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Abstract

Motivation: Although machine learning models are commonly used in medical research, many analyses implement
a simple partition into training data and hold-out test data, with cross-validation (CV) for tuning of model hyperpara-
meters. Nested CV with embedded feature selection is especially suited to biomedical data where the sample size is
frequently limited, but the number of predictors may be significantly larger (P>> n).

Results: The nestedcv R package implements fully nested k x /-fold CV for lasso and elastic-net regularized linear
models via the gimnet package and supports a large array of other machine learning models via the caret frame-
work. Inner CV is used to tune models and outer CV is used to determine model performance without bias. Fast filter
functions for feature selection are provided and the package ensures that filters are nested within the outer CV loop
to avoid information leakage from performance test sets. Measurement of performance by outer CV is also used to
implement Bayesian linear and logistic regression models using the horseshoe prior over parameters to encourage
a sparse model and determine unbiased model accuracy.

Availability and implementation: The R package nestedcv is available from CRAN: https://CRAN.R-project.org/pack
age=nestedcv.

Contact: myles.lewis@gmul.ac.uk

needed. However, it has been demonstrated that filtering on the
whole dataset creates a bias when determining accuracy of models
(Vabalas et al., 2019). Feature selection of predictors should be con-
sidered an integral part of a model, with feature selection performed
only on training data. Then the selected features and accompanying
model can be tested on hold-out test data without bias. Thus, any
filtering of predictors is performed within the CV loops, to prevent
test data information leakage.

1 Introduction

The motivation for this package is to provide functions which help
with the development and tuning of machine learning models in bio-
medical data where the sample size is frequently limited, but the
number of predictors may be significantly larger (P > 7). While
most machine learning pipelines involve splitting data into training
and testing cohorts, typically 2/3 and 1/3, respectively, medical data-
sets may be too small for this, and so determination of accuracy in
the left-out test set suffers because the test set is small. Nested cross-
validation (CV) (Stone, 1977) provides a way to get round this, by

oo | 2 Description
maximizing use of the whole dataset for testing overall accuracy,

while maintaining the split between training and testing.
In addition, typical biomedical datasets often have many
10 000s of possible predictors, so filtering of predictors is commonly

©The Author(s) 2023. Published by Oxford University Press.

2.1 Nested cross-validation
This package enables nested CV to be performed using the common-
ly used glmnet package, which fits elastic net regression models
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(Zou and Hastie, 2005), and the caret package (Kuhn, 2008), which
is a general framework for fitting a large number of machine learn-
ing models. In addition, nestedcv adds functionality to enable CV of
the elastic net alpha parameter when fitting glmnet models.

nestedcv partitions the dataset into outer and inner folds (default
10 x 10 folds). The inner fold CV, (default is 10-fold), is used to
tune optimal hyperparameters for models. Then the model is fitted
on the whole outer training fold and tested on the left-out data from
the outer fold. This is repeated across all outer folds (default 10
outer folds), and the pooled unseen test predictions from the outer
folds are compared against the true results for the outer test folds
and the predicted probabilities concatenated, to give measures of ac-
curacy [e.g. ROC AUC (receiver operating characteristic curve area
under curve) and accuracy for classification, or RMSE (root mean
square error) for regression] across the whole dataset. A final round
of CV is performed on the whole dataset to determine hyperpara-
meters to fit the final model to the whole data, which can be used
for prediction with external data. For speed, parallelization of the
outer CV loops has been incorporated, since some feature selection
methods can also be time consuming. Parallelization uses paral -
lel::mclapply to allow forking where available (non-windows
systems) for efficient memory usage.

2.2 Variable selection

While some models such as glmnet allow for sparsity and have vari-
able selection built-in, many models fail to fit when given massive
numbers of predictors, or perform poorly due to overfitting without
variable selection. In addition, in medicine one of the goals of pre-
dictive modelling is commonly the development of diagnostic or bio-
marker tests, for which reducing the number of predictors is
typically a practical necessity. A collection of filter functions for fea-
ture selection are provided, including simple, extremely fast univari-
ate filters such as t-test, Wilcoxon test, one-way ANOVA and
Pearson/Spearman correlation, as well as more complex filters such
as random forest variable importance, ReliefF (Kononenko et al.,
1997) from the CORElearn package and Boruta (Kursa and
Rudnicki, 2010). Filters are designed to be embedded within the
outer loop of the nested CV and custom-made filters are supported.
A comparison of feature selection methods applied to gene expres-
sion datasets showed that a simple #-test often performed best in
terms of predictive performance and stability (Haury et al., 2011).

2.3 Imbalanced datasets

Class imbalance is known to impact on model fitting for certain
model types, e.g. random forest. Models may tend to aim to predict
the majority class and ignore the minority class as selecting the ma-
jority class can give high accuracy purely by chance. While perform-
ance measures such as balanced accuracy can give improved
estimates of model performance, techniques for rebalancing data
have been developed. These include: random oversampling of the
minority class; random undersampling of the majority class; com-
bination of oversampling and undersampling; synthesizing new data
in the minority class, e.g. SMOTE (synthetic minority over-sampling
technique) (Chawla ez al., 2002). These are available within nes-
tedcv using the balance argument to specify a balancing function.
Balancing can have a deleterious effect on regression (van den
Goorbergh et al., 2022), but is known to benefit some tree-based
models such as random forest (Chen et al., 2004).

2.4 Importance of nested CV

Figure 1A and B shows two commonly used, but biased methods in
which CV is used to fit models, but the result is a biased estimate of
model performance. In scheme A, there is no hold-out test set at all,
so there are two sources of bias/data leakage: first, the filtering on
the whole dataset, and second, the use of left-out CV folds for meas-
uring performance. Left-out CV folds are known to lead to biased
estimates of performance as the tuning parameters are ‘learnt’ from
optimizing the result on the left-out CV fold. In scheme B, the CV is
used to tune parameters and a hold-out set is used to measure per-
formance, but information leakage occurs when filtering is applied

to the whole dataset. Unfortunately, this practice is commonly
observed in many studies which apply differential expression ana-
lysis on the whole dataset to select predictors which are then passed
to machine learning algorithms. Figure 1C and D shows two valid
methods for fitting a model with CV for tuning parameters as well
as unbiased estimates of model performance. Figure 1C is a trad-
itional hold-out test set, with the dataset partitioned 2/3 training, 1/
3 test. Notably the critical difference between scheme B above, is
that the filtering is only done on the training set and not on the
whole dataset. Figure 1D shows the scheme for fully nested CV.
Note that filtering is applied to each outer CV training fold. The key
advantage of nested CV is that outer CV test folds are collated to
give an improved estimate of performance compared to scheme C
since the numbers for total testing are larger.

Similarly, in nestedcv balancing is performed only on the outer
training folds, immediately prior to filtering of features. This is im-
portant as balancing the whole dataset outside the outer CV would
lead to data leakage of outer CV hold-out samples into the outer
training folds, leading to performance bias.

Alternative methods for producing less biased estimates of model
performance have been proposed including Bootstrap Bias Corrected
CV (BBC-CV) (Tsamardinos et al., 2018). This is based on harnessing
out-of-sample predictions generated during standard CV for tuning
hyperparameters. However, this method does not easily incorporate
feature selection/filtering as an added step while measuring model per-
formance, and to our knowledge the only implementation available
for the purpose of comparison is written in MATLAB. Since the boot-
strapping step needs to be performed 100s (if not 1000s) of times to
correctly estimate the bias in performance from standard CV, this
method may not be much faster than nested CV, especially with the
advent of easier deployment of parallel processing.

2.5 Fitting the final model

Figure 1D shows the scheme for nested CV to measure performance
of the selected model. The final model is determined by following
the same steps as are applied to the outer training folds, but this
time to the whole dataset to derive the final fitted model. Namely
these steps are:

1. Filter predictors based on the whole data.
Optionally apply balancing functions to the samples (e.g. ran-
dom over/under sampling or SMOTE).

3. Split into CV folds, use (10x) CV to tune hyperparameters of
the final model.

4. Fit final tuned model to whole data; return this model.

3 Implementation

3.1 Models which require parameter tuning

The following simulated example demonstrates the bias intrinsic to
datasets where P > n when applying filtering of predictors to the
whole dataset rather than to training folds. In this example the data-
set is pure gaussian noise (code is included in the nestedcv R package
vignette). In the first scenario, predictors are filtered on the whole
dataset to select the top 100 predictors based on simple #-test. The
data is partitioned 2/3 train, 1/3 test and an elastic net model is
trained to the training data and tested on the test data. In this situ-
ation (equivalent to Fig. 1B) filtering of predictors on the whole
dataset is a source of leakage of information about the test set, lead-
ing to substantially overoptimistic performance on the test set as
measured by ROC AUC (Fig. 2A, red line). In comparison nested
CV (Fig. 2A, black line) correctly reports an AUC close to 0.50
showing that the dataset lacks predictive attributes. Of note, the
inner CV test predictions from nested CV still show a performance
bias (Fig. 2A, blue line) since the glmnet hyperparameters across
folds are chosen based on highest performance. The simulation was
performed 50 times (Fig. 2B) with addition of comparing nested CV
against simple 2:1 train/test partition where filtering has been per-
formed only on the 2/3 training dataset akin to the scheme shown in
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Fig. 1. Schemes for fitting machine learning models with CV. (A, B) Commonly implemented schemes which lead to biased measures of performance due to feature selection
being applied to the whole dataset. (C, D) Valid schemes which include feature selection, model fitting and unbiased measurement of performance using either (C) a simple par-

tition or (D) nested CV

Figure 1C. This shows that simple train-test partition is also un-
biased, but shows greater variance in performance estimate com-
pared to nested CV.

In a real-world example, RNA-Sequencing gene expression data
from synovial biopsies from patients with rheumatoid arthritis in the
R4RA randomized clinical trial (Humby et al., 2021; Rivellese et al.,
2022) is used to predict clinical response to the biologic drug rituxi-
mab. Treatment response is determined by a clinical measure, namely
Clinical Disease Activity Index (CDAI) 50% response, which has a
binary outcome: treatment success or failure (response or non-
response). This dataset contains gene expression on over 50 000 genes
in arthritic synovial tissue from 133 individuals, who were randomized
to two drugs (rituximab and tocilizamab). First, we remove genes of
low expression using a median cut-off (this still leaves >16 000 genes),
and we subset the dataset to the rituximab treated individuals
(n=68). Nested CV using a univariate filter and a glmnet model
reaches an AUC of 0.783 (Fig. 2C). nestedcv will also provide the left-
out test folds from the inner CV for measurement of performance, but
as shown in Figure 2C this AUC of 0.863 is inflated in comparison to
the true nested CV performance result. Following model parameter
tuning by inner CV, nestedcv automatically fits the final model to the
whole dataset, which in this case has 22 genes shown in order of vari-
able importance with the level of expression overlaid to highlight the
most important and highly expressed genes (Fig. 2D).

Benchmarking of this real-world application of nestedcv to the
R4RA dataset was performed on an Intel Core i9 processor (system
Mac OS, Rstudio environment) with 8 physical cores and 16 virtual

cores by hyperthreading to compare speed up from parallelization
against single core performance (Fig. 2E). Benchmark of 20 runs
showed that parallelization by setting the cv.cores argument
improved single core performance by up to 5.0 times for random
forest model fitted using nestcv.train () which applies nested
CV to caret models. Improvement for nestcv.glmnet () was less
(up to 2.5 times) since the original glmnet code is already substan-
tially optimized in C++. By default, parallelization is applied to the
outer CV loop only, to avoid recursive/nested parallelization of
inner CV folds which could lead to excessive numbers of processes
being spawned. We generally find that speed up tends to plateau
once the number of processes reaches the number of physical cores,
since all cores become saturated and there are both time and mem-
ory overheads for spawning additional processes.

3.2 Models which do not require parameter tuning

nestedcv also includes a function outercv which allows for meas-
urement of model performance in small datasets without the inner
CV loop for parameter tuning. Importantly feature filtering is nested
within the outer CV loop. This is only suitable for models that do
not require tuning of parameters against performance on test data.
Such models include Bayesian shrinkage models where the shrinkage
parameters can be learned from the data as part of the model-fitting
routine. It also includes models where the parameters are fixed, such
as random forest models where the number of trees has been shown
not to require tuning (Probst and Boulesteix, 2018). The justifica-
tion is that in some models unnested feature selection may be a more
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Fig. 2. Performance of nested CV in simulated and real-world examples. (A) Using a simulated dataset of 50 000 predictors generated from gaussian noise, filtering of predic-
tors on the whole dataset and measurement of performance using train/test partition (“non-nested filtering, test partition”) leads to biased estimates of performance as shown
by receiver operating characteristic (ROC) curve plots. Use of predictions from CV test folds also shows performance bias. Fully nested CV shows the true predictive perform-
ance is poor. (B) Same simulation as in (A) performed 50x showing that filtering on the whole dataset followed by test of performance by simple train-test partition (‘Filter
then partition’) shows biased performance in ROC area under curve (AUC). Simple partition followed by filtering on the training data (‘Partition then filter’) and fully nested
CV are unbiased in that they show that the true predictive performance of the dataset is poor. However, nested CV shows lower variance across repeats. (C) In a real-world ex-
ample from the R4RA clinical trial, RNA-Seq gene expression from synovial biopsies was trained with an elastic-net predictive model to predict clinical response to the drug
rituximab using nested CV to measure performance by ROC area under curve (AUC). (D) Bubble plot showing genes from the final fitted model in (C) ranked by variable im-
portance and with diameter showing median level of gene expression. (E) Benchmark of 20 runs of fitting either glmnet or random forest 10 x 10-fold nested CV models to the
real-world data shown in (C) and (D), showing mean = SD performance improvement with parallel processing on an 8-core Intel Core i9 processor

important source of performance metric bias than model tuning Detailed information and examples of usage are included in the vi-
(Vabalas et al., 2019). For Bayesian shrinkage models, nestedcv pro- gnette hosted alongside the package on CRAN.

vides the function model.hsstan which can be used with out-

ercv for fitting Bayesian linear and logistic regression models using

the horseshoe prior over parameters to encourage a sparse model . .

(Piironen and Vehtari, 2017). Models are fitted using the hsstan R Author contributions

package, which performs full Bayesian inference through a Stan im- Myles J. Lewis (Conceptualization [lead], Formal analysis [lead], Funding ac-
plementation (Carpenter et al., 2017). In Bayesian inference model quisition [lead], Project administration [lead], Software [lead], Writing—original
meta-parameters such as the amount of shrinkage are also given draft [lead], Writing—review & editing [lead]), Athina Spiliopoulou
prior distributions and are thus directly learned from the data (Conceptualization [equal], Methodology [equal], Software [equal], Writing—
through sampling. This bypasses the need to cross-validate results original draft [equal]), Katriona Goldmann (Data curation [equal], Formal
over a grid of values for the meta-parameters, as would be required analysis [equal], Methodology [equal], Software [equal], Writing—original draft

to find the optimal lambda in a lasso or elastic-net model. [equal]), Costantino Pitzalis (Funding acquisition [equal], Project administration
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4 Summary

In summary, the nestedcv package implements fully k x [-fold nested
CV while incorporating feature selection algorithms within the outer
CV loops. It adds the capability of nested CV to the caret machine
learning framework in widespread use. nestedcv is designed to help
measure the performance and stability of predictive models in bio- Funding
medical datasets with small sample size but large numbers of param-
eters (P > n). The package is user-friendly, fast and convenient. It
automatically collates the outer fold test results to give performance
metrics as well as fitting a final model on the whole dataset. Contflict of Interest: none declared.

This work has been supported by NIHR (grant 131575) and MRC (MR/
V012509/1).
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Data availability

The data underlying this article are available in ArrayExpress acces-
sion ID E-MTAB-11611 and can be downloaded from https:/www.
ebi.ac.uk/arrayexpress/experiments/E-MTAB-11611. All code used
in this article is available through CRAN and GitHub from https:/
github.com/myles-lewis/nestedcv.

References

Carpenter,B. et al. (2017) Stan: a probabilistic programming language. J. Stat.
Softw., 76, 1-32.

Chawla,N.V. et al. (2002) SMOTE: synthetic minority over-sampling tech-
nique. J. Artif. Intell. Res., 16, 321-357.

Chen,C. et al. (2004) Using random forest to learn imbalanced data.
University of California, Berkeley, Dept of Statistics Tech Report 666.
https://statistics.berkeley.edu/tech-reports/666.

Haury,A.C. et al. (2011) The influence of feature selection methods on accur-
acy, stability and interpretability of molecular signatures. PLoS One, 6,
€28210.

Humby,F. et al.; R4RA Collaborative Group (2021) Rituximab versus
tocilizumab in anti-TNF inadequate responder patients with rheumatoid
arthritis (R4RA): 16-week outcomes of a stratified, biopsy-driven,
multicentre, open-label, phase 4 randomised controlled trial. Lancet, 397,
305-317.

Kononenko,l. et al. (1997) Overcoming the myopia of inductive learning algo-
rithms with RELIEFF. Appl. Intell., 7,39-55.

Kuhn,M. (2008) Building predictive models in R using the caret package. J.
Stat. Softw., 28, 1-26.

Kursa,M.B. and Rudnicki,W.R. (2010) Feature selection with the Boruta
package. J. Stat. Softw., 36, 1-13.

Piironen,]. and Vehtari,A. (2017) Sparsity information and regularization in the
horseshoe and other shrinkage priors. Electron. J. Stat., 11, 5018-5051. 5034.

Probst,P. and Boulesteix,A.L. (2018) To tune or not to tune the number of
trees in random forest. J. Mach. Learn. Res., 18, 1-18.

Rivellese,F. et al.; R4RA Collaborative Group (2022) Rituximab versus tocili-
zumab in rheumatoid arthritis: synovial biopsy-based biomarker analysis of
the phase 4 R4RA randomized trial. Nat. Med., 28, 1256-1268.

Stone,M. (1977) An asymptotic equivalence of choice of model by
cross-validation and Akaike’s criterion. J. R. Stat. Soc. Ser. B
(Methodological), 39, 44-47.

Tsamardinos,l. et al. (2018) Bootstrapping the out-of-sample predictions for
efficient and accurate cross-validation. Mach. Learn., 107, 1895-1922.

Vabalas,A. et al. (2019) Machine learning algorithm validation with a limited
sample size. PloS One, 14, ¢0224365.

van den Goorbergh,R. et al. (2022) The harm of class imbalance corrections
for risk prediction models: illustration and simulation using logistic regres-
sion. J. Am. Med. Inform. Assoc., 29, 1525-1534.

Zou,H. and Hastie,T. (2005) Regularization and variable selection via the
elastic net. J. R. Stat. Soc. Ser. B (Stat. Methodol.), 67, 301-320.


https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-11611
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-11611
https://github.com/myles-lewis/nestedcv
https://github.com/myles-lewis/nestedcv
https://statistics.berkeley.edu/tech-reports/666

