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Abstract

Motivation: Drug synergy prediction is approached with machine learning techniques using molecular and
pharmacological data. The published Cancer Drug Atlas (CDA) predicts a synergy outcome in cell-line models from
drug target information, gene mutations and the models’ monotherapy drug sensitivity. We observed low
performance of the CDA, 0.339, measured by Pearson correlation of predicted versus measured sensitivity on
DrugComb datasets.

Results: We augmented the approach CDA by applying a random forest regression and optimization via
cross-validation hyper-parameter tuning and named it Augmented CDA (ACDA). We benchmarked the ACDA’s
performance, which is 68% higher than that of the CDA when trained and validated on the same dataset spanning
10 tissues. We compared the performance of ACDA to one of the winning methods of the DREAM Drug
Combination Prediction Challenge, the performance of which was lower than ACDA in 16 out of 19 cases. We further
trained the ACDA on Novartis Institutes for BioMedical Research PDX encyclopedia data and generated sensitivity
predictions for PDX models. Finally, we developed a novel approach to visualize synergy-prediction data.

Availability and implementation: The source code is available at https://github.com/TheJacksonLaboratory/drug-synergy
and the software package at PyPI.

Contact: anuj.srivastava@jax.org or carol.bult@jax.org

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Drug combination therapy is a promising approach to cancer treat-
ment (Mokhtari et al., 2017). It is typical that a combination of
drugs has no synergy (simultaneously targeting independent path-
ways) (Palmer and Sorger, 2017). However, a more desirable ap-
proach is to use synergistic combinations that increase the
therapeutic response rate and have, compared to monotherapies, a
lower potential to develop resistance to treatment (Gayvert et al.,
2017).

Many computational methods for drug synergy prediction have
recently been developed and applied (Wu et al., 2022). A compre-
hensive review of various methods and their respective input data
types was published by Wu et al. (2022). The approaches can be
categorized into classic machine learning (ML), deep learning and
systems biology methods.

A recently developed method, Cancer Drug Atlas, CDA
(Narayan et al., 2020), uses drug-target information and monother-
apy drug sensitivity for drug-synergy prediction in cell-line models.
We developed an in-house implementation of the CDA and

re-evaluated it on the Genomics of Drug Sensitivity in Cancer
(GDSC) data, demonstrating results consistent with the Narayan
et al. (2020) publication. However, we observed low performance
of the CDA when trained and tested on six datasets from
DrugComb (Zheng et al., 2021).

Here, we describe the implementation of improvements to the
CDA drug-synergy prediction modeling approach by applying a
Classification And Regression Tree (CART)-based model instead of
linear regression. Further, we added training optimization and
implemented the algorithm as a Python package called Augmented
CDA (ACDA). We benchmarked the CDA and ACDA methods on a
collection of datasets. Additionally, to support the conclusions of
ACDA strengths, we implemented and tested the ACDA alongside a
second-best method developed by M. Zaslavskiy (which we denote
as EN) of the community-powered DREAM Drug Combination
Prediction Challenge to develop and assess computational models
for drug-synergy prediction (Menden et al., 2019). The EN method
is designed to use one-hot encoded drug and cell line names with
ML methods such as Random Forest regression and its variations.
We did not use the best method of the DREAM Drug Combination
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Prediction Challenge, which requires gene expression data for pre-
dicting drug effects, as it does not satisfy the ACDA data
requirements.

Additionally, we trained and benchmarked ACDA predictions of
therapeutic response in Patient-derived Xenograft (PDX) models
from the Novartis Institutes for BioMedical Research PDX encyclo-
pedia (NIBR PDXE) collection (Gao et al., 2015) encompassing 281
PDX models of several cancer types. As an example of ACDA appli-
cation in prioritizing candidate drug combinations for testing in
PDX models, we generated a set of model drug–drug candidates for
the NIBR PDXE breast cancer subset where drug-combination
tumor-volume measurements were unavailable. Finally, we simpli-
fied the visualization of drug-sensitivity clustering dendrograms on a
2D layout by using dendrograms and heatmaps instead of the
Voronoi diagrams used in the CDA.

2 Methods

We formulate the synergy prediction as a supervised ML problem or
a regression task to predict a quantitative score. Positive output val-
ues indicate synergy between a pair of drugs for a cell line model;
negative output values indicate antagonism. The regression output
values are predicted from the features of cell lines and drugs.

The Augmented CDA model follows novel aspects compared to
those employed by the CDA model (Narayan et al., 2020). We sum-
marized ACDA workflow in Supplementary Figure S1. Step 1 is the
same as in the CDA, and Steps 2–4 are modified compared to the
CDA:

Step 1. To calculate the drug–drug distance (a drug-similarity

measure based on monotherapy sensitivity in the models), first

project drug response vectors (n drugs, m cell lines) sensitivity

measures (e.g. AUC) to cosine similarity, and construct matrix A.

Then calculate Euclidean similarity M (n by n drugs) of A, hier-

archically cluster M with Ward linkage to make a dendrogram.

Finally, calculate the cophenetic distance of the clustering.

Step 2. Train a random forest regression model using the mono-

therapy drug sensitivities, target information (defined as one if

any of the two drugs target a gene mutated in a cell line, other-

wise zero), and drug–drug distance (i.e. the cophenetic distance

derived in Step 1).

Step 3. Compute (predict) synergy values for new or validation

data.

Step 4. Visualize predicted and known synergy-pairs data using

dendrograms and heatmaps (compare to Voronoi diagrams used

in the CDA).

To summarize, in Step 2, random forest regression is used in-
stead of logistic regression, and random search is used for hyper-
parameter tuning via k-fold cross-validation. In Steps 2–3,
compared to a linear model fit evaluation done by Narayan et al.
(2020), we perform cross-validation using the Monte Carlo Cross-
Validation (MCCV) approach, according to which a randomly
selected two-third of data was used for training. Then the remaining
one-third of the data was used for model performance evaluation
(Kuhn and Johnson, 2013). To avoid information leakage, we use
stratified splitting to leave out drug combinations. Supplementary
Table S1 (excel sheet) shows the results for both stratified and ran-
dom splitting. The splitting, training, and evaluation were repeated
10 times to benchmark the ACDA and CDA methods. Additional
methodological details are provided in the Supplementary Methods.

The EN method uses Random Forest regression and one-hot
encoded drug and cell line names. The EN-ACDA method adds
ACDA features to the EN method. We finally implemented a
method ACDA-EN-ACDA, which averages predictions of ACDA
and EN-ACDA.

Similarly to Kuru et al. (2022), ACDA ensures that Drug A-Drug
B and Drug B-Drug A are used in the training of models. ACDA con-
tains a function that averages the synergy predictions for Drug
A-Drug B and Drug B-Drug A to obtain a final synergy score.

We reserve the per-pair synergy score averaging function for down-
stream analysis and do not apply it by default. We use the function
on an example data subset described below.

2.1 Data description
We used pharmacology and molecular data from (Yang et al.,
2013), including GDSC drug sensitivity, model mutations, and
drug-targets data (Supplementary Table S2). We manually curated
the CDA synergy pairs (Narayan et al., 2020) to harmonize drugs
and model names. The GDSC set contains subsets GDSC1 and
GDSC2, which are older and newer versions of GDSC. Notably, the
GDSC2 subset has been screened using an improved GDSC1 screen
design and assay (Yang et al., 2013).

We tested ACDA versus CDA on breast cell lines of various can-
cer types from the GDSC1 and GDSC2 subsets (the two editions of
the GDSC drug screens) with CDA synergy pairs. The GDSC1 breast
subset contains 119 drug pairs (54 with synergy and randomly
chosen 65 unknown pairs assuming no synergy). The GDSC2 breast
subset contains 163 pairs (74 with synergy, 89 without synergy),
and GDSC1&2 with 191 pairs (112 with synergy, 79 without syn-
ergy). We tested 10 randomly chosen sets of ‘no synergy’ pairs for
each scenario.

The second data source was DrugComb which includes 650,909
harmonized drug sensitivity and synergy values from many in vitro
studies and tissues (Zheng et al., 2021) (see Supplementary Figs S2
and S3) and, specifically, the AstraZeneca dataset from Menden
et al. (2019). The data in DrugComb do not have model mutation
information; therefore, where available, we used GDSC mutations
for DrugComb. We considered only those DrugComb sets for at
least 1000 drug–drug-model entries per study per tissue. Because the
DrugComb-AstraZeneca dataset is much larger than the GDSC
known synergy set, we use the DrugComb subset in a down-
sampling experiment using a reduced number of drug–drug-model
entries in a training set and a constant number of drug–drug-model
entries in the validation set.

As an independent dataset for demonstrating the high bench-
marking performance and utility of the ACDA to generate candidate
drug–drug combinations in PDX models, we use the NIBR PDXE
collection (Gao et al., 2015). The dataset contains tumor-volume re-
sponse data of 281 models of six cancer types treated with single
drugs and drug combinations: colorectal cancer (CRC), gastric can-
cer (GC), pancreatic ductal adenocarcinoma (PDAC), breast cancer
(BRCA), non-small cell lung cancer (NSCLC), and cutaneous melan-
oma (CM).

2.2 Visualization
There are two visualization tools in the ACDA. The first tool allows
the clustering of monotherapy sensitivities into a dendrogram of
drug–drug similarity and depicts the known synergy pairs as arcs
ordered according to the order of the dendrogram leaves. Lighter
colors denote a smaller cophenetic distance between drugs, and
darker colors show that the drug–drug cophenetic distance is large.
The dendrogram is split into 10 clusters. This dendrogram represen-
tation allows for visually assessing whether known synergy pairs
tend to have large cophenetic distances, as was discussed in the
work of Narayan et al. (2020). The second tool presents predicted
drug-synergy pairs as a clustered heatmap where each point corre-
sponds to a drug pair. Dendrograms reflect the clustering of similar-
ity of drug sensitivities.

2.3 Application to PDX models
To analyze PDX model data, we used sensitivity to monotherapy
(63 drugs) and tumor mutation profiles of the PDX models from the
NIBR PDXE collection (Gao et al., 2015). First, we performed
benchmarking via MCCV Scheme repeated 10 times for each of the
four methods (ACDA, CDA, EN, and EN-ACDA) and each of the
six cancer types listed in Section 2.2, in NIBR PDXE (see
Supplementary Methods for methodological details). Next, we used
all available drug combinations in the BRCA subset of NIBR PDXE
to train the methods and then generated sensitivity predictions for
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the cases where drug-combination tumor-volume measurements
were unavailable. Thus, we calculated and saved the non-averaged
synergy scores. We applied the ACDA averaging function, based on
the methodology of Kuru et al. (2022), to non-averaged BRCA syn-
ergy predictions and generated one score for each Drug A–Drug B
pair for each method.

3 Results

The average Pearson correlation coefficient of predicted versus
measured drug-combination sensitivity values and SEM (standard
error of the mean) over 10 MCCV iterations for each case of the
GDSC and DrugComb-AstraZeneca (DC-AZ) datasets are reported
in Table 1. In the case of the GDSC1-breast dataset, the perform-
ance of the ACDA was consistently higher or nearly equal to that of
the CDA. GDSC and DC-AZ sets were used in the development and
validation of CDA. Notably, the CDA correlation coefficient values
were similar to those in the CDA publication results (Narayan et al.,
2020). However, we showed that the choice of a logistic model
reduces the accuracy of drug-response prediction when using the
DC-AZ drug screening dataset (and several other GDSC subsets,
Table 1). By constructing a CART-based model for the regression
and classification problem, we overcame the assumptions necessary
for using a logistic model and improved the quality of model
performance.

We observed that the performance of the ACDA on a down-
sampled DrugComb-AstraZeneca dataset decreased slightly with the
smaller training set. In contrast, the performance of the CDA is
much lower on the same set. However, the performance of the CDA
did not significantly change with the training set size
(Supplementary Fig. S4).

We performed validation and benchmarking of our ACDA and
CDA implementation using all datasets from DrugComb (Zheng
et al., 2021). We compared our model performance of one of the
top-performing models, EN, from the DREAM challenge for drug-
synergy prediction (Menden et al., 2019). When trained and tested
on the same dataset, the EN method shows a performance of
0.414 6 0.033, comparable to the ACDA’s (0.568 6 0.041) and the
CDA’s (0.339 6 0.049) performance. However, EN performs poorly
(0.009 6 0.012) when training and testing are done on different
studies. In the latter scenario, the ACDA and the CDA have similar
but low performances: 0.228 6 0.046 and 0.215 6 0.051, respective-
ly. A combination of EN and ACDA is a viable approach
(Supplementary Figs S5 and S6), which aligns the strengths of both
methods in a generalizable scenario giving 0.63 6 0.037, or an 86%
increase compared to the CDA when trained and tested on subsets
of the same study. Averaging predictions of ACDA and EN-ACDA
gave a performance of 0.621 6 0.037.

We additionally designed an experiment to split the GDSC1 data
set into 3-1-1 folds, where fine-tuning is done on four folds and vali-
dated on the fifth fold while rotating the test fold to reuse data. The
hyperparameter tuning gives an 8% performance increase in the
tuned model compared to the base model.

The hyperparameter tuning by training on the GDSC2 breast
subset and testing on the GDSC1 breast subset led to the increased
correlation of the predicted values with ground truth from 0.390
(base model) to 0.797. A similar test using GDSC1 and GDSC2 as a
training and testing set suffered from overfitting and decreased cor-
relation from 0.248 (base model) to 0.209.

The results for visualization of the synergistic pairs are detailed
in the Supplementary Results, and examples of the two visualization
tools are shown in Supplementary Figures S7 and S8.

3.1 Application to PDX models
Using MCCV, we applied the ACDA method trained on a randomly
selected two-third of measured dual-drug responses stratified to
leave out drug combination to predict synergistic combinations
(model-specific drug pairs) in NIBR PDXE models (Gao et al.,
2015) for which tumor-response values were held out from the
training set. The data splitting, training, and model evaluation were
repeated 10 times. ACDA, CDA, EN, EN-ACDA and ACDA-EN-
ACDA results for each of the six cancer types in NIBR PDXE are
detailed in Supplementary Figure S9. ACDA, CDA, and EN-ACDA
had similar performances, while EN showed significantly lower per-
formance with GC and PDAC subsets.

Then we used all available drug-combinations data in the breast
cancer subset of NIBR PDXE to train the methods and then gener-
ated sensitivity predictions for the cases where drug-combination
tumor-volume measurements were unavailable, but the computa-
tional model predictors were available. The top 30 drug–drug-model
synergy candidates with per-pair averaged synergy scores are listed
in Supplementary Table S3, with model X-4567 appearing in the
top 30. A complete list of predicted sensitivity to drug combinations
predicted from ACDA, CDA, EN and EN-ACDA for each model is
provided in Supplementary Table S4, which contains both averaged
and non-averaged scores. The table contains computational predic-
tions for 39 breast cancer PDX models and 119 unique drug–drug
combinations sorted by EN-ACDA score in descending order.
Several drug combinations, including ribociclib (LEE011) combined
with paclitaxel, LLM871, infigratinib (BGJ398), binimetinib, bupar-
lisib (BKM120) and CLR457, are predicted to have a synergistic ef-
fect in many of the 39 models. Red squares on the heatmap in
Supplementary Figure S10 denote such drug combinations.
Supplementary Table S5 contains the heatmap values and drug
names from Supplementary Figure S10. Additionally, ACDA, CDA,
EN and EN-ACDA give consistent results in this calculation. For ex-
ample, a synergy score of 0.75 corresponds to CR in the mapping of
response categories to synergy scores in Supplementary Methods.
The overlap in drug–drug-model entries for which the predicted
synergy score is at least 0.75 is significant with hypergeometric test
P-value <10�31 when comparing all pairs of the four methods.

4 Conclusion

The newly developed ACDA method is an open-source software
package and includes the CDA, EN, and EN-ACDA implementa-
tions. Benchmarking the four methods demonstrated that ACDA

Table 1. Benchmark Pearson correlation coefficient of ACDA/CDA models on select tissues and studies

Dataset Tissue Train Test ACDA CDA EN EN-ACDA ACDA-EN-ACDA

GDSC1&2 Breast 127 64 0.439 6 0.080 0.377 6 0.066 0.394 6 0.101 0.492 6 0.083 0.520 6 0.083

GDSC1 Breast 79 40 0.596 6 0.032 0.529 6 0.033 0.700 6 0.063 0.733 6 0.032 0.717 6 0.200

GDSC2 Breast 108 55 0.706 6 0.054 0.449 6 0.038 �0.079 6 0.021 0.594 6 0.106 0.675 6 0.064

GDSC1&2 Bladder 73 37 0.501 6 0.013 0.481 6 0.037 0.597 6 0.039 0.656 6 0.025 0.613 6 0.015

GDSC1 Bladder 60 30 0.602 6 0.042 0.634 6 0.037 0.628 6 0.040 0.658 6 0.040 0.647 6 0.041

GDSC2 Bladder 58 29 0.098 6 0.083 0.183 6 0.061 0.454 6 0.072 0.436 6 0.061 0.318 6 0.058

DC-AZ Breast 6585 3293 0.908 6 0.006 0.540 6 0.015a 0.278 6 0.019 0.916 6 0.005 0.916 6 0.005

DC-AZ Lung 2340 1170 0.526 6 0.017 0.371 6 0.011a 0.382 6 0.031 0.589 6 0.018 0.603 6 0.016

DC-AZ Urinary tract 2921 1461 0.744 6 0.021 0.497 6 0.014a 0.331 6 0.025 0.798 6 0.017 0.788 6 0.018

aLinear regression was used instead of logistic regression.
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and EN-ACDA were better at predicting synergistic drug combina-
tions than CDA and EN. The ACDA approach can be used with
cell-line drug screens and in vivo PDX tumor-volume data to predict

drug–drug combinations that may synergistically affect specific
models.
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