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Abstract

Epistasis can dramatically affect evolutionary trajectories. In recent decades, protein-level fitness 

landscapes have revealed extensive idiosyncratic epistasis among specific mutations. In contrast, 

other work has found ubiquitous and apparently non-specific patterns of global diminishing-

returns and increasing-costs epistasis among mutations across the genome. Here, we use a 

hierarchical CRISPR gene drive system to construct all combinations of 10 missense mutations 

from across the genome in budding yeast and measure their fitness in six environments. We 

show that the resulting fitness landscapes exhibit global fitness-correlated trends, but that these 

trends emerge from specific idiosyncratic interactions. We thus provide experimental validation 

of recent theoretical work that has argued that fitness-correlated trends can emerge as the generic 

consequence of idiosyncratic epistasis.
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A genome-spanning fitness landscape reveals how idiosyncratic genetic interactions lead to global 

epistatic patterns.

Epistatic interactions have important consequences for the design and evolution of genetic 

systems (1-3). Significant work in recent decades has studied these interactions by 

measuring empirical fitness landscapes, most often at “shallow” depth for genome-scale 

studies (e.g., by quantifying pairwise but not higher order epistasis between all gene 

deletions or mutations) or at “narrow” breadth (such as complete landscapes at the scale 

of small select regions in single genes, for example by quantifying all orders of epistatic 

interactions among few amino acid residues) (4-18). These studies have often found many 

epistatic interactions among specific mutations at both lower (i.e., among few mutations) 

and higher orders (i.e., among many mutations). These reflect particular biological and 

physical interactions among the mutations involved; following recent work (19, 20) we refer 

to them as “idiosyncratic” epistasis, as they involve the specific details of these mutations. 

Overall, this body of work has highlighted the potential for epistasis to create historical 

contingency that tightly constrains the distribution of adaptive trajectories accessible to 

natural selection.

In contrast, other work examining adaptive trajectories that implicate loci across the genome 

has found patterns of apparently “global” epistasis, in which the fitness effect of a mutation 

varies systematically with the fitness of the genetic background on which it occurs (21-28). 

Typically, this manifests as either diminishing returns for beneficial mutations or increasing 

costs for deleterious mutations, with mutations having a less positive or more negative effect 

on fitter backgrounds. These consistent patterns of global epistasis may give rise to the 

dominant evolutionary trend of declining adaptability, and in contrast to the complexity of 

idiosyncratic interactions, they suggest that historical contingency could be less critical in 

constraining adaptive trajectories (29).

Despite their importance, these dual descriptions of epistasis have not been satisfactorily 

unified. In one view, global epistasis results from non-specific fitness-mediated interactions 

among mutations (24). Such interactions may for example emerge from the topology of 

metabolic networks, which generates overall patterns of diminishing returns and increasing 

costs that eclipse the specific details of idiosyncratic interactions (30). In contrast, other 

recent theoretical work has proposed an alternative view, hypothesizing that apparent 

fitness-mediated epistasis can instead emerge as the generic consequence of idiosyncratic 

interactions, provided they are sufficiently numerous and widespread (19, 20). These two 

models have substantially different implications for the structure of fitness landscapes, 

which in turn influence our expectations of the repeatability and predictability of evolution 

and of the effect of chance and contingency on adaptation at both the genotypic and 

phenotypic level. Thus, this dichotomy plays a central role in understanding of how epistasis 

affects evolutionary dynamics.

Thus far, however, empirical work has been unable to distinguish between these 

perspectives. The key difficulty is that testing these ideas requires both depth and 

breadth: we must analyze landscapes involving enough loci that we sample idiosyncratic 

interactions that can potentially give rise to overall fitness-mediated trends, and we must 
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survey possible combinations of these mutations at sufficient depth to quantify the role 

of higher-order interactions (including potential “global” non-specific fitness-mediated 

interactions). Importantly, larger landscapes are also necessary to reduce the influence of 

measurement error on the inference of epistasis and analysis of fitness-correlated trends 

(see Supplementary Materials, section 6.3). Achieving this depth and breadth is technically 

challenging, because it requires us to synchronize many mutations across the genome.

Here, we overcome this challenge by developing a method that exploits Cre-Lox 

recombination to create a combinatorially expanding CRISPR guide-RNA (gRNA) array 

in Saccharomyces cerevisiae, which allows us to iteratively generate mutations at distant loci 

via a gene drive mechanism (Fig. 1A). Briefly, strains of opposite mating type containing 

inducible Cre recombinase and SpCas9 genes are mutated at one of two loci (A or B), 

and DNA encoding guide-RNAs (gRNAs) specific to the wild-type alleles at these loci are 

integrated into their genomes (Fig. S1). After mating to produce a diploid heterozygous at 

A and B, we induce a gene drive to make the loci homozygous. This begins with expressing 

Cas9 and generating gRNA-directed double-strand breaks at the wild-type A and B alleles. 

These breaks are then repaired by the mutated regions of homologous chromosomes, making 

the diploid homozygous at these loci with at least 95% efficiency. Simultaneously, we 

express Cre to induce recombination that brings gRNAs into physical proximity on the same 

chromosome by way of flanking Lox sites, in a strategy similar to that described previously 

(31) (Fig. 1B). We then sporulate diploids and select haploids bearing the linked gRNAs 

from both parents. In parallel, we carry out this process with “pseudo-WT” versions of 

these loci, which contain synonymous changes that abolish gRNA recognition, but lack 

the non-synonymous change of interest. This creates a set of four strains, with all possible 

genotypes at loci A and B. Concurrently, we create separate sets of four strains with all 

possible genotypes at other pairs of loci (e.g., C and D)).

By iterating this process, we can rapidly assemble an exponentially expanding, 

combinatorially complete genotype library. We mate separate sets of four genotypes bearing 

all combinations of mutations at two loci each in an all-against-all cross, drive their 

mutations, recombine their gRNAs, and sporulate to produce a 16-strain library bearing 

all 4-locus mutation combinations. Repeating these steps in a third cycle with two 4-locus 

libraries of opposite mating type yields a 256-strain 8-locus library, and a complete 

landscape of up to 16 mutations (216 strains) can be constructed in just four cycles.

We sought to use this method to construct a complete fitness landscape that would shed 

light on the structure of epistasis: are fitness-correlated trends primarily the product of 

a global coupling of mutations via fitness, or do they emerge as the consequence of 

idiosyncratic epistasis? To do so, we surveyed studies of natural variation (e.g., (32-36)) 

and experimental evolution (e.g., (37-39)) to identify mutations potentially relevant to 

adaptation in the laboratory strain. We selected a set of mutations that sample a wide range 

of cellular functions, such as membrane stress response, mitochondrial stability, and nutrient 

sensing. Our goal in making this choice was to maximize fitness variance while minimizing 

pathway-specific idiosyncratic interactions. We note that alternative choices of mutations, 

particularly if they were focused on a specific protein or pathway (or limited to those that 

accumulated along the line of descent in a single lineage), might exhibit very different 
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patterns of epistasis, which would be characteristic of the particular details of that specific 

protein or pathway (or that specific adaptive trajectory). However, our goal here is to analyze 

potentially global patterns of epistasis among mutations across the genome that are relevant 

to fitness in a variety of conditions and hence represent an overall fitness landscape for the 

laboratory strain.

We thus implemented our gene-drive system to construct a near-complete landscape 

spanning 10 missense mutations in 10 genes (including essential genes) on 8 chromosomes: 

AKL1 (S176P), BUL2 (L883F), FAS1 (G588A), MKT1 (D30G), NCS2 (H71L), PMA1 
(S234C), RHO5 (G10S), RPI1 (E102D), SCH9 (P220S), and WHI2 (L262S) (Fig. 1C, 

Table S1). We found that a landscape of about this size is required to distinguish the two 

models (see SI section 6.3). Immediately before the final mating cycle, all strains were 

transformed with a unique DNA barcode next to the LYS2 locus to enable high-throughput, 

sequencing-based competitive fitness assays (Fig. S2, S3). All strains in each replicate 

haploid library were genotyped at all 10 loci to confirm presence of the desired alleles 

(this step also ensures presence in the diploid libraries). After excluding strains due to 

gene drive failure, 875 out of 1024 (85.4%) genotypes remained in at least one library 

(and 407 in both biological replicates). We also performed whole genome sequencing of 

96 randomly selected strains to rule out pervasive aneuploidies or influential but spurious 

background mutations. One aneuploidy was identified, and 3 spurious background mutations 

were observed at >5% frequency. Subsequent analysis showed that these were unlikely to 

systematically influence our findings (Table S2, and SI section 5.1).

To obtain fitness landscapes, we conducted r eplicate bulk barcode-based fitness assays 

on both pooled haploid and homozygous diploid versions of the genotype library in 6 

distinctly stressful media environments: YPD + 0.4% acetic acid, YPD + 6 mM guanidium 

chloride, YPD + 35 μM suloctidil, YPD @ 37°C, YPD + 0.8 M NaCl, and SD + 10 

ng/mL 4NQO (Fig. 1D). For each of 7 days, pools were allowed 7 generations of growth, 

and aliquots were sampled and sequenced at the barcode locus at generations 7, 14, 28, 

42, and 49. We estimated the relative fitness of each genotype from changes in barcode 

frequencies through time, achieving consistent measurements across technical and biological 

replicates (Fig. 1E,F, S4). From these data, we inferred the background-averaged additive 

and epistatic effects of each mutation and combination of mutations, respectively (using 

LASSO regularization, see SI).

We found that our six environments yield substantially different landscapes, as demonstrated 

by the relatively low between-environment correlations of genotype fitnesses (Fig. 2A), the 

additive effects of each mutation (Fig. 2B), and the pairwise interactions between them 

(Fig. 2C). Haploid and homozygous diploid landscapes were largely correlated, but there 

were several notable exceptions, particularly in the suloctidil environment (Fig. 2A,B). 

And although some pairwise interactions remain roughly constant in strength, even as the 

corresponding additive effects vary considerably (e.g., RHO5 and WHIT), most wax and 

wane across environments (Fig. 2C). Nevertheless, the overall contribution from different 

epistatic orders shows some similarities across ploidies and environments (the magnitudes 

do differ; Fig. 2D), with additive and pairwise terms explaining most of the variance in 

the data, third-order terms contributing minorly, and the remaining orders making little 

Bakerlee et al. Page 4

Science. Author manuscript; available in PMC 2023 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



difference, consistent with earlier studies (40). Across all epistatic orders, inferred effects 

were highly skewed, with a small number of terms explaining disproportionate variance 

(Fig. 2E).

We next sought to investigate potential patterns of global fitness-mediated epistasis. To do 

so, for each locus in each ploidy and environment, we plotted the fitness of a genotype 

with the mutated allele, (φMut, against the fitness of the same genotype with the WT allele, 

φWT. A regression slope, b, different from 1 in these plots signifies a fitness-correlated trend 

(FCT) (Fig. 3A, left; see SI). We note that some previous work has instead plotted the fitness 

effect of a mutation, Δφ, as a function of background fitness φWT. The advantage of our 

formulation here is that it does not privilege a specific allele as the “wild-type.” Instead, 

regression in our plots translates intuitively when reversing direction to treat the reversion as 

the mutation: brev = 1/borig by weighted-total least squares; see expanded discussion in the 

Supplementary Material, Fig. S5-S8.

We found that FCTs are common in our landscapes: across all ploidies, environments, and 

loci, ~44% of regression slopes deviate substantially from 1 (i.e., b ≤ 0.9 or b ≥ 0.9−1; these 

deviations are all significant; Fig. 3B, see histogram; Fig. S13 and S14). However, FCTs 

were not universal for fitness-affecting mutations: of the 49 examples across ploidies and 

environments of mutations with additive effects of magnitude ≥ 0.5%, 18 were associated 

with 0.9 < b < 0.9−1 (Fig. 3B).

By partitioning background genotypes by the presence or absence of specific mutations, 

we can determine whether FCTs are truly “global” (i.e., they transcend these partitions and 

any corresponding idiosyncratic interactions; Fig. 3A, middle), or are instead fundamentally 

idiosyncratic (i.e., they emerge from regression across partitions shifted in (φMut versus 

φWT space by sparse interactions with specific background loci; Fig. 3A, right). When we 

partitioned FCTs by the presence or absence of interacting mutations in the background, we 

found several instances where the idiosyncratic model clearly explains the fitness-correlated 

trend. For example, the effect of the G10S mutation in RHO5 at 37°C exhibits a clear FCT 

(b = 0.76) (Fig. 3C). However, we can partition points by the presence of interacting WHI2 
and AKL1 alleles in the background. Doing so shows that pairwise interactions with these 

alleles cause systematic shifts in φ10S vs φ10G space, with each partition assuming a slope 

near 1. Thus, over a range of background fitnesses, a FCT in the effect of the G10S emerges 

from these specific idiosyncratic interactions (Fig. 3C, S11). In the case of the homozygous 

AKL1 S176P mutation in suloctidil, we observe a similar decomposition of a FCT (b = 

1.29) when partitioning genotypes according to the presence of three interacting loci in the 

background (MKT1, RHO5, and WHIT) (Fig. 3D, S11). However, in other cases it is less 

clear whether the FCT can be partitioned in this way, and since deeper partitions tend to 

reduce background fitness variance and limit our confidence in regression slopes, a different 

approach is required to characterize the extent to which idiosyncratic terms cause FCTs 

across our data.

To investigate this question, we therefore analyzed the effect of removing specific 

idiosyncratic epistatic terms on the overall fitness-correlated trends. To do so, for each focal 

locus (in each ploidy and environment) we first calculated the weighted sum of squared 
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errors (41) of observed fitnesses from the global regression line (SSEb=global) and from 

a fitted line of slope 1 (SSEb=1, which corresponds to no FCT). We then set the largest 

epistatic term to zero and recalculated the expected fitness of each resulting genotype 

(assuming all other terms and residuals are non-zero), again obtaining both SSEb=global and 

SSEb=1. If the fitness-correlated trend arose from a global effect, we expect that SSEb=global 

would be less than SSEb=1 even as terms are removed. Instead, we found that, after 

removing the effect of just a few terms, a regression with a fixed slope of b=1 typically 

fit the data better than the b=global FCT slope (Fig. 3E, S11, with FCT threshold set to b ≤ 

0.9 or 0.8)), approaching the fit of an unconstrained regression that minimizes SSE (i.e., the 

final slope approaches 1, Fig. S10). This indicates that the apparent FCT arises from these 

few idiosyncratic interactions, even for global slopes very different from 1. Although we 

also documented cases where b=global fit the data better than b=1 even after removing many 

terms, we expect most if not all these instances may be due to measurement error, since they 

tend to arise in ploidies and environments where the data is noisier (Fig. S17).

To further evaluate whether idiosyncratic interactions between these mutations are sufficient 

to generate FCTs, we performed the converse analysis, this time with genotype fitnesses as 

predicted by our model of additive and idiosyncratic epistatic terms. Instead of removing 

the effects of epistatic terms one at a time, we first stripped from the model all interactions 

involving the focal locus, yielding perfectly linear points of slope 1 when plotting φMut 

vs φWT. We then added interactions one by one to our fitness prediction, from largest to 

smallest, and examined the resulting slopes. As shown in Fig. 3F for the haploid PMA1 
S234C mutation in 4NQO, adding just a handful of terms associated with 3 background loci 

recapitulates a strong FCT. Repeating this analysis with all our mutations shows that, on 

average, just 4 idiosyncratic interactions (primarily pairwise) are sufficient to recapitulate 

the full-model FCTs (a slope within 0.01 of the global slope, Fig. 3G, orange; see SM), 

which is far lower than the total number of inferred terms (median of 53) but represents 

on average 89% of the potential variance explained that could have been added (Fig. 

S12). Thus, although fitness-correlated trends are real and likely have important biological 

consequences, our data demonstrate that apparent fitness-mediated epistasis can readily 

emerge from remarkably few low-order idiosyncratic interactions.

Since the landscapes we study here have no natural polarization (i.e., neither allele is the 

assumed wildtype), we cannot comment directly on why earlier studies of global epistasis 

have more commonly found negative than positive FCTs (when plotting Δφ versus φWT). 

However, this distribution of FCT directions is important because it may underly the 

ubiquitous trend of declining adaptability observed across laboratory evolution experiments 

(29). The observed bias towards negative trends may arise from asymmetries in the average 

sign of epistatic interactions between mutations away from extant high-fitness genotypes 

relative to their reversions, which theory has predicted should arise from idiosyncratic 

interactions (19, 20). In addition, we note that choosing polarizations at random will lead to 

more negative than positive FCTs across the full parameter space (see extended discussion in 

the SI).

Regardless of the cause of any asymmetry in the direction of fitness-correlated trends, 

our results support recent theoretical arguments that fitness-mediated epistasis can emerge 
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as the generic consequence of widespread idiosyncratic interactions, rather than reflecting 

a global fitness-mediated coupling of mutations. Indeed, at least in our system, we see 

that fitness-correlated trends can arise even from a relatively small number of low-order 

interactions. We note that landscapes involving other types of variation (e.g., within a 

single protein or pathway or along the line of descent in a single lineage (21)) may exhibit 

different patterns, though we may expect these scenarios to involve an even stronger role 

for idiosyncratic interactions. More generally, we emphasize that idiosyncratic epistasis and 

global fitness-mediated effects are not mutually exclusive, and although fitness-correlated 

trends can be explained by the former in our system, in other cases both effects may 

contribute. However, our results suggest that nonspecific global epistasis may not be the 

primary driver of patterns of declining adaptability in laboratory evolution experiments, 

and this has general implications for the ways in which epistasis constrains evolutionary 

trajectories.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Recombining CRISPR-gene drive system.
(A) Experimental design. Strains of opposite mating type carrying known mutations and 

corresponding guide-RNAs (gRNAs) mate to form heterozygous diploids. Cas9 expression 

“drives” these mutations, and site-specific recombination links gRNAs. Homozygous 

diploids are sporulated, haploids with linked gRNAs are selected, and the process repeats, 

incorporating exponentially increasing numbers of mutations. (B) Recombining gene drive 

system. gRNAs targeting heterozygotic loci are flanked by selection markers and two of 

three orthogonal Lox sites (colored triangles), which are inactivated through recombination 

(red triangles). Cas9 “drives” targeted mutations, whereas Cre-Lox recombination brings 

like markers to the same chromosome and activates a URA3 gene interrupted by an 

artificial intron. Following sporulation, the chromosome with gRNAs is selected using the 

markers of interest whereas the other is counterselected using 5-FOA. (C) Cross design. 

A complete fitness landscape is produced in parallel by distinct cross designs that yield 

final homozygous diploids and haploids in biological replicates with unique DNA barcodes. 

(D) Bulk-fitness assays. Pooled strains are assayed in replicate for competitive fitness in 

several environments by sequencing barcodes to obtain strain frequencies over time. (E) 
Repeatability of technical replicate competitive fitness measurements. (F) Repeatability of 

biological replicate competitive fitness measurements.

Bakerlee et al. Page 11

Science. Author manuscript; available in PMC 2023 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. Fitness landscapes.
(A) Correlation in observed fitness (upper right) and predicted fitness (from inferred model, 

lower left, see SI section 5.1) across ploidies and environments. (B) Background-averaged 

additive effect of each locus across ploidies and environments. Error bars represent 95% 

confidence intervals. (C) Background-averaged pairwise epistatic effects between loci across 

ploidies and environments. Weights of edges connecting loci represent the proportion of 

pairwise variance explained by each interaction. Heights of bars on the perimeter correspond 

to the proportion of additive variance explained by each locus in each environment. (D) 
Variance partitioning of broad-sense heritability from additive and epistatic orders across 

ploidies and environments. (E) Cumulative distribution of the epistatic variance explained by 

rank-ordered epistatic terms of all orders.

Bakerlee et al. Page 12

Science. Author manuscript; available in PMC 2023 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. Fitness-correlated trends (FCTs).
(A) Schematic contrasting how global or idiosyncratic epistasis could produce FCTs. 

Inset shows FCT analyzed as the effect of a mutation (Δφ) on backgrounds of different 

fitnesses. (B) Histogram and scatterplot of regression slopes, b, between φMut and φWT, and 

corresponding absolute additive effects of mutations. Polarity adopted such that b ≤ 1. Total 

error bar length is twice the standard error of the slope. (C) Fitness effect of RHO5 mutation 

(G10S) (φMut versus φWT) in all haploid backgrounds at 37°C (left) and partitioned by 

genotypes at WHI2 (L262S) (middle) and WHI2 and AKL1 (S176P) (right). Initial SSEb=1 / 

SSEb=global is 1.21. (D) Fitness effect of AKL1 mutation in all homozygote backgrounds in 

the suloctidil environment, partitioned by genotypes at MKT1 (D30G), RHO5, and WHI2. 

Initial SSEb=1 / SSEb=global is 1.31. (E) Median relative fit ratio between regressions with 

fixed slope of b=1 and b=global, as function of number of epistatic terms removed from 

observed phenotypes. Vertical lines represent interquartile range. Polarity adopted such that 

b ≤ 1. (F) Inferred fitness effect of PMA1 S234C mutation in 4NQO environment across all 

haploid backgrounds. Epistatic terms interacting with PMA1 are completely removed from 

genotype fitnesses, then added back sequentially (from largest to smallest). Bottom-right: 

full-model (inferred) and observed genotype fitnesses, respectively. Grey line is regression 

slope. (G) Scatterplot and histograms of FCT regression slopes for all data, and number of 

epistatic terms sufficient to recapitulate them. Horizontal lines in histogram indicate means. 
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Arrows, letters indicate populations presented in previous panels. Polarity adopted such that 

b ≤ 1.
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