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ABSTRACT

Genetic sequencing is subject to many different
types of errors, but most analyses treat the resul-
tant sequences as if they are known without error.
Next generation sequencing methods rely on signif-
icantly larger numbers of reads than previous se-
quencing methods in exchange for a loss of accu-
racy in each individual read. Still, the coverage of
such machines is imperfect and leaves uncertainty in
many of the base calls. In this work, we demonstrate
that the uncertainty in sequencing techniques will
affect downstream analysis and propose a straight-
forward method to propagate the uncertainty. Our
method (which we have dubbed Sequence Uncer-
tainty Propagation, or SUP) uses a probabilistic ma-
trix representation of individual sequences which in-
corporates base quality scores as a measure of un-
certainty that naturally lead to resampling and repli-
cation as a framework for uncertainty propagation.
With the matrix representation, resampling possi-
ble base calls according to quality scores provides
a bootstrap- or prior distribution-like first step to-
wards genetic analysis. Analyses based on these
re-sampled sequences will include a more complete
evaluation of the error involved in such analyses. We
demonstrate our resampling method on SARS-CoV-2
data. The resampling procedures add a linear compu-
tational cost to the analyses, but the large impact on
the variance in downstream estimates makes it clear
that ignoring this uncertainty may lead to overly con-
fident conclusions. We show that SARS-CoV-2 lin-
eage designations via Pangolin are much less cer-
tain than the bootstrap support reported by Pangolin
would imply and the clock rate estimates for SARS-
CoV-2 are much more variable than reported.

INTRODUCTION

Generating a genetic sequence from a biological sample is a
complex process. Nucleic acids must be extracted from the
sample while avoiding contamination by foreign material.
If working with RNA, then we must use a reverse transcrip-
tase reaction (which has a high base misincorporation rate)
to convert the RNA into DNA. Polymerase chain reaction
(PCR) amplification is often employed to enrich the sam-
ple for the target of interest. For next-generation sequenc-
ing (NGS) protocols, we have to generate a sequencing li-
brary, for instance by random shearing of nucleic acids into
fragments that are ligated onto special ‘adaptors’. NGS pro-
cedures such as sequencing by synthesis suffer from greater
error rate relative to conventional Sanger dye-terminator se-
quencing, although these rates have continued to improve
with new technologies (1–3). In addition, the short reads
produced by NGS platforms need to be aligned––either by
alignment against a reference genome, de novo assembly, or
a combination of the two––to reconstruct a consensus se-
quence using one or more bioinformatic programs. Errors
can be introduced in any one of these steps (4,5).

In some cases, naturally occurring variation, i.e. genetic
polymorphisms, or variation induced by experimental error
is directly quantified and encoded into the output. For ex-
ample, mixed peaks in sequence chromatograms produced
from dye-terminator sequencing by capillary electrophore-
sis are assigned standard IUPAC codes (e.g. Y for C or
T) when the base calling program cannot determine which
base is dominant (6). Ewing and Green (7) and Richterich
(8) argued that estimates of the base call quality, quanti-
fied as Phred quality scores, can be an accurate estimate of
the number of errors that the machines at the time would
make, but improvements to these error probabilities have
been proposed (9,10). Nevertheless, Phred scores remain
the standard means of reporting the estimated error prob-
abilities for current sequencing platforms. Generally, these
scores are either used to censor the base calls (i.e. label them
‘N’ rather than A, T, C or G) if the estimated probabil-
ity of error exceeds a predefined threshold or remove the
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sequence from further analysis if the total number of cen-
sored bases exceeds a maximum tolerance (e.g. (5,11,12)).
Some authors/tools use more sophisticated models, such
as Wu et al. (13) who use statistical models that incorpo-
rate read depth to determine a probability of a sequencing
error, but still use the resultant reads to form a consensus se-
quence with no measure of uncertainty. Furthermore, some
studies have extended the concept of per-base error prob-
abilities to calculate the joint likelihoods of partial or full
sequences. For example, DePristo et al. (14) and Gompert
and Buerkle (15) incorporate adjusted Phred scores into a
likelihood framework to generate more accurate estimates
of genetic diversity within a population; this approach has
subsequently been used to develop new estimators of ge-
netic diversity (16). Kuo et al. (17) recently used a similar
approach to develop a statistical test of whether a given
genome sequence is consistent with a specified alternative
sequence. In general, the reported error probabilities from
NGS technologies are primarily used for filtering low qual-
ity sequences and improving alignment algorithms (which
both result in a consensus sequence that is assumed to be
error-free) or for hypothesis tests concerning small collec-
tions (usually pairs) of sequences.

The uncertainty present in the sequences are most of-
ten ignored entirely. For example, methods for sequence
alignment and homology searches generally employ heuris-
tic algorithms that utilize similarity scores that do not ex-
plicitly incorporate the probabilities of sequencing errors.
The problem of unacknowledged uncertainty is exacerbated
when each sequence represents the consensus of diverse
copies of a genome, such as rapidly evolving virus popu-
lations where genuine polymorphisms are confounded with
sequencing error. See (18) for more criticisms of the use of
consensus sequences, along with visualizations ((19), called
sequence logos) to display the deviations from a consensus.

Though rare, some studies have proposed methods for
propagation of uncertainty from one step to later steps of
an analysis. O’Rawe et al. (5) suggest methods for propaga-
tion of sequence-level uncertainty into determining whether
two subjects have the same alleles, as well as estimating con-
fidence intervals for allele frequencies. Another exception
can be found in (20), who incorporate an assumed or esti-
mated error rate for the entire sequence into the calculation
of a phylogenetic tree and found that incorporation of er-
rors makes the inferred branch lengths much closer to the
true (simulated) branch lengths. Though they did not use
nucleotide-level uncertainty, Gompert and Buerkle (15) in-
corporate the coverage of NGS technologies as part of the
uncertainty of estimates for the frequency of alleles in a pop-
ulation. Clement et al. (21) present an alignment algorithm
(called GNUMAP) that takes nucleotide-level uncertainty
into account. Their method incorporates Position Weight
Matrices into a method of scoring multiple possible matches
against a reference genome in order to choose the best align-
ment. These studies are the exceptions, rather than the rules,
and their methods have not yet attained widespread use.

We present a simple general-purpose framework that can
be incorporated into any analysis of genetic sequence data.
This framework involves converting the uncertainty scores
into a matrix of probabilities, and repeatedly sampling from
this matrix and using the resultant samples in downstream
analysis. Unlike likelihood-based approaches, we do not

make assumptions about the underlying patterns or distri-
butions in the data. In so doing, we can gain more accu-
rate estimation of the errors at the expense of computa-
tion time. Our technique is amenable to quality score ad-
justments prior to applying our methods. We demonstrate
the impact of propagating sequence uncertainty by apply-
ing our methods to the problem of classifying SARS-CoV-2
genomes into predefined clusters known as ‘lineages’ (22),
several of which correspond to variants carrying mutations
that are known to confer an advantage to virus transmis-
sion or infectivity. We also analyse a collection of SARS-
CoV-2 sequences to demonstrate that the estimated rate of
new mutations is much more variable than studies relying
on deterministic sequences would conclude.

MATERIALS AND METHODS

Probabilistic representation of sequences

Here, we describe two theoretical frameworks to model se-
quence uncertainty at the nucleotide level or at the sequence
level. In both frameworks, the sequence of nucleotides from
a biological sample is not treated as a single unambiguous
observation (known without error), but rather as a collec-
tion of possible sequences weighted by their probability.

Nucleotide-level uncertainty. To represent the uncertainty
at each position along the genome we introduce the follow-
ing matrix, which we will refer to as a probabilistic sequence
and denote as S:

(1)

Each column represents a position in a nucleotide sequence
of length �. Each row represents one of the four nucleotides
A,C,G,T, as well as an empty position ‘–’ that symbolizes
a recorded deletion rather than missing data. Hence, S is a
5 × � matrix.

The elements of the probability sequence represent the
probability that a nucleotide exists at a given position, with
a special case for the empty position –:

(2)

Note that we have for all 1 ≤ j ≤ �:
∑

n

Sn, j = 1 (3)
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Also, the sequence length is stochastic if 0lt;S-,i lt; 1 for at
least one i. The nucleotide (or deletion) drawn at each po-
sition is independent from all the others, so there are up
to 5� possible different sequences for a given probabilis-
tic nucleotide sequence, but these sequences are not equally
probable.

A major limitation of this probabilistic representation of
a sequence is that we lose all information on linkage disequi-
librium. This is especially problematic for recording inser-
tions because insertions with L ≥ 2 nucleotides are treated
as L independent single nucleotide insertions. Instead, we
assume that every nucleotide is an independent observation.
For example, a probability sequence populated from short
read data from a diverse population would not store the in-
formation that two polymorphisms were always observed
in the same reads, i.e. in complete linkage disequilibrium.
We also lose information about autocorrelation in sequenc-
ing error, such as clusters of miscalled bases associated with
later cycles of sequencing-by-synthesis platforms. Sequence
chromatograms and base quality scores are affected by the
same loss of information.

We note that this representation is similar to the ‘CATG’
file type as described in (23), which indicates the likelihoods
of each nucleotide in an aligned mapping for multiple taxa.
This file type is able to be used by RAxML-NG to estimate
an overall error rate which is then used to estimate phylo-
genetic trees. A reviewer has pointed out that the bio++
library contains parsers for a probabilistic version of the
FASTA format, called PASTA. We have not found docu-
mentation for this format, but are hopeful that our methods
promote greater use of probabilistic formats like this. Our
probability sequence is also similar in concept to Position
Weight Matrices (PWMs, (24)) which are built according
to the frequency of each base at each position of a multi-
ple alignment. Our construction differs in that we are creat-
ing one matrix per sequence where the entries are weighted
according to error probability within that sequence, rather
than one matrix for a collection of sequences. However,
methods that accept PWMs will be applicable to our prob-
ability sequences (and vice-versa).

It is also possible to determine the sequence-level uncer-
tainty as the product of nucleotide uncertainties for all pos-
sible sequences. This could be useful for creating an ordered
list of the most likely sequences or removing any sequences
that are not biologically plausible (e.g. sequences missing a
crucial amino acid, especially a start or stop codon). A full
discussion of this is in the supplementary materials.

Sequence-level uncertainty. A significant problem of stor-
ing probabilities at the level of individual nucleotides is that
generating a sequence from this matrix requires drawing �
independent outcomes. For example, the reference SARS-
CoV-2 genome is 29 903 nucleotides, and a substantial num-
ber of naturally-occurring sequence insertions have been de-
scribed. Thus, it would not be surprising if � exceeded 30
000 nucleotides (nt). The majority of these technically pos-
sible 5� sequences are not biologically plausible. Therefore,
we formulate an ordered subset B = (Bi )i∈{1...m} of the first
m most likely sequences, which are ranked in descending or-
der by the joint probability of nucleotide composition. Note

Table 1. Biologically plausible sequences with probabilities defined by
(5)

Sequence Probability a(i)

B1 = ACATGA 0.299 a(1) = 0.467
B2 = ACATGT 0.150 a(2) = 0.233
B3 = ACAGGA 0.128 a(3) = 0.200
B4 = ACAGGT 0.064 a(4) = 0.100

that the sequences in B, Bi , do not necessarily have the same
length. The observed genetic sequence, s*, is a sample from
a specified discrete probability distribution a:

P(s∗ = Bi |i...m) = a(i ) (4)

This compact and approximate representation drastically
reduces the number of operations to one sample, after some
pre-processing to calculate a. The observed plurality se-
quence s* (the sequence consisting of the most likely base
at each position) is guaranteed to be a member of B if
Ss( j ), j > 0.5 ∀ j where s(j) is the j-th nucleotide of s*; in-
deed, it is guaranteed to be the highest ranked member i
= 0. We refer to any member of the set B as a sequence-
level probabilistic sequence. Note that because a is a prob-
ability distribution, we must have

∑m
i=1 a(i ) = 1. In other

words, this probability is conditional on the sequence being
in B.

For example, suppose that we have the following
nucleotide-level probabilistic sequence:

(5)

such that there are 2 × 3 × 23 × 3 = 144 possible sequences.
The most likely sequence has the highest joint nucleotide
probability: ACATGA with probability 0.2694 (0.9 × 0.8 ×
0.99 × 0.7 × 0.9 × 0.6). If there is a positive probability of
deletion for at least one position, then the sequence has a
variable length. Large genomes or sequencing targets will
result in vanishingly small probabilities for all sequences,
and thus calculations on the log scale may be necessary to
reduce the chance of numerical underflow.

Table 1 demonstrates the calculation of sequence-level
uncertainties using the values in (5). The probability column
is the product of the matrix entries for each nucleotide. If the
four sequences shown are the only biologically plausible se-
quences, then the normalized probabilities can be expressed
as a(i).

In summary, sequence-level probabilistic sequences of-
fer a convenient way to define a (much) smaller set of
possible sequences than the potential 5� nucleotide-level
probabilistic sequences. This set will be used to generate
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sequences randomly for downstream analyses. The size of
this set (noted m above) is arbitrarily determined by users.

Constructing the probability sequence

In most next-generation sequencing applications, the esti-
mated probability of sequencing error is quantified with the
quality (or ‘Phred’) score attributed to each base call pro-
duced by sequencing instrument. The quality score Q is di-
rectly related to this estimated error probability: � = 10−Q/10

(7), where Q typically ranges between 1 and 60 (with 60 be-
ing the lowest probability of error), depending on the se-
quencing platform and version of base-calling software. It
is important to note that this quality score only measures
the probability of error from the machine; 1 − � is an es-
timate of the probability of no sequencing errors and does
not account for any other source of error.

More formally, the probability that the base call is correct
is expressed as:

P(nucleotide = X | observed nucleotide = X) = 1 − ε (6)

Unfortunately, quality scores have no information on the
probabilities of the three other possible nucleotides if the
base call is incorrect. In the absence of information about
the other bases (such as with consensus-level FASTQ or
FASTA files), we assume that these other probabilities are
uniformly distributed.

Raw short read data are typically recorded in a FASTQ
format that stores both the sequences (base calls) and base-
specific quality scores for each short read. Since the reads
often correspond to different positions of the target nu-
cleic acid, e.g. randomly sheared genomic DNA, it is nec-
essary to align the reads to identify base calls on different
reads that represent the same genome position. This align-
ment step can be accomplished by mapping reads to a ref-
erence genome, by the de novo assembly of reads, or a hy-
brid approach that incorporates both methods. The aligned
outputs are frequently recorded in the tabular Sequence
Alignment/Map (SAM) format (25). Each row represents
a short read, including the raw nucleotide sequence and
quality strings; the optimal placement of the read with re-
spect to the reference sequence (as an integer offset); and the
compact idiosyncratic gapped alignment report (CIGAR)
string, an application-specific serialization of the edit oper-
ations required to align the read to the reference. The SAM
format contains much more information (https://samtools.
github.io/hts-specs/SAMv1.pdf), but for our purposes we
only need the placement, sequence, quality, and CIGAR
string.

We employed the following procedure to construct the
nucleotide-level probabilistic sequence from the contents
of a SAM file. We initialize aligned sequence and quality
strings with ‘–’ in all positions before the first read and af-
ter the last read, and ‘!’, which corresponds to a quality
score of 0 (Q = 0), to all other positions. Next, we tokenize
the CIGAR string into length-operation tuples, which de-
termine how bases and quality scores from the raw strings
are appended to the aligned versions. Deleted bases (‘D’
operations) are not assigned Phred scores, so we assume
them to have 0 error probability. The overall process for

constructing the probabilistic sequence is demonstrated in
Figure 1, including our procedure for including paired-end
reads which is explained in a subsequent section. Note that
Figure 1 shows an intermediate step prior to column nor-
malization; our algorithm reads the file in one row at a time,
which saves on computer memory but means we cannot
know the column sums until the process is complete.

Deletions and insertions

By construction, the nucleotide-level probabilistic sequence
would need to be defined with its longest possible length,
i.e. a multiple alignment for all reads. Deletions are natu-
rally modelled with our representation but insertions would
have to be modelled using deletion probabilities.

(7)

The low deletion probability for position 2 is straight-
forward to interpret: in about 1% of the reads that con-
tained this position, nucleotide G at position 2 is deleted.
The high deletion probability for position 4 means there is
a 1% chance of a T insertion at this position (Table 2).

This probability sequence is non-trivial to construct.
Consider a short read with two bases inserted at position
j (say, an A at position j + 1 and a T at position j + 2)
and a short read with one insertion at position j (say, a
C). It is entirely ambiguous whether the single insertion (C)
aligns with the first insertion (A) or the second insertion (T)
of the first short read. This is problematic for building up
the matrix from reads aligned to the reference sequence. It
is conceptually and computationally simpler to start from
a populated matrix and sampling insertions. For our pur-
poses, we only consider the pairwise alignment of these se-
quences with a reference sequence and thus do not consider
insertions.

Paired-end reads

Some NGS platforms (e.g. Illumina) use paired-end reads
where the same nucleic acid template is read in both direc-
tions. In these situations, we simply adjust all values by a
factor of one half. For bases where the paired-end reads
overlap, this has the effect of averaging the base probabil-
ity 1 − �. For example, if 1 − � is 90% for A in one read and
95% A in its mate, then 0.925 is added to the A row in S ′
(with the remaining 0.075 uniformly distributed across the
other nucleotides). If the two reads were 70% A and 55%
C at the same position, then we would increment the corre-
sponding column vector (A, T, C, G) by (0.7/2, 0.1/2, 0.1/2,

https://samtools.github.io/hts-specs/SAMv1.pdf
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Figure 1. An illustration of constructing a probabilistic sequence from a SAM file. Each row in the matrix on the left is a graphical representation of a
short read, and the superscript represents the quality score (from 0 to 1). Half of the quality score from paired end reads is added to the relevant cell in the
matrix on the right. In both matrices, the column numbering represents a position on the reference genome. Note that this is an intermediate step prior to
ensuring that the columns sum to 1. In the probabilistic sequence, we can see that the consensus sequence would be TAGT, but TAGG is also a very likely
sequence given the quality scores.

Table 2. Sequence-level probabilistic sequence defined by (7)

Sequence Probability

B1 = CGAAT a(1) = 0.9799
B2 = CAAT a(2) = 0.01
B3 = CGATAT a(3) = 0.01
B4 = CATAT a(4) = 0.0001

0.1/2) for the first read and (0.15/2, 0.15/2, 0.55/2, 0.15/2)
for the second, resulting in an addition of (0.425, 0.125,
0.325, 0.125) for this pair. Bases outside of the overlap-
ping region contribute a maximum of 0.5 to S ′, because the
base call on the other read is missing data. This approach
has the advantage of making the parsing of SAM files triv-
ially parallelizable since we do not need to know how reads
are paired. In addition, the coverage calculated from S ′ is
scaled to the number of templates rather than the number of
reads.

Consensus sequence FASTQ and FASTA files

Consensus sequence FASTQ files. Full length or par-
tial genome sequences are now frequently the product of
next-generation sequencing, by taking the consensus of the
aligned or assembled read data. However, the original read
data are often not published alongside the consensus se-
quence. For example, on 30 September 2022, there were
nearly 390 000 SARS-CoV-2 consensus genome sequences
available in the Canadian VirusSeq Data Portal. None of
the raw NGS data sets associated with these consensus se-
quences are distributed in this database, however. Less than
6700 (about 1.7%) raw SARS-CoV-2 FASTQ files for sam-
ples collected in Canada have been published on the NCBI
Sequence Read Archive. On the other hand, some consen-
sus sequences are released in a format where the bases are
annotated with quality scores, e.g. FASTQ. There are sev-
eral programs that provide methods to convert a SAM file
into a consensus FASTQ file (9,26,27). These programs use
slightly different methods for generating consensus qual-

ity scores, but filter quality scores for the majority base.
For example, suppose there are three reads with the fol-
lowing base calls at position j: A with Q = 30, A with
Q = 31, and C with Q = 15. Calculation of the consen-
sus quality score will thereby exclude the Q = 15 value
and report a quality score calculated from Q = 30 and
Q = 31, with the details of the calculation differing by
software.

This omission makes it challenging for us to generate an
S matrix from a consensus FASTQ file. Given the consen-
sus base and its associated quality score at position j, we
must assume that the other bases are all equally likely with
probability �j/3 (similar to (17) and Chapter 5 of (23)). For
example, let’s assume the output sequence after fragment se-
quencing and alignment is ACATG and its associated quality
scores are respectively Q = (60, 30, 50, 10, 40). The proba-
bilistic sequence is:

(8)

Usually, the genetic sequence ACATG would be considered
as certain and quality scores discarded. In contrast, the
probability of the sequence ACATG is only 0.899 within the
probabilistic sequence framework.

Incorporating deletions in the absence of raw data is also
challenging. If one is willing to assume a global deletion
rate, then it is possible to extend the parameterization of S.
For example, if the probability of a single nucleotide dele-
tion is d, then the probability of the called base is (1 −
dj)(1 − �j) and the other three nucleotides have probabil-
ity (1 − d)�j/3. Hence, if we assume the base call is A, the
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column of the nucleotide-level probabilistic sequence for
that position is

(9)

Since the FASTQ file only has a single sequence, we do
have the same issues with alignment of differing lengths of
insertions. In fact, insertions are only insertions relative to
the reference sequence; they can simply be treated as ob-
served nucleotides with an associated quality score. It would
be possible to give insertions special treatment, however, by
defining a global insertion rate. This insertion rate can be ex-
pressed as a deletion rate relative to the observed sequence,
and thus one minus the insertion rate can be treated as the
deletion rate in the probabilistic sequence. As with the dele-
tion rate, this requires an assumption about a global rate
which may be arbitrary.

A primary use of the probability sequence created from
these FASTQ files would be to construct a probability se-
quence as a reference genome for a given category. This
would entail collecting all available FASTQ files within a
lineage designation and using them in the construction of a
probability sequence as if they were short reads in a SAM
file, thus creating a lineage-summarising probabilistic se-
quence. From here, lineage designation for a newly acquired
sequence (and its probability sequence) could be performed
via comparison of the new sequence with the library of
lineage-summarising probabilistic sequences. Such a com-
parison must properly consider the error structures of the
new lineage, which is constructed from short reads and this
is fundamentally different from the probabilistic sequences
for each lineage, and should be based on the probability
of similar consensus sequences rather than similar error
structures.

Consensus sequence FASTA files. If we do not have ac-
cess to any base quality information, e.g., the consensus se-
quence is published as a FASTA file, then our ability to pop-
ulate S is severely limited. Any uncertainty that we impose
upon the data will be a principled assumption for the pur-
pose of evaluating the robustness of the results to potential
or assumed sequence uncertainty. The error probability at
the j position of the consensus sequence can be simulated
as a beta distribution, i.e.,

ε j ∼ Beta(α, β)

The called base at position j has probability 1 − �j, and
the remaining bases are assigned �j/3. To incorporate dele-
tions, another probability d can be generated as the gap
probability. With these defined, the nucleotide-level prob-

abilistic sequence at the jth column (assuming the base call
at position j was A) can be written as above. This proba-
bilistic sequence is completely fabricated, i.e., not based on
any empirical data. However, the sensitivity of an analysis
can be evaluated by choosing different values of �, �, and d
(e.g. based on previous studies) and propagating these un-
certainties into downstream analyses. The results from such
an analysis would not indicate anything about the sequence
itself but could be used to determine how robust the meth-
ods are to increased sequence uncertainty.

Figure 2 summarizes the various ways a probabilistic se-
quence can be obtained depending on the type of data avail-
able.

For both the FASTQ and FASTA format, the uniform
distribution was chosen for illustrative purposes. We hope
that future analyses take uncertainty into account, and each
analysis will have unique needs. In the absence of avail-
able SAM files, alternate assumptions about the unknown
uncertainties can be made. As noted by a reviewer, for
viruses such as SARS-CoV-2 it is possible to calculate the
per-position frequencies of each letter. In other contexts,
there may be other potential assumptions that coincide with
known features of the organism.

Propagation of uncertainty via resampling

The most general way to propagate uncertainty is through
resampling. Given S and assuming that individual nu-
cleotides are independent outcomes we can propagate un-
certainty by running downstream analyses on each set of
sampled sequences.

At a nucleotide level, we are sampling from a multinomial
distribution. If the jth column of S is (0.5, 0.2, 0.2, 0.09,
0.01), then we could sample A with 50% probability, C with
20%, etc. As with other sequence analyses, we can censor the
positions that do not have enough coverage. We arbitrarily
chose to censor any position that had fewer than 10 reads.

Implementation

A C program has been written to convert SAM files into our
matrix representation. The program assumes that the reads
are aligned to a reference, then uses that reference to initi-
ate the matrix. Because of our methods for handling paired
reads, the program is able to stream the file line-by-line in a
parallel computing environment. However, this C program
currently does not output insertions or deletions, and thus
they are not part of this algorithm.

The resampling algorithm defined above has been imple-
mented in the R programming language. A shell script is
used to repeatedly call the necessary R functions and ap-
ply the resampling algorithm to all outputs of the C pro-
gram until the desired number of samples is obtained. All
of the code for this project is available at https://github.com/
Poonlab/SUP.

RESULTS

SARS-CoV-2 lineage assignment

In this section, we apply the re-sampling method to evalu-
ate the impact of sequencing error on the lineage assign-
ments of SARS-CoV-2. Sequences are sampled from S,

https://github.com/Poonlab/SUP
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Figure 2. Summary of probabilistic sequences construction. Nucleotide-level probabilistic sequences can be generated from a single FASTQ or SAM file
using the sequencing quality information (left). In the case of multiple FASTQ or SAM the user can average the sequencing quality information beforehand
(center). When multiple FASTA files are available, the probabilities can be directly informed from the frequencies of nucleotides at each position (center).
In the case of a single FASTA file or consensus FASTQ file, the user can assume a probability model for the distribution of sequencing errors (right).
Sequence-level probabilistic sequences may be obtained from the nucleotide-level ones, for example by selecting the n most probable sequences (bottom).

assigned a lineage based on the lineage designation algo-
rithm described in (22) using the pangoLEARN tool (Pan-
golin version 2.3.2, pangoLEARN version 2021-02-21) that
the authors have made available (github.com/cov-lineages/
Pangolin). This tool uses a decision tree model to determine
which lineage a given sequence is most likely to belong to.
We demonstrate that even the best available tools are under-
estimating the variance and therefore producing overconfi-
dent conclusions.

Data. The data for this application were downloaded from
NCBI’s SRA web interface (https://www.ncbi.nlm.nih.gov/
sra/?term=txid2697049) on 17 July 2021. Search results
were filtered to only include records that had SAM files
so that our alignments were consistent with the originat-
ing work. We note that the use of pre-aligned SAM files
means that we do not have full control over the reference se-
quence, and thus there may be some difference in the choice
of alignment which may lead to probabilistic sequences that
are not aligned to each other. In our first application we
do only make comparisons within re-samples of a sequence
- not between sequences - and our second application in-
volves a multiple sequence alignment in order to find muta-
tions relative to each other. To select which runs to down-
load, an arbitrary selection of 5-10 records from each of 20
non-sequential results pages were chosen. Once collecting
the run accession numbers from the search results, an R
script was run to download the relevant files and check that
all information was complete. Twenty-three out of 275 files
were incomplete due to technical errors during the down-
load process and a further four were rejected due to lack of
CIGAR strings (the NCBI database automatically converts
files uploaded as unaligned FASTQ into the SAM file for-
mat without performing alignment), leaving 248 sequences

analysed in this work. The SRA accession numbers for the
sequences we used are provided in Supplementary Table S1.

Re-sampling the probabilistic sequence. Since pan-
goLEARN is a pre-trained model, assigning lineage
designations to a large number of resampled genome
sequences is not computationally burdensome. Sampling
5000 different sequences from a probabilistic sequence
can be done in a reasonable amount of time, even on a
mid-range consumer laptop. Our implementation of the
construction of the probabilistic sequence does not output
insertions and deletions, so the results in this section are
only based on mutations.

Figure 3 shows the results of the 49 sequences where there
were more than 250 sampled sequences in the second high-
est lineage call. The consensus sequence is almost always as-
signed to the same lineage as the majority of the resamples,
but the proportion of resamples with the same lineage as the
consensus sequence is very rarely 100% and can be as low
as 32.86% (accession number ERR4440425). There were 52
cases where the proportion agreeing with the consensus se-
quence was either exactly 0 or <1%, and these cases oc-
curred when the most common lineage sampled was labelled
B.1.1.7 or ‘None’ (sequences are labelled ‘None’ when pan-
golin’s classification does not reach a confidence thresh-
old). B.1.1.7 represents 6% of our data and is a significantly
more infectious lineage that is of special concern to health
authorities.

Figure 4 shows both the proportion of lineages assigned
to the same lineage as the consensus sequence as well as the
number of different lineage assignments for each sequence
we analysed. The clear majority of resampled sequences are
assigned to the same lineage as the consensus sequence, but
there are many cases where the proportion is <80% or even

https://www.ncbi.nlm.nih.gov/sra/?term=txid2697049


8 NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 2

Figure 3. Visualization of called lineages from Pangolin. Red bars indicate the lineage of the most probable sequence and grey bars represent other sequences
called from the same SAM file. Any lineage with fewer than 100 observations in the simulated sequences was grouped into the ‘Other’ category. There were
95 sequences total, but we only plotted the ones where the second most common lineage designation had >250 observations.

Figure 4. Main plot: Proportion of resampled sequences that are assigned to the same lineage as the consensus sequence. One proportion is calculated
for each SAM file. The sets of resampled sequences where the proportion was <1% or exactly 100% are explained in the section titled Re-sampling the
probabilistic sequence. Inset: The number of distinct lineage assignments within each set of resampled sequences.

60%. From the inset, most of the SAM files result in a small
number of different lineage assignments, but there are cases
where there are more than 100 different alternative lineages
that were possible.

Clock rate estimation for SARS-CoV-2

The molecular clock rate (the number of mutations per site
per unit of time) of a phylogenetic tree is found by consid-
ering both the number of mutations for each observed se-
quence relative to the root of the tree and the sample dates of
those sequences. Assuming heterochronous sampling dates,
the rate of mutations can be estimated by regressing the
number of mutations against the sampling date. In the sim-

plest case the clock rate is the slope estimate from a lin-
ear regression, thus assuming a fixed clock rate. Polynomial
and non-linear clock rates can be estimated (28), as well as
Bayesian non-parametric estimates (29).

The clock rate for SARS-CoV-2 is commonly estimated
as a fixed rate near 0.001 mutations per site per year (30–34).
Using the same resampling methods as above, we estimate a
clock rate for trees estimated from each of 50 resamples and
for the tree estimated based on the consensus sequences.

To obtain the data, we sampled genomes uniformly from
each month of recorded data in GenBank, using filters
to ensure that the genomes were complete and had an
associated SAM file. We further had to filter out SAM files
that were incomplete or did not contain the CIGAR strings
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Figure 5. Clock rates (slope) and 95% confidence Intervals for the collections of re-sampled sequences. The red line and red shaded region are the clock
rate and 95% CI for the consensus sequences. The purple points and error bars are the clock rates and error intervals (either Bayesian Credible Interval
or Highest Posterior Probability) from published studies, as labelled. The re-sampled sequences are in line with the consensus sequences as well as the
published sequences, but represent a much larger variation due to the uncertainty in the original genome sequences.

necessary for alignment, leaving us with 244 sequences. The
associated SRA accession numbers are provided in Supple-
mentary Table S2.

Our re-sampling method will, by definition, introduce
other possible mutations beyond what the consensus se-
quence suggests. Because of this, the apparent number of
mutations between a re-sampled genome and the estimated
root is a function of the coverage, with more positions read
or more uncertainty in the sequence leading to artificially
inflated terminal branch lengths. Furthermore, we are sam-
pling nucleotides at each position independently of other
positions as well as independently of ancestral sequences.
This implies that the estimates of the time for the most re-
cent common ancestor are not reliable. However, assuming
that the sequences have comparable levels of uncertainty,
each branch increases by a similar amount and the clock
rate should not be affected.

The sequences that we acquired did not have comparable
levels of uncertainty; the viruses sampled early in the pan-
demic had considerably higher uncertainty, most likely due
to a lack of consistent laboratory guidelines for sequenc-
ing this new virus. To account for this, we calculated the
sum of S ′ for each sequence and applied Statistical Process
Control techniques to ensure that all of the sequences had
a similar level of coverage. In particular, we calculated the
mean coverage of the sequences in our data set, c̄, and the
standard deviation of the coverages, s. We removed any se-
quences outside of c̄ ± 3s, recalculated c̄ and s, and iterated
the removal process until all sequence coverages were within
the bounds, amounting to 20 removed sequences.

The clock rate was estimated using TreeTime (28). We
recorded the clock rate and standard error from the time

tree constructed using the consensus sequences and com-
pared this to the clock rate and standard deviations of the
estimated clock rates in the resampled sequences. The tree
built from consensus sequences had a clock rate of 6.5 ×
10−4 with a standard error of 8.01 × 10−5. The mean of the
clock rates for all of the sets of resampled sequences was 8.6
× 10−4 with standard deviation of 5.3 × 10−4, which is ap-
proximately 1.6 times as large as the standard error for the
consensus sequences.

The estimates of the clock rate are shown in Figure 5. The
red line and shaded region are the clock rate for the tree built
from consensus sequences along with ±1.96 standard er-
rors. Rate estimates from (30) (n = 122), (31) (n = 261), (32)
(n = 29), (33) (n = 112) and (34) (n = 77) are also labelled on
the plot with purple error bars for 95% Bayesian Credible
Intervals (BCI) or 95% Highest Posterior Density (HPD),
indicating that the rates and errors from each root-to-tip
regression are in line with other published results. Figure 5
demonstrates that the estimated evolutionary rates have an
average close to the rate estimated from our tree estimated
from consensus sequences as well as the rates from other
studies, but each of the individual error bars (from the five
studies identified above) miss the excess variation due to se-
quence uncertainty.

DISCUSSION

The primary contribution of this research is the construc-
tion of the probability sequence, which allows for a wide
variety of future research directions. The direction we de-
scribed here is focused on re-sampling, which allows a more
complete appraisal of the variance in the estimates (or pro-
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vides a reasonable prior distribution in a Bayesian setting),
while comparing results for the most likely sequences pro-
vide a measure of robustness to sequence uncertainty.

Our proposed methods can result in a linear increase
in computational expense. Even the method based on or-
dering the sequences by likelihood inevitably requires re-
running the analysis numerous times. However, we have
demonstrated that the uncertainty in the sequences them-
selves can lead to major changes to the interpretations of
the results. The so-called ‘consensus sequence’ is simply the
most likely sequence, and the reported uncertainty is not
merely an academic curiosity. Ideally individual analyses
would be constructed to take nucleotide-level uncertainty
into account. For instance, phylogenies have been estimated
based on uncertain sequence information in (35–37), but
the uncertainty is not derived from base quality scores. An
extension of these methods to incorporate the base quality
scores is a worthwhile research direction.

As noted by a reviewer, De Maio et al. (38) present a
method to construct phylogenetic trees such that each tip is
associated with a collection of individuals within a species.
It uses a multiple sequence alignment for each of a col-
lection of species and incorporates the polymorphisms for
each species. Our method could re-purpose this paradigm to
apply to re-samples from the probabilistic sequence in place
of multiple sequence alignments, with the separate genomes
acting as species. Alternatively, the method could be altered
to directly incorporate sequence uncertainty, possibly using
values from our construction of the probabilistic sequence
as allele proportions. This combination of methods would
improve the estimation of the variance and allow for an
improved estimate of error rate (analagous to the within-
species evolution rate).

Computational burden can also be reduced by sorting the
sequences in decreasing uncertainty. It is possible to devise
an algorithm that puts the sequences in (approximate) order
of their uncertainty without calculating the uncertainty for
every sequence (specifically, by starting with the consensus
and at each step changing the base call that had the lowest
quality). Any model that uses sequence data could be re-fit
with each sequence in order of uncertainty to investigate the
robustness of that model to sequence uncertainty.

Our analysis focused on lineage classification according
to the Pangolin model as well as estimation of the clock
rate. The importance of incorporating sequence uncertainty
is not confined to these applications; any analysis involving
sequenced genomes would benefit from some method of in-
corporating the uncertainty or including some measure of
robustness. For example, the estimated frequency of alleles
in the population could be used as the probability sequence,
then propagated into further analyses. We also included a
section on assumptions about errors that are not quanti-
fied (consensus-level FASTQ and FASTA files), but we have
not implemented an example of this. Evaluating particular
methods was not part of our scope, but such a study would
be a valuable research direction.

Within SARS-CoV-2, there are many potential use-cases
for our methods. As noted by a reviewer, one potential use-
case is to use simulated reads (with known lineage) with
varying levels of uncertainty in order to estimate the po-
tential variance around a given lineage assignment. It is

likely that, due to different amounts of mutations used to
define lineages and differences in average read depth at dif-
ferent locations, different lineages may be subject to differ-
ent levels of variability. We stress that re-sampling is a gen-
eral method, and development of methods that incorporate
uncertainty––e.g. incorporating uncertainty directly in the
inference procedure, perhaps directly in the formulation of
the likelihood––should be a priority for future research in
particular applications of uncertainty propagation.

Our method does not preclude tertiary analyses to test
for systematic errors. For instance, in a post on virolog-
ical.org (https://virological.org/t/issues-with-sars-cov-2-
sequencing-data/473), Nicola De Maio et al. suggest that
some errors arise due to issues in the sequencing protocol in
particular laboratories. Our method allows for adjustments
of the base call quality score, such as in (39), correcting
for laboratory-specific errors, as well as more sophisticated
definitions of genome likelihoods (e.g. (9,10,14)).

We have evaluated an algorithm to include insertion
events in a re-sampling scheme, but many of the resultant se-
quences were not mappable to known sequences. The Pan-
golin lineage assignment system appears to treat insertions
differently from single nucleotide polymorphisms, and our
method of sampling insertions is incompatible with their
treatment of them. This is potentially because the sampled
base pair at any given position is independent of each other
position, and the insertions observed in real-world data
are possibly always associated with particular mutations
elsewhere. However, insertions in the SARS-CoV-2 genome
have been relatively rare.

This study should not be taken in any way as a criticism
of the Pangolin lineage assignment procedure. Rather, Pan-
golin was chosen as it is the state-of-the art tool for lineage
classification. The phylogeny created by this team has been
a vital resource for researchers and for public health pro-
fessionals. In particular, the PANGO label for the current
Variants of Concern (VOCs), especially B.1.1.7, are the la-
bels being used worldwide by news organizations. The out-
put from Pangolin and many other bioinformatics tools are
usually interpreted as deterministic results. This study is an
argument that inherent uncertainty in sequencing warrants
propagation into downstream analyses.

CONCLUSIONS

The files produced by NGS platforms include valuable in-
formation about the quality of base calls which should be
propagated into analyses. In this study, we have demon-
strated that these errors in base calling can lead to different
conclusions when determining a lineage via Pangolin and
that the variance in clock rate estimates is larger than pre-
viously shown due to these errors. Both of these situations
could lead to incorrect conclusions, such as missing a vari-
ant of interest or making overconfident conclusions about
the date of the first case of COVID-19. The potential for er-
rors in base calls should always be taken into account when
making decisions based on genetic sequencing data.

Our analysis of Pangolin lineage classification demon-
strates that the uncertainty in the base calls has a non-
trivial2 effect on the potential lineage calls. The reported
lineage classifications are based on a sophisticated classifi-

https://virological.org/t/issues-with-sars-cov-2-sequencing-data/473
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cation algorithm which has high confidence in the predicted
category, but this assumes that the input sequence is known
without error. We are not aware of any classification system
that incorporates per-base error, so we suggest that inter-
pretations of the output of any classification system be in-
terpreted with reference to the uncertainty in their sequence.

Our clock rate estimation suggest that the
confidence/credible intervals for the published clock
rates are underestimated. As with lineage classification,
we are not aware of any clock rate estimation procedures
that incorporate the uncertainty in the base calls of the se-
quences. Researchers should be conscious of this potential
source of currently unacknowledged error when reporting
any results from sequenced genomes.

DATA AVAILABILITY

All data for this work have been previously published.
Unique SRA identifiers are provided in the supplementary
materials.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.

FUNDING

Canadian Institutes of Health Research [PJT-156178 to
A.F.Y.P.]; Natural Sciences and Engineering Research
Council of Canada [05516-2018 RGPIN to A.F.Y.P.]; D.B.
was supported by a Presidential Data Fellowship from the
University of Western Ontario.
Conflict of interest statement. None declared.

REFERENCES
1. Fuller,C.W., Middendorf,L.R., Benner,S.A., Church,G.M., Harris,T.,

Huang,X., Jovanovich,S.B., Nelson,J.R., Schloss,J.A., Schwartz,D.C.
et al. (2009) The challenges of sequencing by synthesis. Nat.
Biotechn., 27, 1013–1023.

2. Goodwin,S., McPherson,J.D. and McCombie,W.R. (2016) Coming of
age: Ten years of next-generation sequencing technologies. Nat. Rev.
Genet., 17, 333–351.

3. Salk,J.J., Schmitt,M.W. and Loeb,L.A. (2018) Enhancing the
accuracy of next-generation sequencing for detecting rare and
subclonal mutations. Nat. Rev. Genet., 19, 269–285.

4. Beerenwinkel,N. and Zagordi,O. (2011) Ultra-deep sequencing for the
analysis of viral populations. Curr. Opin. Virol., 1, 413–418.

5. O’Rawe,J.A., Ferson,S. and Lyon,G.J. (2015) Accounting for
uncertainty in DNA sequencing data. Trends Genet., 31, 61–66.

6. NC-IUB (1986) Nomenclature for incompletely specified bases in
nucleic acid sequences. Recommendations 1984. Nomenclature
Committee of the International Union of Biochemistry (NC-IUB)..
Proc. Natl. Acad. Sci. U.S.A., 83, 4–8.

7. Ewing,B. and Green,P. (1998) Base-calling of automated sequencer
traces using Phred. II. error probabilities. Genome Res., 8, 186–194.

8. Richterich,P. (1998) Estimation of errors in ‘Raw’ DNA sequences: a
validation study. Genome Res., 8, 251–259.

9. Li,M., Nordborg,M. and Li,L.M. (2004) Adjust quality scores from
alignment and improve sequencing accuracy. Nucleic Acids Res., 32,
5183–5191.

10. Li,R., Li,Y., Fang,X., Yang,H., Wang,J., Kristiansen,K. and Wang,J.
(2009) SNP detection for massively parallel whole-Genome
resequencing. Genome Res., 19, 1124–1132.

11. Doronina,N.V., (2005) Phylogenetic position and emended
description of the genus Methylovorus. Int. J. Syst. Evol. Microbiol.,
55, 903–906.

12. Robasky,K., Lewis,N.E. and Church,G.M., (2014) The role of
replicates for error mitigation in next-generation sequencing. Nat.
Rev. Genet., 15, 56–62.

13. Wu,S.H., Schwartz,R.S., Winter,D.J., Conrad,D.F. and
Cartwright,R.A. (2017) Estimating Error models for whole genome
sequencing using mixtures of dirichlet-multinomial distributions.
Bioinformatics, 33, 2322–2329.

14. DePristo,M.A., Banks,E., Poplin,R., Garimella,K.V., Maguire,J.R.,
Hartl,C., Philippakis,A.A., del Angel,G., Rivas,M.A., Hanna,M.
et al. (2011) A framework for variation discovery and genotyping
using next-generation DNA sequencing data. Nat. Genet., 43,
491–498.

15. Gompert,Z. and Buerkle,C.A. (2011) A Hierarchical bayesian model
for Next-generation population genomics. Genetics, 187, 903–917.

16. Fumagalli,M., Vieira,F.G., Korneliussen,T.S., Linderoth,T.,
Huerta-Sánchez,E., Albrechtsen,A. and Nielsen,R. (2013)
Quantifying population genetic differentiation from Next-generation
sequencing data. Genetics, 195, 979–992.

17. Kuo,T., Frith,M.C., Sese,J. and Horton,P. (2018) EAGLE: explicit
alternative genome likelihood evaluator. BMC Med. Genom., 11, 28.

18. Schneider,T.D. (2002) Consensus Sequence Zen. Appl. Bioinform., 1,
111–119.

19. Schneider,T.D. and Stephens,R. (1990) Sequence logos: a new way to
display consensus sequences. Nucleic Acids Res., 18, 6097–6100.

20. Kuhner,M.K. and McGill,J. (2014) Correcting for sequencing error in
maximum likelihood phylogeny inference. G3 Genes Genomes
Genetics, 4, 2545–2552.

21. Clement,N.L., Snell,Q., Clement,M.J., Hollenhorst,P.C., Purwar,J.,
Graves,B.J., Cairns,B.R. and Johnson,W.E. (2010) The GNUMAP
algorithm: unbiased probabilistic mapping of oligonucleotides from
next-generation sequencing. Bioinformatics, 26, 38–45.

22. Rambaut,A., Holmes,E.C., O’Toole,Á., Hill,V., McCrone,J.T.,
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