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Category Trumps Shape as an Organizational Principle of
Object Space in the Human Occipitotemporal Cortex
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The organizational principles of the object space represented in the human ventral visual cortex are debated. Here we con-
trast two prominent proposals that, in addition to an organization in terms of animacy, propose either a representation
related to aspect ratio (stubby-spiky) or to the distinction between faces and bodies. We designed a critical test that dissoci-
ates the latter two categories from aspect ratio and investigated responses from human fMRI (of either sex) and deep neural
networks (BigBiGAN). Representational similarity and decoding analyses showed that the object space in the occipitotemporal
cortex and BigBiGAN was partially explained by animacy but not by aspect ratio. Data-driven approaches showed clusters for
face and body stimuli and animate-inanimate separation in the representational space of occipitotemporal cortex and
BigBiGAN, but no arrangement related to aspect ratio. In sum, the findings go in favor of a model in terms of an animacy
representation combined with strong selectivity for faces and bodies.
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Significance Statement

We contrasted animacy, aspect ratio, and face-body as principal dimensions characterizing object space in the occipitotempo-
ral cortex. This is difficult to test, as typically faces and bodies differ in aspect ratio (faces are mostly stubby and bodies are
mostly spiky). To dissociate the face-body distinction from the difference in aspect ratio, we created a new stimulus set in
which faces and bodies have a similar and very wide distribution of values along the shape dimension of the aspect ratio.
Brain imaging (fMRI) with this new stimulus set showed that, in addition to animacy, the object space is mainly organized by
the face-body distinction and selectivity for aspect ratio is minor (despite its wide distribution).

Introduction
Visual object recognition is crucial for human image under-
standing, with the lateral and ventral occipitotemporal cortex
(OTC) being particularly important. This large cortical region
has large-scale maps for distinctions, such as animate versus in-
animate, selective areas for specific categories, such as faces,
bodies, and scenes, and further maps for visual and semantic fea-
tures (Konkle and Oliva, 2012; Grill-Spector and Weiner, 2014;
Nasr et al., 2014; Bracci and Op de Beeck, 2016; Kalfas et al.,
2017). However, it is unclear how these different aspects of this
functional architecture can be put together in one comprehen-
sive model.

Different proposals suggest either low-level visual properties
(Coggan et al., 2016; Long et al., 2018) or higher-level features
(Kriegeskorte et al., 2008; Carlson et al., 2014; Bracci and Op de
Beeck, 2016; Bryan et al., 2016; Bracci et al., 2017; Peelen and
Downing, 2017) could explain the functional organization of
OTC.

Recently, Bao et al. (2020) proposed a comprehensive map of
object space in monkeys’ inferior temporal (IT) cortex based on
data from monkey fMRI, single-neuron electrophysiology, and
deep neural network (DNN). They suggested that the IT cortex
is organized as a map with two main dimensions: aspect ratio
(stubby-spiky) and animate-inanimate. This map would explain
the location of specific regions in the IT cortex. In particular, the
anatomic location of face- and body-selective regions would be
constrained by the visual properties of these stimuli, with faces
being stubby and bodies being spiky. A similar space was
observed in DNNs.

This proposal of a 2D animacy � aspect ratio space is appeal-
ing as a comprehensive model. At first sight, it fits with earlier
but somewhat dispersed findings of both animacy and spiky-
stubby selectivity in human and monkey (Kriegeskorte et al.,
2008; Op de Beeck et al., 2008a; Op de Beeck and Bracci, 2022).
In addition, the 2D object space as proposed by Bao et al. (2020)
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was mostly confirmed in the human brain with the same stimu-
lus set (Coggan and Tong, 2021). Nevertheless, the evidence for
the model is fundamentally flawed. None of the experiments
properly controlled the two dimensions. In Bao et al. (2020), the
stimulus set overall dissociated stubby-spiky from animate-inani-
mate, but this was not true within stimulus classes: Face stimuli
were all stubby and body stimuli were mostly spiky. Much of the
evidence for aspect ratio as an overall dimension and as a dimen-
sion underlying face and body selectivity and determining the
location of selectivity for these categories, might be because of
this major confound between aspect ratio and stimulus category
(face vs body). It is possible that, alternatively, face versus body
selectivity has a primary role in the organization of OTC and
that aspect ratio is at best a dimension of secondary impor-
tance. This is an alternative view of how object representa-
tions are organized, why they have this structure, and what
constraints might determine where specific category-selec-
tive regions emerge in OTC.

We designed a new experimental paradigm to dissociate two
alternative hypotheses: An object space organized in terms of the
dimensions of animacy and aspect ratio, or instead an object
space organized in terms of a primary dimension of animacy and
a further distinction between faces and bodies that is NOT
related to the aspect ratio of these categories. To be able to prop-
erly distinguish among these alternatives, we designed a novel
stimulus set in which the face and body categories are explic-
itly dissociated from aspect ratio (being stubby or spiky). We
obtained neural responses using fMRI and examined object
representations in human OTC as well as a state-of-the-art
DNN. We observed no tuning representation for aspect ratio
in human face and body regions. A representation for aspect
ratio was restricted to right object-selective regions and only
present for inanimate objects. Our findings go against the 2D
animacy � aspect ratio model, and in favor of a model in
terms of an animacy representation combined with strong se-
lectivity for faces and bodies.

Materials and Methods
Participants
Seventeen subjects (12 females, 19-46 years of age) took part in the
experiment. All subjects were healthy and right-handed with normal vis-
ual acuity. They gave written informed consent and received payment
for their participation. The experiment was approved by the Ethics
Committee on the use of human subjects at the Universitair Ziekenhuis/
Katholieke Universiteit Leuven. Two subjects were later excluded
because of excessive head motion (for more details, see Preprocessing),
and the final analyses included the remaining 15 subjects.

Stimuli
Stimuli in the main experiment included 52 images from four categories:
animal body, animal face, manmade, and natural object (see Fig. 1A).
We selected 13 exemplar images from each of these four categories that
were selected to provide a comparably wide range of aspect ratios for dif-
ferent categories. In the literature on shape description, aspect ratio is
usually defined as the ratio of principle axes in a shape, but following
Bao et al. (2020), we defined aspect ratio as a function of perimeter P
and area A; aspect ratio = P2/(4pA). Using this formula, the ranges of
aspect ratio for body and face stimuli in Bao et al. (2020) were 1.38-6.84
and 0.91-1.19, respectively, while we had ranges of 1-9.66 for bodies and
1.51-10.89 for faces. In each category, we sorted stimuli according to the
aspect ratio, determined the category median of aspect ratio, and labeled
stimuli with aspect ratios larger than the category median as spiky and
those with aspect ratios smaller than the category median as stubby.

All images were grayscale with a gray background, cropped to 700 �
700 pixels (subtended 10 degrees of visual angle in the MRI scanner).

We equalized the luminance histogram and the average energy at each spa-
tial frequency across all the images using the shine toolbox (Willenbockel et
al., 2010). Examples of finalized stimuli used for fMRI experiments and
computational analyses are provided in Figure 1B.

To compare stimuli with respect to animacy, aspect ratio, face-body,
and low-level shape properties, we computed representational dissimi-
larity matrices (RDMs) and quantified pair-wise resemblance of images
for these properties. For constructing a dissimilarity matrix based on
animacy, we assigned scores 11 to animate (face and body) and �1 to
inanimate (manmade and natural) stimuli and computed the absolute
difference of scores for each stimulus pair (see Fig. 1C). The aspect ratio
model included the pairwise absolute difference of aspect ratios (see Fig.
1C). Face-body model assigned a score of11 to the stimulus pairs where
one stimulus included a face and the other a body, and 0 to all other
pairs (see Fig. 1C). As measures of low-level shape properties, we investi-
gated pixel-wise dissimilarity (Op de Beeck et al., 2008b) and dissimilar-
ities based on outputs of hmax model (S1-C1, C2) (Serre et al., 2007).
We computed correlation distances between pixels/S1-C1/C2 for
each pair of stimuli to build dissimilarity matrices. Comparison of
model RDMs (Spearman correlation and p values from one-sided
permutation tests) showed nonsignificant similarity between ani-
macy and aspect ratio models (r = �0.0201, p = 0.8800), animacy
and low-level models (pixels: r = 0.0358, p = 0.1150, S1-C1:
r = 0.0412, p = 0.0540, C2: r = �0.0052, p = 0.5270), and aspect-ra-
tio and low-level models (pixels: r = �0.0057, p = 0.5460, S1-C1:
r = 0.0148, p = 0.3600, C2: r = 0.0473, p = 0.2080). The face-body
model showed significantly negative correlations with animacy
(r = �0.3898, p, 0.001) and S1-C1 (r = �0.1477, p = 0.007) models
and no significant correlations with aspect ratio (r = 0.0045,
p = 0.4730), pixels (r = �0.0499, p = 0.06), and C2 (r = �0.0094,
p = 0.3850) models.

Experimental design and statistical analyses
Sample size
The number of participants was chosen to be sufficient to have a power
of ;0.95 with reliable data that guarantee an effect size of d=1.
According to previous studies (i.e., Bracci and Op de Beeck, 2016; Bracci
et al., 2019), we know that the distinction between animals and other
objects as revealed by representational similarity analysis (RSA) has a
very high effect size (Cohen’s d of 1-4) even in small ROIs. The effect
size was larger than expected in the power calculation: All participants
showed a larger correlation with the animacy model compared with the
aspect ratio. We also confirmed the high between-subject reliability of
the neural data by calculating the noise ceiling for RSA correlations in
our ROIs.

Scanning procedures
Data recording consisted of eight experimental runs, three localizer
runs, and one anatomic scan, all completed in one session for each
participant.

For the experimental runs, we used a rapid event-related design.
Each experimental run included a random sequence of 138 trials: two
repetitions of each stimulus image plus 34 fixation trials. Each trial was
3 s. Stimulus trials began with the stimulus presentation for 1500ms and
were followed by 1500ms of the fixation point. Each experimental run
lasted 7min 14 s. The fixation point was presented at the center of the
screen continuously throughout each run. Subjects were instructed to
fixate on the fixation point and, on each trial, press a button to indicate
whether they preferred looking at the current image or the previous one
(same task as in Ritchie et al., 2021).

For the localizer runs, we used a block design with six stimulus types:
body, face, stubby object, spiky object, word, and box-scrambled version
of the object images. Each run included 24 blocks with four blocks for
each stimulus type. The presentation order of the stimulus types was
counterbalanced across runs. Each block lasted 16 s. There was a 10 s
blank period at the beginning and end, and three 12 s blank periods
between stimulus blocks of each repetition. Each localizer run lasted
7min 20 s. In each stimulus block, there were 18 images of the same
stimulus type and two different randomly selected images were repeated.
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Each image in a block appeared for 400ms followed by 400ms fixation.
A fixation point was presented at the center of the screen continuously
throughout each run. Subjects were instructed to fixate on the fixation
point, detect the stimulus one-back repetition, and report it by pressing
a response key with their right index finger. For one subject, the data for
one of three localizer runs were discarded since there were uncorrectable
artifacts in the data.

Subjects viewed the visual stimuli through a back-projection screen,
and the tasks were presented using MATLAB and Psychtoolbox-3
(Brainard and Vision, 1997).

Acquisition parameters
MRI data were collected at the Department of Radiology of the
Universitair Ziekenhuis Leuven University Hospitals using a 3T Philips
scanner, with a 32-channel head coil. Functional images were obtained
using a 2Dmultiband T2*-weighted EPI sequence with a multiband of 2,
TR of 2 s, TE 30ms, 90° flip angle, 46 transverse slices, and a voxel size
of 2� 2 � 2 mm3. A high-resolution T1-weighted structural scan was
also acquired from each participant using an MPRAGE pulse sequence
(1� 1� 1 mm3 isotropic voxels).

Preprocessing
fMRIPrep (Esteban et al., 2019) was used for preprocessing anatomic and
functional data, using default settings unless otherwise noted. The T1-
weighted image was corrected for intensity nonuniformity, skull-stripped,
and went through nonlinear volume-based registration to ICBM 152 non-
linear Asymmetrical template version 2009c. Each of the bold runs was
motion-corrected, coregistered to the individual’s anatomic scan, and nor-
malized into standard space MNI152NLin2009cAsym. Subjects with ex-
cessive head motion (frame-wise displacement. 2 mm; .1 voxel size)
were excluded (2 subjects). Subjects either did not have frame-wise dis-
placements greater than the predefined threshold or had it repeated

multiple times. The rest of the analyses were conducted with SPM12 soft-
ware (version 6906). As the last step of preprocessing, all functional vol-
umes were smoothed using a Gaussian kernel, 4 mm FWHM. After
preprocessing, a run-wise GLM analysis was performed to obtain
the b values for each stimulus image of the experimental and each
stimulus type of the localizer runs in each voxel. For the experi-
mental runs, the GLM consisted of the 52 stimulus regressors (box-
car functions at the stimulus onsets with a duration of 1500ms
convolved with a canonical HRF) and six motion correction pa-
rameters (translation and rotation along the x, y, and z axes). For
the localizer runs, the GLM included the six stimulus regressors
(boxcar function at the block onsets with a duration of 16 s con-
volved with a canonical HRF) and the same six motion correction
parameters.

Defining ROIs
We used contrasts from localizer runs intersected with masks from func-
tional (Julian et al., 2012) or anatomic atlases (Anatomy Toolbox)
(Eickhoff et al., 2005) to define a maximum of 26 ROIs covering lateral
and ventral OTC in each subject. Since the functional atlas included few
ROIs in the ventral cortex, we used the intersection of contrast maps
with FG1-FG4 (FGs) from the Anatomy Toolbox to define more ventral
ROIs. All lateral and ventral body-, face-, and object-selective ROIs in
each hemisphere were merged to produce a large ROI representing left
or right OTC. We also used the anatomic V1 mask to define EVC.
Details on localizing ROIs (using functional contrasts and masks) are
provided in Table 1. To ensure that ROIs with the same selectivity were
independent, we examined their overlap and took overlapping voxels
away from the larger ROIs. This mostly happened for LOC and FGs in
the object, spiky, and stubby areas; and overlapping voxels were removed
from LOC. This removal of overlap did not meaningfully change any of

Figure 1. Stimulus design. A, All 52 images used to prepare stimuli, in the order of increasing aspect ratio from left to right and color-coded based on the category. B, Examples of finalized
stimuli (gray background, equalized luminance histogram, etc.) used for fMRI experiment and computational analysis. C, The main model RDMs used throughout the research. The axes of
RDMs are color-coded based on stimulus category.
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the findings and statistics, and very similar findings were obtained when
these voxels are not removed.

To capture gradual effects, we defined a series of 37 small consecutive
ROIs along the anteroposterior axis that forms the ventral visual stream.
These ROIs were localized using the functional contrast of All conditions.
Fixation intersected with anatomic masks, including V1, V2, V3v, V4v, and
FGs (Spriet et al., 2022).

All ROIs included at least 25 voxels that surpassed the statistically
uncorrected threshold p , 0.001 in the relevant functional contrast and
were included in the relevant mask (Table 1). If the number of surviving
voxels was ,25, a more liberal threshold of p , 0.01 or p , 0.05 was
applied.

Figures 4 and 7, respectively, show category-selective ROIs and the
ventral visual stream in one representative subject mapped onto the
inflated cortex using FreeSurfer (https://surfer.nmr.mgh.harvard.edu).

Mean sizes (SEs) for category-selective ROIs were as follows:
lEBA = 823 (54), rEBA = 1064 (77), lFGs-body = 145 (28), rFGs-
body = 138 (26), lFFA = 90 (13), rFFA = 139 (19), lOFA = 54 (7),
rOFA = 122 (13), lSTS = 39 (7), rSTS = 91 (29), lFGs-object = 326
(50), rFGs-object = 208 (31), lLOC-object = 294 (42), rLOC-object = 284
(44), lFGs-spiky=99 (28), rFGs-spiky=77 (16), lLOC-spiky=248 (61),
rLOC-spiky=207 (74), lFGs-stubby=50 (8), rFGs-stubby=53 (6), lLOC-
stubby=83 (31), rLOC-stubby=70 (9), lFGs-word=207 (38), rFGs-
word=50 (6), lV1=335 (24), and rV1=467 (22).

Statistical analysis of the main fMRI experiment
Multivariate (RSA and classification) and univariate analyses were used
to study the role of animacy and aspect ratio in organizing OTC’s object
space. In-house MATLAB code and the CoSMoMVPA (Oosterhof et al.,
2016) toolbox were used for the following analyses.

RSA
We compared the RDMs based on neural activity in different ROIs
with model RDMs based on animacy, aspect ratio, and face-body.
Neural RDM for each ROI included the pairwise Mahalanobis dis-
tance between activity patterns (b weights) of the ROI for different
stimuli (Walther et al., 2016; Ritchie and Op de Beeck, 2019). The
off-diagonal of the neural and model RDMs was vectorized, and the
Spearman’s correlation between dissimilarity vectors was then cal-
culated and compared. We tested the significance of correlation val-
ues between neural and model RDMs across subjects using one-
sample t tests and the significance of differences between correlation

values obtained for animacy RDM and aspect ratio RDM, animacy
RDM and face-body RDM, or aspect ratio RDM and face-body
RDM across subjects using paired t tests. Then, p values were cor-
rected for multiple comparisons across all ROIs (false discovery rate
[FDR]) (Benjamini and Hochberg, 1995).

For body-, face-, and object-selective ROIs, we repeated the RSA for
a subset of our stimuli limited to their favorite category; neural and as-
pect ratio RDMs were computed using body, face, or object (manmade
and natural) stimuli separately, the off-diagonal of the neural and model
RDMs were vectorized, and the Spearman’s correlation between dissimi-
larity vectors was calculated and tested for significance using one-sample
t tests using correction for multiple comparisons across ROIs (FDR)
(Benjamini and Hochberg, 1995).

When correlating neural and model dissimilarity, we can compare
this correlation with the reliability of the neural dissimilarity matrix.
This reliability can be interpreted as the estimate of the highest possible
correlation given the noise in the data (Op de Beeck et al., 2008a). For
each region, it was computed as the cross-validated correlation of each
subject’s neural dissimilarity matrix with the mean of the remaining sub-
jects’ neural dissimilarity matrices. These reliabilities, called the noise
ceiling for fMRI data, are provided as gray background bars in all the rel-
evant figures.

For OTC, we averaged the neural dissimilarity matrices across sub-
jects to obtain a group-level neural dissimilarity matrix, applied multidi-
mensional scaling (MDS) analysis, and used the first two dimensions
that explained most of the variance to produce an MDS diagram in
which the distance among stimuli expresses the similarity among their
neural representation.

Within- and cross-category classification. We performed category
classification (i.e., animate vs inanimate and spiky vs stubby classifica-
tion). In a leave-one-run-out cross-validation procedure, samples (b
weights) were partitioned to train and test sets and linear discriminant
analysis was used to perform brain decoding classification in individual
brains. The animate versus inanimate classification was performed
within and cross aspect ratio; for within aspect ratio, we trained and
tested classifiers with the same category of stimuli (either spiky or
stubby); while for cross aspect ratio, classifiers were trained and tested
with stimuli from different categories (Table 2). The spiky versus stubby
classification was also performed within and cross animacy; for within
animacy, we trained and tested classifiers with the same category of stim-
uli (either animate or inanimate); while for cross animacy, classifiers
were trained and tested with stimuli from different categories (Table 2).
Using median as a criterion to label stimuli as “stubby” or “spiky,” we
had six stubby bodies, six spiky bodies, six stubby faces, ... so we would
have the same number of stimuli from bodies, faces, manmades and nat-
urals in all classifications. We tested whether the classification accuracies
for within- or cross-category classifications across subjects were signifi-
cantly above chance level (50% chance level for two-category classifica-
tion) using one-sample t tests and the significance of differences between
within- and cross-category classification accuracies across subjects using
paired t tests. Then, p values were corrected for multiple comparisons
across ROIs (FDR) (Benjamini and Hochberg, 1995). Comparing
within- and cross-category classification accuracies for these two dimen-
sions, we determined the ROIs’ capability of generalizing distinction
along one dimension over changes in the other dimension, which speci-
fies the ROIs in which animacy and aspect ratio contents are independ-
ently represented.

Table 1. Functional contrasts and masks used to localize category-selective
ROIs

ROIs Contrast Mask

Body areas
lFGs-body & rFGs-body Body . (face 1 objectsa) Anatomic atlas
lEBA & rEBA Functional atlas
Face areas
lFFA & rFFA Face . (body 1 objecta) Functional atlas
lOFA & rOFA Functional atlas
lSTS & rSTS Functional atlas
Object areas
lFGs-object & rFGs-object Objecta . scramble Anatomic atlas
lLOC-object & rLOC-object Functional atlas
Spiky areas
lFGs-spiky & rFGs-spiky Spiky . stubby Anatomic atlas
lLOC-spiky & rLOC-spiky Functional atlas
Stubby areas
lFGs-stubby & rFGs-stubby Stubby . spiky Anatomic atlas
lLOC-stubby & rLOC-stubby Functional atlas
Word areas
lFGs-word & rFGs-word Word . objecta Anatomic atlas
EVC
lV1 & rV1 All conditions . fixation Anatomic atlas
a Object condition includes both spiky and stubby objects.

Table 2. Train and test sets for within- and cross-category classification

Classifier Train set Test set

Animate-inanimate Within aspect ratio Spiky Spiky
Stubby Stubby

Cross aspect ratio Spiky Stubby
Stubby Spiky

Spiky-stubby Within animacy Animate Animate
Inanimate Inanimate

Cross animacy Animate Inanimate
Inanimate Animate
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Univariate analysis. We investigated the
mean response of each category-selective ROI
to each of the animacy-aspect ratio condi-
tions: animate-spiky, animate-stubby, inani-
mate-spiky, and inanimate-stubby. For each
stimulus, b weights were averaged across all
runs, and then all voxels within each ROI in
individual subjects. Then, responses for ani-
mate-spiky were compared with animate-
stubby and responses for inanimate-spiky
were compared with inanimate-stubby using
paired t tests across participants, and p values
were corrected for multiple comparisons
across ROIs (FDR) (Benjamini and Hochberg,
1995).

Computational simulation with the
artificial neural network: BigBiGAN
BigBiGAN is a state-of-the-art artificial neural
network for unconditional image generation
regarding image quality and visual plausibil-
ity. It is a large-scale bidirectional generative
adversarial network, pretrained on ImageNet
that converts images into a 120-dimensional
latent space. This unified latent space captures
all properties of objects, including high-level
image attributes and categories (Donahue and
Simonyan, 2019; Mozafari et al., 2020). In
order to study features that characterize the
identity of our stimuli for BigBiGAN, we passed
our stimuli through the network (https://tfhub.
dev/deepmind/bigbigan-revnet50x4/1) and ac-
quired corresponding latent vectors. Then, for
obtaining the main factors, principal compo-
nent analysis (PCA) was applied to the latent
vectors and the first two principal components
(PCs) were used for visualization. We computed
an RDM based on the correlation distances of
the first two PCs (called BigBiGAN RDM),
vectorized its off-diagonal, and calculated
Spearman’s correlation between this dissimi-
larity vector and the vectors from the animacy
and aspect ratio model. The significance of these correlations is also veri-
fied by using permutation tests.

Results
In this study, we aimed to investigate whether animacy and as-
pect ratio are the two main dimensions organizing object space
in OTC using a stimulus set that properly dissociated the type of
visual stimuli, and in particular face and body, from the aspect
ratio. A stimulus set of body, face, manmade, and natural objects
with a comparably wide range of aspect ratios in each of these
four categories was presented (Fig. 1A), and fMRI responses (b
weights) were extracted in each voxel of the brain for each stimulus.
Then, we used fMRI multivariate (RSA and classification) and uni-
variate analysis. Representations of our stimuli in a DNN’s latent
space were also inspected for the animacy and aspect ratio contents.

To what extent do animacy, aspect ratio, and face-body
models explain the organization of OTC’s object space?
To examine the neural representation of animacy and aspect ra-
tio in different ROIs, we compared neural dissimilarity in the
multivoxel patterns elicited by individual images with predic-
tions from animacy and aspect ratio models (Fig. 1C). The result
for OTC (combination of body-, face-, and object-selective
ROIs) is shown in Figure 2A. Both left and right OTC showed

significant positive correlations with the animacy model (one-
sided one-sample t test, left OTC: t(14) = 10.39, p, 0.001, right
OTC: t(14) = 13.09, p, 0.001) and not with the aspect ratio model
(one-sided one-sample t test, left OTC: t(14) = 0.0054, p. 0.5, right
OTC: t(14) = �0.38, p. 0.5). The direct comparison of the corre-
spondence with neural dissimilarity between animacy and aspect
ratio showed significant differences in both hemispheres (two-
sided paired t test, left OTC: t(14) = 10.02, p, 0.001, right OTC:
t(14) = 11.38, p, 0.001), revealing a far stronger correspondence
for the animacy model than for the aspect ratio model. The large
effect size of this difference is further illustrated by the observation
that all 15 participants showed a larger correspondence with ani-
macy compared with the aspect ratio, and this is in each hemi-
sphere. The MDS plots for left and right OTC (Fig. 2B) reveal
clusters for faces and bodies and a clear separation of animates
from inanimates, but spiky and stubby stimuli are intermingled
and not at all separated in clusters.

Strong selectivity for the distinction between faces and bodies
is an organizational principle that is an alternative for aspect ra-
tio. To test this alternative, we compared the neural dissimilarity
in OTC with the face-body model (Fig. 1C). Both left and right
OTC showed significant positive correlations with the face-body
model, Figure 3 (one-sided one-sample t test, left OTC: t(14) = 4.08,
p, 0.001, right OTC: t(14) = 6.51, p, 0.001). The direct compari-
son of the correspondence with neural dissimilarity between face-

Figure 2. Representational similarity and effects of aspect ratio and animacy in the occipitotemporal cortex. A, Bar plot rep-
resents the mean Spearman’s correlations between neural RDMs for individual subjects (dots) and model RDMs. Error bars indi-
cate SEM. Gray background bars represent the noise ceiling. **p, 0.001; *p, 0.01; one-sided one-sample or two-sided
paired t test. B, Two-dimensional representational space as obtained by applying MDS to the OTC’s neural RDM. Points are
color-coded based on stimulus category and are dots, rings, or asterisks based on aspect ratio. Dashed line indicates the separa-
tion of animates from inanimates.
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body and animacy (two-sided paired t test, left OTC: t(14) = 5.16,
p, 0.001, right OTC: t(14) = 6.43, p, 0.001) or face-body and as-
pect ratio (two-sided paired t test, left OTC: t(14) = 3.34,
p, 0.005, right OTC: t(14) = 6.31, p, 0.001) showed signifi-
cant differences in both hemispheres, revealing a corre-
spondence for face-body model weaker than animacy, but
stronger than aspect ratio. We should be careful with inter-
preting the smaller effect for face-body relative to animacy
because the animacy dimension splits the stimulus set evenly
in two subsets. This explains the discrepancy with the findings of
Ritchie et al. (2021) who found stronger face-body than animacy se-
lectivity, in that case using a design where the distinction of faces
and bodies split the stimulus set most evenly.

To have a more balanced design for the face-body distinction,
we considered a reduced face-body model based on 26 animate

stimuli (i.e., upper left quadrant of the
face-body model in Fig. 1C). This re-
duced face-body model was not corre-
lated with a reduced version of the aspect
ratio model (upper left quadrant of as-
pect ratio model, r = 0.0750, p=0.0710).
Both left and right OTC showed signifi-
cant correlations between neural dissimi-
larity and the reduced face-body model
(one-sided one-sample t test, left OTC:
t(14)=10.49, p, 0.001, right OTC: t(14)=
10.25, p, 0.001) and minor correlation
with the aspect ratio model (one-sided one-
sample t test, left OTC: t(14)=2.75, p, 0.01,
right OTC: t(14) =2.29, p, 0.05, not cor-
rected for multiple comparisons) (Fig. 3).
The direct comparison of the correspon-
dence with neural dissimilarity between the
reduced face-body model and aspect ratio
(two-sided paired t test, left OTC: t(14)=
8.57, p, 0.001, right OTC: t(14) = 9.05,
p, 0.001) showed significant differen-
ces in both hemispheres (Fig. 3). This
strong selectivity for faces versus bodies
is widely distributed within OTC, and
not restricted to the face and body areas.
A test of the reduced face-body model
in the four object-selective ROIs
(lFGs, lLOC, rFGs, rLOC) revealed a
strong correlation (r. 0.2, p, 0.001)
in each ROI. Overall, the face-body
distinction trumps aspect ratio when
it comes to explaining neural dissimi-
larity in OTC.

We followed the same approach for
category-selective regions (Fig. 4) and
the result showed significant correlations
between neural dissimilarity and the ani-
macy model in most ROIs (Fig. 5, one-
sided one-sample t test, FDR-corrected
across 26 ROIs; *t. 4.05, p, 0.01;
**t. 5.31, p, 0.001), while no ROI had
a significant correlation with aspect ratio.
The direct comparisons of correlations
with the two models also showed signifi-
cant differences in most ROIs (Fig. 5,
two-sided paired t test, FDR-corrected
across 26 ROIs; *t. 4.32, p, 0.01;
**t. 5.22, p, 0.001).

The total absence of predictive power of the aspect ratio
model is surprising and was scrutinized further. We hypothe-
sized that it might exist only for the preferred category of an
ROI. For body-, face-, and object-selective ROIs, we examined
the correlation between neural dissimilarity and the aspect ratio
model limiting stimuli to their favorite/selected category. The
result of this analysis showed an effect of aspect ratio that was re-
stricted to the right rFGs-object and rLOC-object (Fig. 6, one-
sided one-sample t test, FDR-corrected across four ROIs, rFGs-
object: t(14) = 2.97, p = 0.0212, right OTC: t(14) = 3.18, p = 0.0212).
Looking more closely at objects (manmade and natural) in the
MDS plot for the right OTC (Fig. 2B), we could also see a modest
degree of arrangement in spiky and stubby stimuli. Thus, in ac-
cordance with previous work on shape representations with

Figure 3. Representational similarity and effects of aspect ratio, animacy, and face-body in the occipitotemporal cortex for all stim-
uli and animate stimuli. Bar plot represents the mean Spearman’s correlations between neural RDMs for individual subjects (dots) and
model RDMs. Error bars indicate SEM. **p, 0.001; *p, 0.01; †p, 0.05; one-sided one-sample or two-sided paired t test.

Figure 4. Inflated brain surface from an individual participant illustrating the category-selective ROIs examined, in lateral
and ventral views.
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artificial shapes (e.g., Op de Beeck et al.,
2008a), the aspect ratio of inanimate
objects is represented in the object-selec-
tive cortex. However, as the main results
above show, aspect ratio is not an encom-
passing dimension when we also include
animate stimuli (faces & bodies), and is
thus unlikely to be an explanation for the
location of face- and body-selective regions.
The computations of the noise ceiling pro-
vide an estimate based on empirical data.
This explains why this estimate can be
slightly ,0, particularly in analyses focusing
on stimuli that do not differ in animacy or
face versus body.

We also considered that the relative
role of the aspect ratio might shift along
the ventral processing pathway. To explore
this possibility, we investigated the similar-
ity of neural and model dissimilarity in
small consecutive ROIs along the ventral
visual cortex (Fig. 7). As we move from
posterior to anterior ROIs in both hemi-
spheres, correlations between neural and
animacy RDMs increased to significant
levels and then decreased (Fig. 7, one-
sided one-sample t test, FDR-corrected across 74 ROIs, thin line:
t(14). 3.78, p, 0.01, thick line: t(14). 5.19, p, 0.001). In con-
trast, we did not observe significant correlations between neural
and aspect ratio RDMs. Comparing the correlations with the two
models also showed a significance pattern like that of correla-
tions between neural and animacy RDMs.

In sum, these results suggest that object space in the whole
OTC and most of OTC’s category-selective ROIs was much bet-
ter explained by the animacy rather than the aspect ratio model
and restricting stimuli to selected categories does not change this
correlation pattern. Furthermore, this animacy content increases
and then decreases as we move along the anatomic posterior-to-
anterior axis in VOTC. All analyses confirm a major role for ani-
macy as a primary dimension that determines the functional orga-
nization of object space. In contrast, the aspect ratio does not
function as a fundamental dimension characterizing the full extent
of object space and its anatomic organization.

Animacy distinction generalizes over aspect ratio, but not
vice versa
In order to further investigate how each dimension is repre-
sented relative to the other, we examined the capability of neural
representations to generalize distinctions along one dimension
over the other dimension. With this aim, we compared within-
and cross-category classification accuracies for animate versus
inanimate and spiky versus stubby dimensions. For animate ver-
sus inanimate within-aspect-ratio classification, we trained and
tested classifiers with either spiky or stubby stimuli; while for
cross aspect ratio, classifiers were trained with spiky and tested
with stubby stimuli and vice versa (Table 1). For spiky versus
stubby within-animacy-classification, we trained and tested clas-
sifiers with either animate or inanimate stimuli while for cross
animacy, classifiers were trained with animate and tested with in-
animate stimuli and vice versa (Table 2).

As Figure 8 shows most category-selective ROIs had classifi-
cation accuracies significantly above chance level (classification
accuracies minus chance level were significantly.0) for animate

versus inanimate-within and cross aspect ratio (Fig. 8, classifica-
tion accuracies minus chance level, one-sided one-sample t test,
FDR-corrected across 26 ROIs; *t. 3.9, p, 0.01; **t. 4.98,
p, 0.001). In contrast, only a few ROIs had classification accura-
cies significantly above the chance level for spiky versus stubby-
within animacy, and they were not able to generalize the classifi-
cation across animacy (Fig. 9, classification accuracies minus
chance level, one-sided one-sample t test, FDR-corrected across
26 ROIs; *t. 3.9, p, 0.01).

As could already be expected from the initial representational
similarity findings, accuracies were larger for animate versus in-
animate classification than spiky versus stubby in most OTC
regions. The invariance shown in the current section in addition
substantiates the claim that this salient representation of animacy
stands orthogonal to aspect ratio in a strong sense of the word: It
allows the determination of animacy independent from large
changes in aspect ratio.

Figure 5. Effect of aspect ratio and animacy in specific category-selective ROIs. Bar plots represent the mean Spearman’s
correlations between neural RDMs for individual subjects and model RDMs. Error bars indicate SEM. Gray background bars
represent the noise ceiling. **p, 0.001; *p, 0.01; one-sided one-sample or two-sided paired t test, FDR-corrected.

Figure 6. Effect of aspect ratio for the preferred stimulus category in body-, face-, and
object-selective ROIs. Bar plot represents the mean Spearman’s correlations between neural
RDMs for individual subjects and the aspect ratio model RDM. Error bars indicate SEM. Gray
background bars represent the noise ceiling. †p, 0.05 (one-sided one-sample t test, FDR-
corrected).
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Univariate responses reflect differences in animacy and not
the aspect ratio
Category-selective regions were recognized and defined based on
univariate responses, and there are discussions over the depend-
ency of these selectivities on different features. In the literature at
large, it has been suggested that face-selective cortex has a prefer-
ence for curved and concentric shapes (Kosslyn et al., 1995;
Wilkinson et al., 2000; Tsao et al., 2006; Yue et al., 2014) and

body-selective cortex has a preference for
shapes with a comparable physical form
to bodies (Popivanov et al., 2012, 2014).
More specifically based on Bao et al.
(2020), one would expect that the face-
selective cortex would prefer stubby stim-
uli, and the body-selective cortex would
have a stronger response to spiky stimuli.
With our stimulus design, we can test
whether this hypothesis holds while stimu-
lus class (e.g., face and body) and aspect ra-
tio are properly dissociated. To evaluate
the univariate effect of animacy and aspect
ratio, we obtained the mean response of
each category-selective ROI to each of the
animacy-aspect ratio conditions (ani-
mate-spiky, animate-stubby, inanimate-
spiky, and inanimate-stubby). The result
(Fig. 10) clearly shows that most cate-
gory-selective ROIs had larger responses
for animates than inanimates regardless
of aspect ratio. However, comparing re-
sponses for animate-spiky with animate-

stubby and responses for inanimate-spiky with inanimate-stubby,
we found no significant differences in any of the category-selective
ROIs, such as face- and body-selective ROIs. This refutes the idea
that somehow the category selectivity of these regions is related to
aspect ratio and is a difficult finding for arguments that the region
would have developed in that cortical location because of the exis-
tence of an aspect ratio map early in development.

Figure 7. Gradual progression of effects of animacy and aspect ratio along the posterior-anterior gradient in ventral visual cortex. Top, Inflated brain surface from a representative participant
showing the ventral visual cortex (union of small consecutive ROIs) in posterior and ventral views. Bottom, Comparing the model RDMs with the neural RDM of ROIs along the ventral visual cor-
tex. Bar plot represents the mean Spearman’s correlations between neural RDMs for individual subjects and model RDMs (for the left hemisphere, the bar plot is mirrored to have a consistent
direction with the anatomic image at the top). Error bars indicate SEM. Gray background bars represent the noise ceiling. Thin line, p, 0.01; thick line, p, 0.001; one-sided one-sample
t test, FDR-corrected.

Figure 8. Animate versus inanimate classification in category-selective ROIs. Bar plot represents the mean classification accu-
racy minus chance level (0.5) for animate versus inanimate classification when aspect ratio is similar (within) or very different
(across) in the training and the test images. Error bars indicate SEM. *p, 0.01; **p, 0.001; one-sided one-sample or two-
sided paired t test, FDR-corrected.
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Nevertheless, there are some small
regions in the occipital and occipitotempo-
ral cortex with a replicable preference for
spiky or stubby objects. Several of our
ROIs were selected to have such preference
based on the localizer data, and some of
these preferences were partially replicated
with our experimental stimuli. Specifically,
lLOC-spiky showed a higher response for
animate-spiky than for animate-stubby
(Fig. 10, two-sided paired t test, FDR-cor-
rected, t(14) = 6.55, *p, 0.01), and lFGs-
stubby for inanimate-stubby! compared
with inanimate-spiky (Fig. 10, two-sided
paired t test, FDR-corrected across 52
tests, t(14) = 6.54, †p, 0.05). Nevertheless,
this is only a partial replication of the se-
lectivity seen in the localizer data, which
already hints at how weak this selectivity
is. Furthermore, while aspect ratio tuning
exists in some small subregions of the ven-
tral visual pathway, it falls short from
explaining the large-scale organization of
object representations; and, in particular,
it fails to capture the selectivity of face- and
body-selective regions.

Animacy, and not the aspect ratio
model, explains the latent space of BigBiGAN
BigBiGAN has shown great success in generating high-quality
and visually plausible images. To test whether animacy and as-
pect ratio had key roles in determining object identity for
BigBiGAN, we obtained the mapping of our stimuli to its latent
space and applied PCA. Figure 11A shows the plot of the first
two PCs computed for latent vectors. The separation of animate
from inanimate stimuli is clearly seen, but no similar arrange-
ment based on aspect ratio is perceivable. RSA quantifies this
observation; the BigBiGAN RDM (see Materials and Methods)
was significantly correlated with the animacy model (r =0.6096, one-
sided permutation test p, 0.001) and not the aspect ratio model
(r = 0.003, one-sided permutation test p = 0.418). Using the

full pattern of representational similarity (without the data
reduction step of PCA), RSA resulted in significant correla-
tions between BigBiGAN representational similarity and both
the animacy model (r = 0.3658, one-sided permutation test
p, 0.001) or aspect ratio model (r = 0.1019, one-sided permu-
tation test p, 0.01), but the correlation with the animacy
model was almost 3.5 times larger than the correlation with
the aspect ratio model. These data showed that animacy was
the dominant factor in shaping the latent space of BigBiGAN.

We considered the possibility that we fail to find a convincing
representation of aspect ratio because our stimulus set would
include a too restricted range of aspect ratios. Aspect ratio ranges
from ;1 to ;11 in our stimulus set, while the range was higher
in the set of Bao et al. (2020), ;1 to ;15, mostly because of a
few outlier shapes with high aspect ratios. Therefore, to more

Figure 9. Spiky versus stubby classification in category-selective ROIs. Bar plot represents the mean classification accuracy minus chance level (0.5) for spiky versus stubby classification when
animacy is similar (within) or very different (across) in the training and the test images. Error bars indicate SEM. *p, 0.01 (one-sided one-sample or two-sided paired t test, FDR-corrected).

Figure 10. Univariate responses of category-selective ROIs to combinations of animacy and aspect ratio. Bar plots repre-
sent mean b values for animate-spiky, animate-stubby, inanimate-spiky, and inanimate-stubby. Error bars indicate SEM.
*p, 0.01; †p, 0.05; two-sided paired t test, FDR-corrected.
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severely test the effect of the aspect ratio range, we performed
further analyses on how BigBiGAN’s representation relates to
the range of included aspect ratios. We reduced the range of
aspect ratio in the Bao et al. (2020) stimulus set to our range
by removing the outliers in their set (here referred to as
Bao-restricted). An aspect ratio model was computed for
the Bao-restricted as the pairwise absolute difference of as-
pect ratio for stimuli in this set. We also obtained the map-
ping of Bao-restricted stimuli to BigBiGAN latent space and
applied PCA. The BigBiGAN RDM using the first two PCs
was significantly correlated with the Bao-restricted aspect ratio
model (r =0.3134, one-sided permutation test p, 0). Using the
full pattern of representational similarity (without the data
reduction step of PCA), RSA resulted again in a significant corre-
lation between BigBiGAN representational similarity and
Bao-restricted aspect ratio model (r = 0.4586, one-sided per-
mutation test p, 0). We conclude that the main experimen-
tal design property that determines the occurrence of aspect
ratio clustering in BigBiGAN is whether the stimulus set
confounds the distinction of faces and bodies with aspect
ratio and not the included range of aspect ratios.

To compare our results more directly with Bao et al. (2020),
we passed our stimuli through the same network, Alexnet
(Krizhevsky et al., 2012), and acquired corresponding values at
the fully connected 6 (fc6) layer. Then, for obtaining the main
factors, PCA was applied to the fc6 activation and the first two
PCs were used for visualization. The separation of animate from
inanimate stimuli is clearly seen in Figure 11B, but no similar
arrangement based on aspect ratio is perceivable, like Figure 11A

(based on BigBiGAN’s latent variables). The
Alexnet RDM using the first two PCs was
not significantly correlated with the aspect
ratio model (r =0.0322, one-sided permuta-
tion test p=0.7080). Similarly, using the full
pattern of representational similarity (with-
out the data reduction step of PCA), RSA
did not result in a significant correlation
between Alexnet representational similarity
and aspect ratio model (r = 0.0963, one-
sided permutation test p=0.0750).

One could also speculate that the defi-
nition of aspect ratio might be most appro-
priate as a label for characterizing the PC
space originally defined by Bao et al.
(2020), not as a semantic label of spikiness
and stubbiness, which is only approxi-
mated by the quantitative definition of as-
pect ratio. Following this reasoning, the
difference between our results and Bao et
al. (2020) might be because of differences
in the definition of aspect ratio. To test
this hypothesis, we obtained the PC space
originally defined by Bao et al. (2020) using
their stimuli and their DNN (Alexnet), and
mapped our stimuli into this space (Fig.
11C). Then, we derived RDMs based on the
value of our stimuli in their first two PCs
(PC1 and PC2) and compared them with
our animacy and aspect ratio models. The
PC1 model was significantly correlated
with the animacy model (r = 0.1619, one-
sided permutation test p, 0.001), while
other correlations were very small: PC1
model and aspect ratio model (r = 0.0024,

one-sided permutation test p=0.4390), PC2 model and animacy
model (r = 0.0506, one-sided permutation test p=0.0390), and
PC2 model and aspect ratio model (r = �0.0721, one-sided per-
mutation test p =0.0370). We reran the main analysis with PC1
and PC2 models; and as Figure 11D shows, the animacy model is
by far the best model describing responses in OTCs. Therefore,
using RDMs derived from the DNN PCs of Bao et al. (2020) does
not lead to results similar to Bao et al. (2020), indicating that it is
not about the definition of aspect ratio, but the stimulus set, and
how it dissociates aspect ratio from face/body might be crucial.
Finally, it is striking that all the different implementations of DNN
representations in Figure 11 also suggest a lack of clustering of
faces apart from bodies. Interestingly, there was a small negative
correlation between the RDM matrix of BigBiGAN and the full
face-body model (r = –0.10, p=0.0350), and a positive correlation
for the reduced face-body model restricted to animate stimuli (r =
0.20, p=0.005). Taking into account that the full face-body model
is correlated negatively with the animacy model, it seems that
DNN representations are more dominated by the animacy dimen-
sion compared with the face/body distinction than we find in the
human fMRI data.

Discussion
We designed a novel stimulus set that dissociates object category
(face, body, manmade, and natural) from aspect ratio, and
recorded fMRI responses in human OTC and DNN representa-
tions for these stimuli to examine two alternative hypotheses: An

Figure 11. Two-dimensional representations of our stimuli in different spaces and RSA. Top panels, Points are color-coded
based on stimulus category and are dots, rings, or asterisks based on aspect ratio. Dashed line indicates the separation of ani-
mate from inanimate. A, The first two PCs computed for the BigBiGAN’s latent vectors of our stimulus set. B, The first two
PCs computed for the Alexnet-fc6 activation of our stimulus set. C, Our stimuli mapped to the PC space originally defined by
Bao et al. (2020). D, Representational similarity and effects of aspect ratio, animacy, and PC1 and PC2 models in the occipito-
temporal cortex. Bar plot represents the mean Spearman’s correlations between neural RDMs and model RDMs. Error bars
indicate SEM. **p, 0.001; *p, 0.01; †p, 0.05; one-sided one-sample or two-sided paired t test.
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object space organized with two main dimensions of animacy
and aspect ratio, or an object space with a primary dimension of
animacy and a further distinction between faces and bodies that
is NOT related to the aspect ratio of these categories. Using fMRI
RSA, results show that whole OTC and most of OTC’s category-
selective ROIs represent object animacy and not aspect ratio.
Studying the correlation between neural dissimilarity and the
face-body model by analyzing all stimuli or by limiting the stim-
uli to animates showed a strong effect for face-body compared
with no or only a very weak effect of aspect ratio. Restricting
RSA based on selectivity for one category reveals that object-
selective ROIs in the right hemisphere show a relatively weak
representation of the aspect ratio of objects (manmade and natu-
ral). The represented animacy content is not constant but
increases and then decreases along the anatomic posterior-to-an-
terior axis in VOTC. This dominant effect of animacy is reflected
in larger classification accuracies for animate versus inani-
mate compared with stubby versus spiky. The animate ver-
sus inanimate classifiers also show invariance to the aspect
ratio that could express the independent representation of
animacy in human OTC. Consistent with MVPA results,
univariate responses of category-selective ROIs show an
obvious effect of animacy, but they are not influenced by as-
pect ratio. Similar to human OTC, BigBiGAN (the most
advanced DNN in capturing object properties) represents
animacy, as has been observed previously (Khaligh-Razavi
and Kriegeskorte, 2014; Jozwik et al., 2017; Bracci et al.,
2019; Zeman et al., 2020), but not aspect ratio. Finally,
results of data-driven approaches clearly show clusters
for face and body stimuli and separation of animate from
inanimate stimuli in representational space of OTC and
BigBiGAN, but there is not any arrangement related to as-
pect ratio. In conclusion, these findings rule out the 2D ani-
macy � aspect ratio model for object space in human OTC
while an object space with a primary dimension of animacy
and a further distinction between faces and bodies could
clearly explain the results.

We find that the organization of object space in human OTC
is not related to aspect ratio. This is in contrast to the proposed
model by Bao et al. (2020), which considers stubby-spiky as one
of the two main dimensions of object space in the IT cortex.
There are two major differences between the present study and
Bao et al. (2020) that could explain the contrasting results: stimu-
lus sets and subject species. In the stimulus set of Bao et al.
(2020), animate-inanimate and stubby-spiky were dissociated
overall, but it was not true between stimulus categories, particu-
larly for faces and bodies: Face stimuli were all stubby and body
stimuli were mostly spiky. Therefore, there was a major con-
found between aspect ratio and stimulus category. To overcome
this problem, we had a comparatively wide range of aspect ratios
for different categories and explicitly dissociated aspect ratio
from these two categories. Our result showed no significant rep-
resentation of aspect ratio in OTC, suggesting that much of the
evidence for aspect ratio as an overall dimension and as a dimen-
sion underlying face and body selectivity and the location of se-
lectivity for these categories were because of this major confound
between aspect ratio and stimulus category (face vs body). An
effect of aspect ratio was absent or very weak, depending on the
exact stimuli that were included in the analyses (e.g., only body
stimuli; only inanimate stimuli; ...). This suggests that a possible
bias in terms of the selection of stimuli does not impact our con-
clusions to a large degree. The main point of attention is the
degree to which aspect ratio is properly dissociated from the

face/body distinction, which is the most salient difference
between our stimulus set and the set of Bao et al. (2020).

The other major difference is species; results in Bao et al.
(2020) were mostly based on electrophysiology data from mon-
keys while we investigated fMRI data from human subjects.
Aspect ratio might be more important for object representations
in monkeys. This suggestion is supported by earlier work,
although it was never investigated specifically. In particular,
Kriegeskorte et al. (2008) compared monkey electrophysiology
data and human fMRI for the same set of stimuli and reported a
common organization of object space in humans and monkeys.
However, when looking more closely at their stimulus arrange-
ment (Fig. 2A) (Kriegeskorte et al., 2008), we can recognize an
aspect ratio effect in monkey (spiky stimuli are closer to each
other) that is not present in human (see also Hong et al., 2016).
However, Coggan and Tong (2021) reported in a conference
abstract to partially replicate the findings of Bao et al. (2020) in
humans, using the same stimulus set as Bao et al. (2020). For that
reason, we doubt that species is the main explanation for the
divergence between our findings and Bao et al. (2020).

Despite the absence of an overall dimension of aspect ratio,
our findings are still in line with earlier reports of shape selectiv-
ity and even selectivity for aspect ratio. Previous studies on shape
representation provided evidence of a relationship between per-
ceived shape similarity and neural representation in object-selec-
tive ROIs, investigating both single-unit recordings in monkeys
(Op de Beeck et al., 2001) and fMRI data in humans (Op de
Beeck et al., 2008b; Drucker and Aguirre, 2009; Peelen and
Caramazza, 2012; Chen et al., 2018). Recent work has illustrated
that many tens of dimensions contribute to the perception of the
visual form (Morgenstern et al., 2021), and several of these
dimensions are correlated with aspect ratio (which in the special-
ized literature is referred to as “compactness” or “circularity”). A
previous study that dissociated animacy from shape also sug-
gested a role for aspect ratio in the representation of shape
(Bracci and Op de Beeck, 2016; Chen et al., 2018). Nevertheless,
we show that the face and body selectivity take priority when we
properly dissociate these categories from aspect ratio. Tuning for
aspect ratio is restricted to part of OTC, generally object-selective
regions and a few small spots with univariate preference, and
mostly restricted to inanimate objects. While aspect ratio is one
of many dimensions by which object shape is represented, it
does not have a special status for explaining the large-scale object
space and how it is organized neuroanatomically in selective
patches (e.g., faces and bodies).

In face and body regions, we find no evidence for tuning for
aspect ratio. There is a hypothesis that category selectivity for
faces and bodies is partly explained by the aspect ratio of stimuli
(Kosslyn et al., 1995; Wilkinson et al., 2000; Tsao et al., 2006;
Popivanov et al., 2012, 2014; Yue et al., 2014). Following this hy-
pothesis, stronger responses for stubby stimuli in face-selective
and spiky stimuli in body-selective regions are anticipated. Our
stimulus set, including faces and bodies with wide ranges of as-
pect ratios, provides a touchstone for testing this hypothesis. We
compared responses for animate-spiky with animate-stubby and
responses for inanimate-spiky with inanimate-stubby and found
no significant differences in any of the category-selective ROIs,
such as face- and body-selective ROIs. Probably, other stimulus
features are more prominent when it comes to representing faces
and bodies.

While our findings put doubt on the role of aspect ratio, we
confirm a strong selectivity for animacy. We found that animacy
is a determining factor in organizing object space in both human
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OTC and BigBiGAN, consistent with Bao et al. (2020) and earlier
reports (Kriegeskorte et al., 2008; Bracci and Op de Beeck, 2016).
This representation of animacy was prominent for a long dis-
tance along the anatomic posterior-to-anterior axis in VOTC.
Following a cross-decoding approach, we found that animacy is
represented independently of aspect ratio. Previous studies have
disclosed that animacy and category distinctions are correlated
with low/high-level visual features (Cohen et al., 2014; Rice et al.,
2014; Jozwik et al., 2016; Zachariou et al., 2018), but there is
enough evidence that animacy and category structure remain
even when dissociated from shape or texture features (Bracci and
Op de Beeck, 2016; Kaiser et al., 2016; Proklova et al., 2016;
Bracci et al., 2017; Chen et al., 2018). The strength of animacy se-
lectivity and lack of aspect ratio tuning were consistent across
smaller ROIs within OTC. This indicates a high level of analogy
in multivariate patterns across category-selective regions, as pre-
viously reported (Cohen et al., 2017) while they studied multivar-
iate responses of category-selective regions in OTC to different
categories (bodies, buildings, cars, cats, chairs, faces, hammers,
and phones).

The occipitotemporal cortex has a key role in visual object
recognition, but the organization of object space in this region is
still unclear. To examine hypotheses considering animacy, aspect
ratio, and face-body as principal dimensions characterizing
object space in the occipitotemporal cortex, we devised a novel
stimulus set that dissociates these dimensions. Investigation of
human fMRI and DNN responses to this stimulus set shows that
a 2D animacy � aspect ratio model cannot explain object repre-
sentations in either occipitotemporal cortex or a state-of-the-art
DNN while a model in terms of an animacy dimension com-
bined with strong selectivity for faces and bodies is more com-
patible with both neural and DNN representations.
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