence inter
vals are also given for comparison. Exact correlation coefficient va
lues can be found in supplementary table S11, Supplementary 
Material online.
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correlations in Slip and Slip+Syn for LCRs identified in pro
teins, all occurred at the settings with highest K2 values. K2 
values much higher than K1 cause Seg to degenerate to 
finding the least probable subsequence in a protein regard
less of entropy values. We observed that the excess correl
ation in the simulations was greatest when the definition 
of an LCR was strictest. This indicates that the evolutionary 
mechanisms embodied in the simulations: replication slip
page as well as nucleodicity and synonymous substitutions 
insufficiently explain the observed distribution of protein 
LCRs, especially for highly repetitive LCRs.

Even when the correlations seen in the simulations were 
not significantly different from the biological sequences, 
the distribution of sequence entropies was very different. 
All of the simulations which included slippage produced 
lower entropy LCRs both at the DNA and protein level 
(figs. 5 and 7). Slippage produced far more mono-amino 
acid repeats than observed biologically, indicating that 
slippage alone doesn’t explain the abundance of less com
positionally biased LCRs. Non-synonymous mutations 
which break up the amino acid tract would shift the distri
bution away from homopolymers towards the more com
monly observed entropies (figs. 6 and 8). The distribution 
of DNA entropies in simulations which did not include 
synonymous mutations was also biased towards lower en
tropies, but was also multimodal with peaks near the en
tropies corresponding to the nucleodicity of the plurality 
codon in the sequence (figs. 5 and 7). The addition of syn
onymous mutations brings the DNA entropy distribution 
more in line with what is seen biologically: unimodal with a 
peak at higher entropy (figs. 6 and 8). There may be a sam
ple size effect, as we see the most dissimilarity between 
simulation and biology in H. sapiens which had the most 
LCR containing proteins at 5,005 while S. cerevisiae had 
only 1,034.

Comparing LCRs identified in proteins or in DNA cod
ing sequences, the correlations for LCRs found in coding 
sequences were usually significantly higher in biological se
quences. The exceptions are S. cerevisiae and D. melanoga
ster which both had the fewest LCRs identified in coding 
sequences at 176 and 187, respectively. The patterns are 
also unclear for the simulated proteomes: the Slip model 
often had higher correlation at the protein level, but the 
Slip+Syn model often showed the reverse. Without consid
ering the bias in codon usage each organism has, correla
tions would be expected to be higher when identifying 
LCRs in coding sequences as some information is lost dur
ing the translation process. That is, the total entropy of the 
DNA sequence can never be lower than the protein se
quence it encodes. The maximum entropy for a nucleotide 
is 2 bits, while the maximum entropy for an amino acid is 
roughly 4.32 bits. However, each amino acid is encoded by 
three nucleotides, for a maximum entropy of 6 bits. Thus, if 
the nucleotide variation is substantially constrained, as 
seen in DNA LCRs, the amino acids which can be encoded 
are limited to a select few. On the contrary, if the amino 
acid variation is limited, as seen with protein LCRs, there 
is still a possibility to have up to all four nucleotides 

comprising its coding sequence. Essentially, limiting DNA 
information content will limit protein information con
tent, but the same is not necessarily true in the reverse dir
ection. Hence, LCR sequences taken in one direction might 
be less correlated than LCR sequences taken in the other 
direction. Biological biases in codon usage, as well as the 
codons and amino acids tolerated in LCRs may modify 
this effect, and lead to the inconsistent pattern we observe.

It is interesting that DNA entropy for both protein and 
DNA LCRs rarely goes below one bit as there is evidence 
suggesting a bias toward the use of two nucleotides to 
drive particular codon usage which is thought to be asso
ciated with the presence of LCRs (Knight et al. 2001; Xue 
and Forsdyke 2003; Albà and Guigó 2004; DePristo et al. 
2006; Li et al. 2015). In coding regions, there are rarely sub
sequences of DNA containing two or fewer nucleotides for 
45 or more consecutive nucleotides. The percentage of 
protein LCRs with a corresponding DNA sequence entropy 
under 1 bit was 1.16% and 1.04% for S. cerevisiae and H. sa
piens, respectively. None of the simulated proteomes had 
proportions as low, with the exception of the Null simu
lated proteome where no LCRs had DNA entropy less 
than 1. The Slip and Slip+CC models both produced pro
teomes where 31.6 (in H. sapiens Slip) to 53.2% (in C. ele
gans Slip+CC) of LCRs had DNA entropies less than 1.0, 
while the addition of synonymous mutations brought 
this proportion down to 14.6 (in H. sapiens Slip+Syn) to 
21.2% (in S. cerevisiae Slip+Syn). Because the simulated va
lues are much higher than observed in nature, it might in
dicate that biological sequences tend toward coding 
sequences with a higher variation of nucleotides than 
would be expected if both polymerase slippage resulting 
in codon repeats or a more heterogeneous mixture of co
dons was present.

It was possible that examining entropy at the codon le
vel may have provided insights into LCR evolution. Each 
nucleotide triplet could be considered its own distinct 
character, especially considering that strong selection 
against frameshift mutations results in only replication 
slippage of whole codons being tolerated in coding regions 
(Metzgar et al. 2000). Because of this, we also calculated 
entropy at the codon level for each LCR. However, when 
comparing protein sequence entropy to codon entropy, 
there are mathematical constraints which force LCRs in 
the scatter plot to lie within a very constrained minimum 
and maximum threshold value, forcing a more linear rela
tionship (supplementary fig. S5, Supplementary Material
online). The maximal codon entropy for a homopolymeric 
sequence would occur if the amino acid had a six codon 
degeneracy at log2 6 which is 2.58 bits (supplementary 
fig. S5, Supplementary Material online). While the minimal 
codon entropy is zero for the repetitive usage of a single 
codon. Due to these tight mathematical constraints, en
tropy at the codon level was not further considered.

The mathematical constraints on possible entropies is 
the result of codon nucleodicity. Nucleodicity bias would 
therefore play a role in the correlation between DNA 
and protein level entropies. In all organisms examined, 
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there was a significant bias against the formation or main
tenance of mononucleic codon repeats. This definitely im
pacts the correlation between protein and DNA sequence 
entropies, as exemplified in fig. 3. However, including this 
bias in the simulations increases the correlation between 
DNA and protein sequence entropies, while leaving the 
distribution of protein entropies largely unaffected. 
Therefore, the nucleodicity bias not only doesn’t explain 
the low biological correlation, but seems to drive the cor
relation up. This indicates that other mechanisms must be 
acting as well.

One possible explanation for these low correlation results 
is that these LCRs are formed under a high selective pressure 
rather than through just polymerase slippage with low select
ive constraints. This result is surprising because there is a 
great deal of evidence to suggest that LCRs are the product 
of polymerase slippage at microsatellites, resulting in either 
the expansion or contraction of a repeat sequence 
(Levinson and Gutman 1987; Wierdl et al. 1997; Viguera 
et al. 2001; Tompa 2003; Hannan 2018). As well, evidence 
suggests that the polymorphic nature of LCRs is a result of 
this instability in combination with low selective pressure 
acting on either the protein as a whole, or this specific region 
of the protein (Fan and Chu 2007; Mularoni et al. 2007; 
Behura and Severson 2012). In vitro studies have also shown 
polymerase slippage can explain the observed microsatellite 
distributions within a genome (Madsen et al. 1993). 
Sequences consisting of pure codon repeats are more likely 
to undergo slippage than codon tracts with synonymous 
mutations. Such mutations break up trinucleotide repeats 
and have been shown to help stabilize and conserve LCRs 
(Albà et al. 1999). Still other studies suggest that LCR expan
sion is in an equilibrium between insertions which decrease 
tract stability and point mutations which increase tract sta
bility (Kruglyak et al. 1998; Brandström and Ellegren 2008). 
The length of repeat has also been shown to have a positive 
correlation with the chance of slippage (Lai and Sun 2003). 
Together this led us to hypothesize that as protein LCRs 
came nearer to a perfect repeat, and as the length of an un
interrupted tandem amino acid repeat became longer, that 
the chance of it being a result of slippage and having a cor
responding DNA sequence consisting of pure codons also 
would increase.

Of course, if LCRs were a product of high selective pres
sures forcing an irregularly biased amino acid composition, 
the length and biochemical properties of the amino acids 
at the protein level would be the major important factor in 
determining the repetitiveness and ordering of an LCR. 
This suggests that the codon choice at the DNA level 
would be unimportant and could consist of any codons 
so long as they encoded for the correct amino acid. In 
this case, variety in codon usage would increase, likely re
sulting in a greater variety of nucleotides used. Thus, a 
high DNA entropy could encode for a wide range of pro
tein LCR entropies, ultimately resulting in a lower correl
ation between sequence entropies. The correlations from 
the Slip+CC proteome was significantly higher than those 
observed for the biological sequence comparisons in both 

S. cerevisiae and H. sapiens (fig. 9). If slippage were the pre
dominant LCR driving force with low selective constraints, 
it would be expected that the correlation coefficients for 
these organisms would be closer to those observed from 
the simulations. Instead, sequence entropy correlations 
were significantly different from that observed int the 
Slip and Slip+Syn proteomes. As well, the decrease in cor
relation coefficient between Slip and Slip+CC suggests that 
if LCRs were created predominantly by polymerase slip
page and contained more pure codon repeats, the DNA 
and protein sequence entropies would be more highly cor
related than if they were a product of selection and con
tained a greater mixture of synonymous codons (fig. 9).

Overall, the selective retention or loss or an LCR may be 
dependent on the location of the LCR within the protein 
(Huntley and Clark 2007; Coletta et al. 2010), the LCR type 
(Kobe and Kajava 2001; Radó-Trilla et al. 2015), the protein 
function (Ekman et al. 2006; Coletta et al. 2010), and the or
ganism itself (Karlin et al. 2002). Battistuzzi et al. (2016) and 
Zilversmit et al. (2010) suggest that LCR type and periodicity 
may constitute factors which affect the mode of LCR evolu
tion. They propose that slippage may be a more prominent 
mechanism as an LCR gets closer to a perfect repeat, and se
lection may be more important for LCRs with a higher com
plexity and lower periodicity. This would make sense, as 
slippage is thought to occur at higher rates at longer continu
ous repeat sequences (Lai and Sun 2003; Leclercq et al. 2010). 
When looking only at highly repetitive LCRs, our analyzes 
agree. The results of the slippage-based simulations do close
ly resemble the biological sequences for LCRs which are 
mainly periodic repeats (fig. 10). The differences seen when 
looking at all LCRs are driven by the non-repetitive LCRs. 
These compositionally biased domains with a lack of period
icity (cryptic repeats) would be less likely to undergo slippage 
and their presence would be more reasonably attributed to 
selection. But this discounts any suggestion that the cryptic 
repeats were at one point a periodic repeat which degener
ated over time (Radó-Trilla and Albà 2012). Similarly, 
Zilversmit et al. (2010) showed that in P. falciparum compos
itionally biased, aperiodic LCRs are less variable and evolve 
slower, whereas regions with long asparagine tracks are 
more variable and thought to evolve via replication slippage. 
We investigated the effect of periodicity on LCR entropy cor
relation using a range of minimum repeat lengths and found 
that when only sequences containing periodic repeats were 
compared, sequence entropy correlations were significantly 
higher in H. sapiens and higher, although not significantly, 
in S. cerevisiae compared with correlations of all LCR types 
combined (fig. 10). While correlations for periodic repeat 
LCRs were always significantly higher when comparing corre
lations for only cryptic repeat LCRs (fig. 10). The overall high
er LCR sequence entropy correlation for periodic amino acid 
repeats is consistent with the findings of Battistuzzi et al. 
(2016) and Zilversmit et al. (2010).

The data presented here demonstrate that there is an un
usually low correlation between the entropies of LCRs within 
proteins and their corresponding DNA coding sequences. 
This is largely driven by LCRs with cryptic rather than periodic 
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repeats. Although LCRs are thought to be primarily created 
via polymerase slippage, the simulations conducted suggest 
that the correlations would be higher if this were the sole 
mechanism. Continuing evolution of cryptic LCRs via syn
onymous substitutions cannot reduce the size the correlation 
and still maintain the size and entropy of the observed LCRs. 
Instead, the data suggest that these protein LCRs are main
tained by genome wide, pervasive selection which acts to re
duce the correlation by favoring synonymous substitutions 
that lower the correlation by lowering the repetitiveness of 
the LCRs at the DNA level and hence increasing the stability 
of the LCR. This may be partially facilitated through a bias 
against mononucleic codon repeats as we observe significant
ly fewer of these than codon usage frequencies would suggest. 
This would make the LCRs less prone to potentially deleteri
ous slippage mutations. In the future, it is necessary to know if 
the correlations in sequence entropies change with the age of 
the proteins. If this hypothesis is true we would expect a high
er correlation in more recently evolved proteins (Toll-Riera 
et al. 2012) compared with older, more highly conserved pro
teins. Future investigations should also determine how pre
ferred amino acid residue, protein function, protein age, 
and role of the LCR within the protein influences the relation 
between protein and DNA sequence entropies in LCRs.
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