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The combined signatures 
of the tumour microenvironment 
and nucleotide metabolism‑related 
genes provide a prognostic 
and therapeutic biomarker 
for gastric cancer
Jifeng Liu 1,4, Lei Zhong 1,4, Dawei Deng 2,4, Yunshu Zhang 3*, Qihang Yuan 1* & Dong Shang 1*

The tumour microenvironment (TME) is vital to tumour development and influences the 
immunotherapy response. Abnormal nucleotide metabolism (NM) not only promotes tumour 
cell proliferation but also inhibits immune responses in the TME. Therefore, this study aimed to 
determine whether the combined signatures of NM and the TME could better predict the prognosis 
and treatment response in gastric cancer (GC). 97 NM‑related genes and 22 TME cells were evaluated 
in TCGA‑STAD samples, and predictive NM and TME characteristics were determined. Subsequent 
correlation analysis and single‑cell data analysis illustrated a link between NM scores and TME cells. 
Thereafter, NM and TME characteristics were combined to construct an NM‑TME classifier. Patients in 
the NMlow/TMEhigh group exhibited better clinical outcomes and treatment responses, which could 
be attributed to the differences in immune cell infiltration, immune checkpoint genes, tumour somatic 
mutations, immunophenoscore, immunotherapy response rate and proteomap. Additionally, the 
NMhigh/TMElow group benefited more from Imatinib, Midostaurin and Linsitinib, while patients in 
the NMlow/TMEhigh group benefited more from Paclitaxel, Methotrexate and Camptothecin. Finally, 
a highly reliable nomogram was developed. In conclusion, the NM‑TME classifier demonstrated 
a pretreatment predictive value for prognosis and therapeutic responses, which may offer novel 
strategies for strategizing patients with optimal therapies.

Gastric cancer (GC) is the third leading cause of cancer-related mortality and the fifth most frequently diagnosed 
cancer  worldwide1. Patients with GC are typically diagnosed at an advanced stage owing to the absence of early 
 symptoms2. Despite advances in chemotherapeutic regimens for advanced GC, the efficacy of treatments remains 
poor, with overall survival (OS) rate of less than 2  years3,4. Thus, targeted therapy is a research hotspot for the 
development of the treatment for GC. Despite the development of several targeted medications recently, the 
overall results remain  dismal5. Immunotherapy provides GC sufferers with more treatment options and offers 
hope for the disease’s treatment. Although immunotherapy offers tremendous benefits to patients with GC, there 
are significant differences in sensitivity to immunotherapy among  patients6. As a result, it is critical to develop 
appropriate biomarkers for the prognosis prediction and tailored treatment of patients with GC.

Increasing evidence suggests that the tumour microenvironment (TME) is critical to tumour development, 
progression and therapeutic  resistance7–11. The presence of multiple cell types in the TME has been demonstrated 
to be essential for the anti-tumour immune response. Therefore, elucidating the cellular composition may not 
only provide prognostic information but also suggest the potential efficacy of  immunotherapy9,12,13. Furthermore, 
transcriptomics data can be used for the large-scale investigation of the immunological  landscape14. In the current 

OPEN

1Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 
China. 2Department of Hepato-Biliary-Pancreas, Affiliated Hospital of North Sichuan Medical College, 
Nanchong, China. 3Department of Traditional Medicine, The First Affiliated Hospital of Dalian Medical University, 
Dalian, Liaoning, China. 4These authors contributed equally: Jifeng Liu, Lei Zhong and Dawei Deng. *email: 
zys1986062186@163.com; qihangdy@163.com; shangdong@dmu.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-33213-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6622  | https://doi.org/10.1038/s41598-023-33213-z

www.nature.com/scientificreports/

study, we used the ‘CIBERSORT’ algorithm, which is considered the most reliable approach available and has 
already been used for immunoscore model creation in various cancer  types8,15,16, to improve early detection and 
prognosis prediction in cancer. Nucleotides, a type of biological information macromolecule, serve primarily as 
the precursors for nucleic acid synthesis, thereby promoting cell  proliferation17. Notably, nucleotide metabolism 
(NM) is the last and the most crucial link in malignant cell replication. Tumour cells utilise NM to synthesise 
DNA and RNA and consequently contribute to uncontrolled cell  proliferation18,19. Recently, researchers have 
affirmed that abnormal NM enhances the growth of tumours and suppresses the normal immune responses in 
the  TME20. For instance, altering the equilibrium of nucleotide pools can result in mutations that alter antigen 
presentation and, as a result, the immune response against the  tumour21,22. Therefore, there exists a strong 
association between TME and NM, with both having a significant impact on the development of tumours and 
immunotherapy.

The expansion of study on NM and TME enhances our awareness of the significance of NM-related TME in 
cancer patient prognosis and treatment. Nonetheless, to the best of our knowledge, no combined study of NM 
and TME cells has been performed to predict the prognosis and immunotherapeutic response in patients with 
GC. In the current study, we, therefore, sought to methodically develop an NM-TME signature for the progno-
sis and therapeutic response prediction of patients with GC by integrating NM characteristics and TME cells. 
The combined signature constructed herein could better reflect the role of the TME in tumour prognosis and 
treatment than traditional multi-gene prognostic signatures. Although the combination signature may be more 
complicated, genome sequencing analysis for cancer genomic research and clinical applications is speculated to 
become more prevalent and advanced as sequencing costs continue to drop and computing resources continue 
to  grow23. Thus, by quantifying specific immune cells and nucleotide metabolism-related genes (NMRGs) using 
sequencing technology and related algorithms, clinicians can effectively predict patient prognosis and guide 
personalised treatment based on this NM-TME signature. Meanwhile, our research may help to improve our 
understanding of tumour-specific biology based on an integrated manner of NM-related TME, which has sig-
nificant clinical disease management ramifications.

Methods
Data collection. RNA-sequencing (RNA-seq) and the matched clinical characteristics of the TCGA-STAD 
cohort were obtained from The Cancer Genome Atlas (TCGA) database. Additionally, RNA-seq and clinical 
data of the GSE84437 cohort, comprising 433 GC samples, were downloaded from the Gene Expression Omni-
bus (GEO) database as a validation  set24. Log transformed expression data from raw hybridisation arrays were 
downloaded and normalised using robust multi-array  averaging25.

A total of 97 NMRGs were obtained from the Molecular Signatures  Database26 (Supplementary Table S1). 
For TME cells, we employed CIBERSORT, a deconvolution  algorithm27, to determine the relative proportions 
of 22 different types of immune cells. CIBERSORT enrichment values were used to indicate the quantity of each 
TME cell type in each tumour sample across all cohorts.

Untargeted metabolomic strategies. A total of 33 patients with GC and 27 healthy volunteers were 
selected and enrolled from the First Affiliated Hospital of Dalian Medical University. The First Affiliated Hospi-
tal of Dalian Medical University’s institutional ethics committee approved this study. All included patients and 
healthy volunteers provided consent to the use of their blood samples for research by signing a written consent 
form. All methods were performed in accordance with the relevant guidelines and regulations. Using gastros-
copy or postoperative pathological investigation, the diagnosis of GC was confirmed in patients. Moreover, no 
evidence of tumours was observed in healthy volunteers. The subjects’ clinical features are presented in Sup-
plementary Table S2.

First, 150 μl of each sample was transferred to 1 ml 96-well plates, and 600 μl of methanol was added to pre-
cipitate the protein. The mixture was then vortexed for 5 min and centrifuged at 5300 RPM for 20 min (4 °C). 
Second, two replicates of the 200 μl upper layer were transferred to 450 μl 96-well plates, wherein the samples 
were concentrated and dried via vacuum centrifugation. These two plates were used for positive and negative 
ion detection using untargeted metabolomics analysis. Third, the remaining upper layers of all samples were 
mixed and distributed into 200 μl replicates for use as quality control (QC) samples. Finally, polar metabolite 
analysis was performed on an Ultimate 3000 ultra-high-performance liquid chromatograph and Q-Orbitrap 
mass spectrometer.

Establishment of NM score, TME score and NM‑TME classifier. The differentially expressed NMRGs 
between GC and normal tissues were identified using the ‘limma’ packages (P < 0.05)28. Following this, differen-
tially expressed genes (DEGs) were evaluated using univariate Cox regression analysis to acquire the genes with 
prognostic value (P < 0.05). Meanwhile, genes with prognostic significance were validated using Kaplan–Meier 
(KM)  analysis29. These genes were then incorporated into a multivariate Cox regression model to calculate NM 
scores using the following formula: NM scores = 

∑n
i=1

Expi ∗ Coefi (where n, Coefi and Expi denote the number 
of prognostic genes, the expression value and the coefficient of gene i, respectively). As for TME cells, 22 immune 
cell enrichment scores in patients with GC were calculated and then immune cells with prognostic significance 
were identified using KM analysis. Additionally, the TME score was calculated using the following formula: ∑n

i=1
Expi ∗ Coefi (where n, Coefi and Expi denote the number of prognostic immune cell, the infiltrating value 

and the coefficient of immune cell i, respectively). Gene set expression analysis (GSEA) was used to analyze the 
potential functions of different groups in TCGA data set. Signaling pathway differences were integrated through 
Kyoto Encyclopedia of Genes and Genomes (KEGG)  detabase30–32. We then integrated NM and TME scores 
to construct an NM-TME classifier and classified tumours into the following subgroups: NMlow/TMEhigh, 
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intermediate mixed (NMlow/TMElow and NMhigh/TMEhigh) and NMhigh/TMElow. The survival study using 
KM analysis was performed in both TCGA and GEO cohorts to determine the efficacy of the survival prediction 
of the signature. Furthermore, to assess the accuracy of the risk model, receiver operating characteristic (ROC) 
curves were generated using ‘survival ROC’ R  package33.

Single‑cell data processing and cell–cell communication. We next analysed the relationship between 
NM scores and immune cells using single-cell data. GSE167297 was used to obtain single-cell transcriptome 
data from 10 GC  samples34. Seurat R package was used to analyse the single-cell RNA-seq  data35. Additionally, 
the ‘NormalizeData’ and ‘FindVariableFeatures’ functions in the Seurat package were used to normalise the 
count and expel cells containing less than 200 genes, more than 2500 genes, more than 20% of mitochondria 
or more than 3% of haemoglobin and then identify the 3000 highly variable genes. Moreover, the non-linear 
dimensional reduction was performed using the UMAP and tSNE methods. Cluster biomarkers were identi-
fied using the ‘Seurat’ package. The ‘CellChat’ R package’s method of identifying communication molecules at 
single-cell resolution was used to analyse the relationships between cells that were involved in  communication36.

Weighted gene co‑expression network analysis (WGCNA). To further investigate the potential rea-
sons for the significant differences between the NMlow/TMEhigh and NMhigh/TMElow groups, we performed 
WGCNA using the R package ‘WGCNA’. A weighted value was set that conformed to the scale-free network law 
(scale-free  R2 = 0.9). Topological coefficients were employed to determine the degree of dissimilarity between 
nodes and create a hierarchical clustering tree to separate modules. The modules with the highest correlation to 
the NMlow/TMEhigh and NMhigh/TMElow groups were considered key modules. Finally, functional enrich-
ment analysis of key module genes was performed using the Metascape  database37.

Immune cell infiltration and immune checkpoint gene (ICG) expression between different 
groups. Tracking tumour immunophenotype (TIP) is a database that aids in the understanding of the mech-
anism of tumour immune activity and the proportion of immune cell  infiltration38. TIP follows a seven-step 
‘cancer-immunity cycle’  analysis39, wherein stepwise events are grouped into 23 groups with 178 stimulatory 
or inhibitory signature genes. Herein, TIP was used to explore the immune cell infiltration between different 
groups. We also examined the differential expression of common ICGs between the different groups, showing 
only statistically significant results.

Tumour mutation burden (TMB) and immunotherapy response analysis. In this study, mutation 
data were downloaded from the TCGA database. The top 20 most frequently mutated genes in different groups 
were identified using the ‘maftools’ package in R. Based on the somatic mutation data in each tumour, TMB was 
calculated as the number of mutated bases per million bases and compared across groups. Subsequently, we also 
explored the survival probability between different TMB and risk scores to highlight the crucial role of TMB in 
GC. To further estimate the response of immunotherapy, the tumour immune dysfunction and exclusion (TIDE) 
algorithm was  used40. Additionally, the Immune Checkpoint Inhibitor (ICI) Immunophenoscore (IPS) file from 
The Cancer Immunome Atlas Database was  retrived41. The immunotherapeutic relevance of the signature was 
evaluated using IPS, a reliable tool for assessing tumour immunogenicity.

Nomogram construction and validation. To determine if the risk score was an independent predictor 
of GC, univariate and multivariate Cox regression analyses were performed. Clinicopathological parameters 
and risk scores were considered in the development of the nomogram model for predicting the prognosis of GC 
using the ‘rms’ R  package42. Additionally, we used a ROC curve to assess the validity of the established nomo-
gram.

Statistical analyses. The statistical analyses were conducted using strawberry-Perl and R software (R-4.13). 
Student t-test and Wilcoxon rank sum test was used for continuous variables and Fisher’s exact test was used for 
categorical variables. P < 0.05 denoted a significant outcome.

Consent to participate and ethics approval. All patients/participants provided their written informed 
consent to participate in this study. The First Affiliated Hospital of Dalian Medical University’s institutional eth-
ics committee approved this research.

Results
Landscape of the genetic variation of NMRGs in GC. Figure 1 presents the workflow of the study. 
Herein, 97 NMRGs were evaluated to explore their roles in GC. First, 97 NMRGs in GC were examined for 
copy number variations (CNVs) and somatic mutations (Supplementary Fig. 1A), with mutations identified in 
161 of the 433 samples (37.18%). DPYD and XDH showed the highest mutation rate (5%) followed by CAD, 
AMPD3 and AK9 (4%). Furthermore, ENTPD8, ENTPD2, DNPH1, UCK1AK8 and AK1 exhibited higher fre-
quencies of CNV amplification, whereas DCTD, IMPDH1, CDA, DPYD and AK6 exhibited higher probabilities 
of CNV deletions (Supplementary Fig. 1B). Supplementary Fig. 1C shows the chromosomal positions of the 
aforementioned CNVs. To determine the relationship between genetic variation and NMRG expression, we also 
compared the expression levels of 97 NMRGs between normal and tumour samples. A total of 77 genes were 
differentially expressed (Supplementary Fig. 1D).
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To further explore the potential association between NM and GC, fresh serum samples, consisting of 33 
patients with GC and 27 healthy volunteers, were collected for metabolomic analysis. Using the ‘limma’ package 
in R, a total of 18 differentially expressed nucleotide metabolites were identified. Among them, 1-Methyladeno-
sine, 1-Methylguanosine, 7-Methylguanine, Allantoic acid, Cytidine, Dihydrothymine, Inosine, N2, N2-Dimeth-
ylguanosine, Pseudouridine, Uracil, Ureidopropionic acid, Uric acid and Xanthine were downregulated, whereas 
5-Methylthioadenosine, 5-Methyluridine (Ribothymidine), Allantoin, N6-Methyladenosine and Uridine were 
upregulated in GC samples. These findings highlighted the metabolic reprogramming of NM in patients with 
GC (Supplementary Fig. 2).

The prognostic values of NM and TME score. To construct an NM prognostic model, we first per-
formed a univariate Cox survival analysis on 77 differentially expressed NMRGs, of which six were statisti-
cally significant (Supplementary Table S3). Additionally, the prognostic significance of the six genes was vali-
dated using KM analysis (Supplementary Fig. 3A). Furthermore, a heatmap of the expression of the six genes 
in tumour and normal tissues was also drawn (Fig. 2A). We then subjected the six genes to multivariate cox 
analysis (Fig. 2B) and correlation coefficients were calculated to construct a model (Supplementary Table S4). 
The NM score was calculated for each patient, and the patients were classified into high and low score groups 
based on the median value. The KM curve showed that the high-risk patients had a worse prognosis (Fig. 2C). 
Regarding the TME prognostic model, a high infiltration of activated CD4 memory-activated T cells, CD8 T 
cells and activated dendritic cells (DCs) were observed to be associated with a better prognosis for patients with 
GC (Supplementary Fig.  3B). Similarly, these cells were subjected to multivariate cox analysis (Fig.  2D) and 
correlation coefficients were calculated to construct a model (Supplementary Table S5). The KM curve showed 
that high-TME score samples had a better survival prognosis than those with low-TME scores (Fig. 2E). GSEA 
revealed that the high NM score group was mainly enriched in cancer-related and classical oncogenic pathways, 
while the high TME score group was mainly enriched in immune-related pathways. (Supplementary Fig. 3C,D).

Single‑cell data analysis to explore the association between NM scores and TME cells. First, 
we investigated the correlation between the six NM model genes and the three TME cells. We found that T cells 

Figure 1.  The flow chart of the study design.
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CD8 were negatively correlated with UPP1, ENTPD2, NT5E and positively correlated with DPYS and AK1; T 
cells CD4 memory activated were negatively correlated with AK5, ENTPD2, NT5E, DPYS, AK1; dendritic cells 
were negatively correlated with AK5, ENTPD2, DPYS, and positively correlated with UPP1 (Fig. 3A). To further 
explore their association, we downloaded single-cell data from the GEO database, comprising 10 GC samples. 
The clustering and annotated results are presented in Fig. 3B. Subsequently, we calculated the NM scores in dif-
ferent cell types and found that the NM scores were significantly higher in monocytes and endothelial cells than 
in B cells, T cells, CD8+ T cells, epithelial, macrophages, Tregs and mast cells (Fig. 3C,D). Based on the NM 
score, monocytes and endothelial cells were divided into low NM score, medium NM score and high NM score 
monocytes and endothelial cells for cell communication analysis. The monocytes and endothelial cells with low 
NM scores had more abundant communication with other immune cells (Fig. 3E–H). Therefore, low NM scores 
could have a synergistic effect with high TME scores and combining the NM model with the TME model may 
be a feasible method.

NM‑TME classifier construction and validation. Next, we constructed the NM-TME classifier by com-
bining the NM and TME scores. It divided patients with GC into four categories: NMhigh/TMEhigh, NMhigh/
TMElow, NMlow/TMEhigh and NMlow/TMElow. Survival analysis revealed that the NMhigh/TMElow group 
had a poorer prognosis while the NMlow/TMEhigh group had a better prognosis among the groups (Fig. 4A). 
Patients in the NMhigh/TME high and NMlow/TME low subgroups showed less divergent prognoses. As a 
result, we combined them to form a mixed subgroup (Fig. 4B). Additionally, the area under the curve (AUC) 
values of the NM-TME classifier were 0.732, 0.708, 0.702 and 0.807 for 1, 3, 5 and 7 years, respectively (Fig. 4C), 
indicating that the NM-TME classifier plays a significant role in the survival prediction of patients with GC.

Furthermore, we also verified the prognostic significance of the NM-TME classifier in the GEO cohort, 
which revealed significant prognostic differences between the groups (Supplementary Fig. 4A). Moreover, the 

Figure 2.  Construction of the NM- and TME-related prognostic model. (A) Expression levels of the six 
model genes. (B) Multivariate cox regression analysis of NM model genes. (C) Kaplan–Meier (KM) curves of 
NM-related prognostic model. (D) Multivariate cox regression analysis of three TME cells. (E) KM curves of 
TME-related prognostic model. NM nucleotide metabolism, TME tumour microenvironment.
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Figure 3.  Correlation between the NM scores and TME cells. (A) The correlation between NMRGs and TME 
cells. (B) t-SNE plot of 10 gastric cancer samples. (C,D) Distribution of NM scores in different cell types. 
(E,F) The inferred signalling networks between different cell clusters. The significantly related ligand–receptor 
interactions of (G) NMlowMonocytes and (H) NMlowEndothelial cells. NM nucleotide metabolism, TME 
tumour microenvironment, NMRGs nucleotide metabolism-related genes.
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evaluation of the predictive performance of the classifier under different clinical features in the TCGA cohort 
revealed good predictive performance (Supplementary Fig. 4B).

Functional enrichment analysis and WGCNA. Functional enrichment of the three groups revealed 
that the NMhigh/TMElow group was mainly enriched in the regulation of the olefinic compound metabolic 
process, endothelial cell differentiation and stem cell proliferation, while the NMlow/TMEhigh was majorly 
positively associated with the positive regulation of T cell migration and negatively associated with the canonical 
Wnt signalling pathway (Fig. 4D).

Furthermore, WGCNA identified four modules (Fig. 5A,B). Among them, the turquoise module was most 
relevant and opposite to each other for the NMlow/TMEhigh and NMhigh/TMElow groups. Therefore, the 
turquoise module gene could be associated with significantly different prognoses between the NMlow/TME-
high and NMhigh/TMElow groups. Using the Metascape database, enrichment analysis of these genes revealed 
that they were mainly enriched in vasculature development, NABA core matrisome and extracellular matrix 
organization (Fig. 5C).

Differences in immune cell infiltration and ICG expression based on the NM‑TME classi‑
fier. First, we compared the abundance of immune cell infiltration between the different groups. The immune 

Figure 4.  Construction of the NM-TME classifier and functional enrichment analysis. (A) Survival analysis 
of the four subgroups was obtained based on the NM-TME classifier. (B) Survival analysis after merging the 
NMlow/TMElow and NMhigh/TMEhigh subgroups. (C) Receiver operating characteristic (ROC) curve of 
the NM-TME classifier. (D) Functional enrichment analysis of the three subgroups was obtained based on the 
NM-TME classifier. NM nucleotide metabolism, TME tumour microenvironment.
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cell infiltration was more abundant in the NMlow/TMEhigh group, especially CD8 T cells, Th1 cells, NK cells, 
CD4 T cells and macrophages (Fig. 6A). Notably, the better prognosis in the NMlow/TMEhigh group could 
be attributed to the abundant immune cell infiltration. Meanwhile, we also explored whether the expression of 
common ICGs differed between the groups. Most ICGs were differentially expressed between the groups, with 
high expression observed in the NMlow/TMEhigh group (Fig. 6B). These differentially expressed ICGs could 
be potential therapeutic targets. Additionally, it also suggests that NMlow/TMEhigh patients may benefit more 
from immune checkpoint blockade (ICB) therapy. HLA is a polygenic and polymorphic complex involved in 
antigen  presentation43. Figure 6C shows that HLA-B, HLA-C, HLA-F and HLA-DOB were expressed the highest 
in the NMlow/TMEhigh group.

Intergroup differences in cancer somatic mutations. Numerous studies have demonstrated the asso-
ciation between somatic mutations in tumour genomes and the response to  immunotherapy44. We therefore 
examined the TMB distributions among the various groups based on the NM-TME classifier. The NMlow/TME-
high group had a higher TMB, while the NMhigh/TMElow group had a lower TMB, indicating that the NMlow/
TMEhigh group may benefit more from immunotherapy (Fig. 7A). Additionally, the NMhigh/TMElow/TMB-
high group had a lower prognosis than patients in the other groups (Fig. 7B). Figure 7C,D display the top 20 
genes with high mutation frequencies in the NMlow/TMEhigh and NMhigh/TMElow groups.

Personalised treatment based on the NM‑TME classifier. Considering that drugs targeting PD-1 
and CTLA-4 have recently received approval for the treatment of several cancers, we evaluated whether the NM-
TME classifier could predict patients’ reactions to immunotherapy. The patients in the NMlow/TMEhigh group 
were observed to have a better response rate to immunotherapy than the other two groups (Fig. 8A). Microsat-
ellite instability-high (MSI-H) is a potential predictor of immunotherapy response targeting PD-1 or its ligand 
PD-L145. Accordingly, the proportion of MSI-H in the NMlow/TMEhigh group was higher than that in the other 
two groups (Fig. 8B). Additionally, we investigated the relationship between the NM-TME classifier and IPS in 
patients with GC to predict the response to ICIs. Figure 8C–F presents the differences in the results of CTLA-4/

Figure 5.  Exploring key module eigengenes associated with the NMlow/TMEhigh and NMlow/TMElow 
groups using weighted gene co-expression network analysis. (A) Evaluation of the scale-free fit index for 
differing soft-thresholding powers (β) and examination of the connectivity of various soft-thresholding powers. 
(B) A heatmap depicts the association between module eigengenes and various subgroups. (C) Functional 
enrichment analysis of key module eigengenes. NM nucleotide metabolism, TME tumour microenvironment.
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PD-1 inhibitor treatment between the NMlow/TMEhigh and Nmhigh/TMElow groups. The NMlow/TMEhigh 
group has higher IPS scores, implying more immunogenicity in the NMlow/TMEhigh group. Furthermore, 
we performed a difference analysis between the immunotherapy-responsive and non-responsive groups and 
also the NMlow/TMEhigh and NMhigh/TMElow groups. DEGs were then analysed using the Proteomaps 2.0 
 database46. Notably, the pattern of proteomap in the NMlow/TMEhigh group and immunotherapy-responsive 
groups were similar (Fig.  8G,H). These findings suggest that the NM-TME classifier can be used to predict 
patients’ responses to immunotherapy.

Given that targeted therapy is an effective approach in the treatment of GC, it has important clinical applica-
tions and prospects. We, therefore, investigated whether the NM-TME classifier could predict drug sensitivity 
in patients with GC. The NMhigh/TMElow group benefited more from Imatinib, Midostaurin and OSI-906 
(Linsitinib), while those in the NMlow/TMEhigh group benefited more from Paclitaxel, Methotrexate and Camp-
tothecin (Supplementary Fig. 5A–F).

Nomogram development and verification. Univariate and multivariate Cox regression analyses indi-
cated that the NM-TME classifier was an independent predictor of prognosis with the highest hazard ratio (HR) 
(Fig. 9A,B). Following this, the NM-TME classifier and clinical features were combined to construct a nomo-
gram. To predict the survival of patients with GC over 1 to 5 years, the values of each variable can be added to 
obtain the total score (Fig. 9C). Moreover, the AUC values of the nomogram for 1-, 3- and 5-year OS were 0.826, 
0.841 and 0.822, respectively (Fig. 9D).

Discussion
Owing to its high morbidity, the poor incidence of early diagnosis and low survival rate, GC poses a severe 
threat to the populations  worldwide47. Moreover, the development of tumours is consistent with abnormal 
 metabolism48. Recent studies have demonstrated that aberrant NM speeds up the progression of tumours while 
suppressing the TME’s normal immune  response49,50. Therefore, to treat malignancies and prevent recurrence 
and metastasis, the intervention or regulation of molecular pathways related to aberrant NM in malignant cells 
has emerged as a novel therapeutic  strategy20. The TME has a vital role in tumour development, growth, metas-
tasis and therapeutic  response51. As a therapeutic target in tumours, TME has attracted significant research and 
clinical  interest52. However, very few studies have reported on the use of NM-TME characteristics in predicting 
GC prognosis and treatment response. In this study, we combined the NM and TME features, for the first time, 
to construct the NM-TME classifier, which consists of three types of immune cells and six NMRGs. Currently, 
in various malignancies, next-generation sequencing is becoming a complementary diagnostic tool that guides 
decision-making to achieve precise and personalised therapy regimens. Accordingly, based on our constructed 

Figure 6.  Immune status of different subgroups based on the NM-TME classifier. (A) Differences in immune 
cell infiltration. (B) Differences in ICGs. (C) Differences in antigen presentation-related genes in different 
subgroups. NM nucleotide metabolism, TME tumour microenvironment, ICG immune checkpoint gene.
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NM-TME signature, clinicians can quantify specific immune cells and target genes using sequencing technology 
and related algorithms to effectively predict prognosis, immunotherapy response and targeted therapy response 
in patients with GC.

First, we constructed an NM prognostic model with six genes, namely AK1, DPYS, NT5E, ENTPD2, AK5 
and UPP1. Second, we constructed a prognostic model of the TME, consisting of activated DCs, activated CD4 
memory T cells and CD8 T cells. Both prognostic models classified patients with GC into two groups with sig-
nificant prognostic differences. Additionally, patients with high NM scores had a poor prognosis and majorly 
played a role in cancer-related pathways. In contrast, patients with high TME scores had a better prognosis and 
were mainly involved in immune-related pathways. Therefore, we speculated that these two models could have 
synergistic effects.

Moreover, a correlation was observed between the six NMRGs and three TME cells that were involved in the 
construction of the model. Additionally, we used single-cell data to further explore the association between NM 
scores and immune cells. After QC, clustering, and annotation of the single cell data, we calculated the NM scores 
in each cell type. The results showed that the NM scores in monocytes and endothelial cells were significantly 
higher than in other cells. We then divided monocytes and endothelial cells into monocytes and endothelial 
cells with high NM, medium NM and low NM scores. Furthermore, cell communication analysis also showed 
that low NM score monocytes and endothelial cells were more closely related to other immune cell types. Thus, 
these findings suggest a strong association between low NM scores and high TME scores, highlighting their 
synergistic effect on the prognosis of patients with GC.

Based on the above analysis, we constructed an NM-TME classifier that can classify patients with GC into 
different subgroups based on NM and TME scores. Survival analysis showed significant differences in progno-
sis between the groups, which was consistent with the results of the test set. A key module was identified to be 
significantly associated with the NMlow/TMEhigh and NMhigh/TMElow groups via WGCNA, which could be 
responsible for their significant differences. Moreover, the key module genes were mainly enriched in vasculature 
development, NABA core matrisome and extracellular matrix organization.

We then examined the immune status of the different groups of patients based on the NM-TME classifier. 
Patients in the NMlow/TMEhigh group had a higher abundance of immune cell infiltration, which may be the 
reason for better prognosis in NMlow/TMEhigh group. Moreover, ICB therapy as emerging immunotherapy 
target has demonstrated therapeutic efficacy in the treatment of human  malignancies53. Herein, most ICGs were 

Figure 7.  TMB analysis. (A) Comparison of TMB among the defined subgroups. (B) Survival analysis based 
on the NM-TME classifier and TMB. The top 20 mutation genes of the (C) NMhigh/TMElow and (D) NMlow/
TMEhigh groups. NM nucleotide metabolism, TME tumour microenvironment, TMB tumour mutation burden.
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Figure 8.  The role of NM-TME classifier in immunotherapy. (A) Proportion of response to immunotherapy 
in different groups. (B) Proportion of MSI in different groups. (C–F) Comparison of the relative distribution 
of IPS across groups with high NM/low TME and low NM/high TME. Functional analysis in the NMlow/
TMEhigh group (G) and responder of patients under immunotherapy (H) illustrated using Proteomaps. A little 
polygon represents a unique KEGG pathway. NM nucleotide metabolism, TME tumour microenvironment, MSI 
microsatellite instability, IPS immunophenoscore.



12

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6622  | https://doi.org/10.1038/s41598-023-33213-z

www.nature.com/scientificreports/

highly expressed in the NMlow/TMEhigh group. These differentially expressed ICGs could be potential thera-
peutic targets, suggesting that patients in the NMlow/TMEhigh group may benefit more from ICB.

TMB has been demonstrated to be utilised as a predictor of ICB efficacy and has become a biomarker in 
certain types of cancer to identify patients who might benefit from  immunotherapy44,54,55. On analysing TMB val-
ues, the NMlow/TMEhigh group exhibited a higher TMB, while a converse trend was observed in the NMhigh/
TMElow group. Thus, patients in the NMlow/TMEhigh group can be considered more sensitive to ICB treatment.

According to recent studies, blocking PD-1 is not inferior to  chemotherapy56 and combining a PD-1 inhibi-
tor with chemotherapy improves survival in individuals with advanced GC compared to chemotherapy  alone57. 
Nevertheless, anti-PD-1 immunotherapy has been reported to be efficient in 15–60% of patients. Therefore, 
we investigated the relationship between the NM-TME classifier and the outcome of CTLA-4/PD-1 inhibitor 
therapy. The NMhigh/TMElow group had a better response to CTLA-4/PD-1 inhibitor therapy. Furthermore, 
validation using the TIDE database revealed that the immunotherapy response rate and proportion of MSI-H 
were higher in the NMlow/TMEhigh group. Meanwhile, the pattern of proteomap in the NMlow/TMEhigh 
group and immunotherapy responder were also similar. These results further demonstrate that patients in the 
NMlow/TMEhigh group are more sensitive to immunotherapy and that the NM-TME classifier can effectively 
predict patients’ response to immunotherapy.

In addition, the NM-TME classifier was able to predict chemotherapy drug sensitivity. The NMhigh/TMElow 
group benefited more from Imatinib, Midostaurin and OSI-906 (Linsitinib), while patients in the NMlow/TME-
high group benefited more from Paclitaxel, Methotrexate and Camptothecin. Drug resistance is a major challenge 
in cancer treatment. It is speculated that drug resistance in cancer is driven by genetic mutations. Despite the 
unclear mechanism of drug resistance, there is evidence for an important role of reversible proteomic and epige-
netic mechanisms in drug resistance. Additionally, mechanisms mediated by the TME and tumour heterogeneity 
greatly contribute to cancer therapy  resistance58. Tyrosine kinase inhibitors (TKIs) therapy, such as Imatinib and 
OSI-906 (Linsitinib), play a role in the TME remodelling and enhance therapeutic response, but TME changes 
can also induce drug resistance and promote tumour growth. The higher resistance to Imatinib and OSI-906 
(Linsitinib) in patients in the NMlow/TMEhigh group could be attributed to their more abundant immunosup-
pressive TMEs, such as macrophages, neutrophils, Tregs and myeloid-derived suppressor cells (MDSCs)59. It has 
been reported that Midostaurin may enhance anti-tumour effects by modulating the distribution of immune 
cells in the TME. Thus, resistance to Midostaurin could also be associated with the anti-tumour immunity of 
neutrophils and  MDSCs60. Paclitaxel can promote the polarisation to DCs and the proliferation and activity of 
CD8+ T cells and NK cells to exert stronger anti-tumour effects, which leads to a higher sensitivity to paclitaxel 

Figure 9.  Construction of a nomogram. (A,B) Forest map of univariable and multivariable Cox regression in 
the test cohort. (C) Nomogram based on the NM-TME classifiers and clinical features. (D) Receiver operating 
characteristic (ROC) curves of the nomogram model in predicting the 1–5 years survival rate. NM nucleotide 
metabolism, TME tumour microenvironment.
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in the NMlow/TMEhigh  group61. Methotrexate is an anti-tumour agent that interferes with folic acid metabolism. 
Studies have reported that higher NADPH levels in acute myeloid leukaemia promote Methotrexate resistance 
and that NADPH is involved in nucleotide  synthesis62, which could be associated with greater sensitivity in the 
NMlow/TMEhigh group. However, the corresponding mechanisms involved in GC require further investigation.

The multifactorial analysis demonstrated that the NM-TME classifier is an independent prognostic factor for 
patients with GC, with excellent prognostic predictive power. Finally, to fully exploit the prognostic potential 
of the NM-TME classifier, the survival rate of patients with GC was quantified after constructing a nomogram 
based on the signature and clinical features. The ROC curve illustrated the high-precision predictive capability 
of the nomogram.

To our knowledge, this is the first study to use bioinformatics to combine TME and NM features to analyse 
their role in GC prognosis, immunotherapy and chemotherapy. Nonetheless, this investigation is not without 
its drawbacks. The data used herein are from online databases, namely TCGA and GEO. Thus, these findings 
require further validation using real prospective clinical cohorts. Furthermore, basic investigations on the func-
tion of the TME and NM in the aetiology and progression of GC are required as the current understanding of 
this topic is limited.

Conclusion
In our study, an NM-TME signature was constructed by combining NM and TME features to predict the prog-
nosis, immunotherapy and chemotherapy effects of patients with GC. This classifier has been well-validated 
from different points of view.

Data availability
The datasets analysed in this study are publicly available from the TCGA and GEO (GSE84437, https:// www. ncbi. 
nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE84 437) databases. Furthermore, the raw data and analytic technologies 
used in this study can be obtained from the corresponding author and first author upon reasonable request.
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