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ABSTRACT

Introduction: Several different forms of auto-
mated insulin delivery systems (AID systems)
have recently been developed and are now
licensed for type 1 diabetes (T1D). We under-
took a systematic review of reported trials and
real-world studies for commercial hybrid closed-
loop (HCL) systems.
Methods: Pivotal, phase III and real-world
studies using commercial HCL systems that are

currently approved for use in type 1 diabetes
were reviewed with a devised protocol using the
Medline database.
Results: Fifty-nine studies were included in the
systematic review (19 for 670G; 8 for 780G; 11
for Control-IQ; 14 for CamAPS FX; 4 for Dia-
beloop; and 3 for Omnipod 5). Twenty were
real-world studies, and 39 were trials or sub-
analyses. Twenty-three studies, including 17
additional studies, related to psychosocial out-
comes and were analysed separately.
Conclusions: These studies highlighted that
HCL systems improve time In range (TIR) and
arouse minimal concerns around severe hypo-
glycaemia. HCL systems are an effective and
safe option for improving diabetes care. Real-
world comparisons between systems and their
effects on psychological outcomes require fur-
ther study.
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Key Summary Points

Advances in diabetes technologies have
led to the development of hybrid closed-
loop systems

We undertook a systematic review of the
available evidence for these systems

We included 62 clinical studies relating to
six different hybrid closed-loop systems

The studies demonstrated a beneficial
impact of hybrid closed-loop systems on
glycaemic parameters

Further work is needed to understand their
impact on psychological aspects of
diabetes

INTRODUCTION

Despite advances in the management of type 1
diabetes (T1D), the majority of people with T1D
continue to remain outside the recommended
target range for glycaemic control [1, 2]. The
2018 Type 1 Diabetes Exchange registry found
that only 21% of Americans with T1D were
achieving their target glycated haemoglobin
(HbA1c) level, and similarly, in 2019, the
National Diabetes Audit found that less than a
third of people in the United Kingdom (UK)
with T1D achieved their HbA1c targets [3, 4].
There is therefore a need for further improve-
ments in diabetes care in order to help people
with diabetes to attain glycaemic control within
the recommended range.

Automated insulin delivery (AID) systems
have been designed to improve glycaemic con-
trol and reduce the burden for people with T1D
[3, 5]. One form of these is referred to as ‘closed-
loop’ systems or ‘artificial pancreas’ devices;
these systems essentially consist of three com-
ponents: an insulin pump, a computer or
smartphone-based algorithm, and a continuous
glucose monitor (CGM) [3]. These systems aim
to help people with T1D achieve as near-normal

regulation of their glucose as possible through
glucose monitoring and insulin delivery every
few minutes, with minimal intervention from
the user [5].

Currently, most AID systems are hybrid
closed-loop (HCL) systems, whereby basal
insulin is automatically determined and deliv-
ered, but mealtime insulin boluses must be
managed manually, with people with diabetes
also required to provide information about the
sizes and times of meals [6–9] (Fig. 1). These
systems are generally single hormone, deliver-
ing insulin only [8–10]. Ideally, AID systems
would instead be fully closed-loop systems that
were completely automated, requiring minimal
user input and with no need for prior warning
of mealtimes or exercise, as required by hybrid
systems [9–11]. The sensor lag time and delays
in insulin action times have been some of the
barriers to achieving this, although progress in
this regard has been noted in some open-source
AID systems, based on testing in animal models
and anecdotal real-world experiences in clinics
[12]. An ideal AID system would also be a dual-
hormone system in order to more closely mimic
a biological pancreas and reduce the risk of
hypoglycaemia by countering aggressive insulin
delivery through the delivery of glucagon in
addition to insulin [13]. However, the cost and
complexity of dual-hormone systems have thus
far limited their development [14, 15].

AID systems can broadly be divided into two
categories: commercial and open-source auto-
mated insulin delivery (OS-AID) or ‘do-it-your-
self’ (DIY) systems. It is estimated that, globally,
around 10,000 people are using some form of
OS-AID system [16]. Like commercial HCL sys-
tems, OS-AID systems are based on an algo-
rithm, CGM, and insulin pump [14]. However,
unlike commercial AID systems, OS-AID user-
led DIY systems are not regulated and do not
have medical approval, although they have a
significant body of real-world and recent ran-
domised controlled trial (RCT) data supporting
their use [14, 16–18]. Alongside a responsive
online community, agility in improving the
algorithm and safety testing without incurring
delays from having to meet regulations or
undergo lengthy clinical trials means that OS-
AID systems can be tested and modified far
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more quickly than commercial AID systems
[14]. The recent consensus in medical practice
has been detailed elsewhere [16].

By comparison, there is an appreciably
greater evidence base of clinical trials for com-
mercial HCL systems that are given industry
funding. Commercial HCL systems have been
shown to increase the proportion of time that
users spend within a target glycaemic range,
both overnight and over a 24-h period [19].
Additionally, they have been found to lower
mean glucose levels and lower HbA1c [5, 20].
Clinical trials have also demonstrated that
commercial HCL systems do not increase the
time spent in hypoglycaemia or increase the
occurrence of hypoglycaemia, and in some
studies the systems have been found to reduce
hypoglycaemia [11]. Although commercial sys-
tems are comparable in that they are all regu-
lated, they are not homogeneous; each system
has its own algorithm, the settings and features
available differ between systems, and the devi-
ces the systems are compatible with also vary
[16].

Devices Being Assessed

The HCL systems that are being reviewed in this
study are all commercial hybrid closed-loop
systems that have published trial data and have
received CE or United States Food and Drug
Agency (FDA) approval for use in type 1 diabetes
(Table 1).

Medtronic 670G/770G

The Medtronic MiniMed 670G was the first
hybrid AID system to be available commercially
after it was licensed by the United States Food
and Drug Agency (FDA) in 2017, and then
became available in Europe the following year,
for use in people aged 7 and above [5, 11].
Currently, the system is available in the US,
Canada, and some countries in Europe, the
Middle East, and Hong Kong. It uses the Mini-
Med 670G insulin pump along with the Med-
tronic Guardian Sensor 3 CGM and an
algorithm called SmartGuard, which is embed-
ded in the insulin pump [11, 22]. The Guardian

Sensor 3 CGM can be used for 7 days and
requires between two and four calibrations each
day [22]. In ‘auto mode’, the 670G automates
control of basal insulin delivery every 5 min
based on the measured glucose values, but it
also takes into consideration the insulin deliv-
ery history of the user over the previous 2–-
6 days [5]. A ‘manual mode’ allows the system
to be used as a sensor-augmented (with a pre-
dictive low-glucose suspend) or stand-alone
pump [22]. The device also has integrated safety
features, such as the system being able to revert
to manual mode if insulin delivery is
approaching a maximum or minimum or if the
CGM signal is lost [23]. In the US, the 770G
offers the same algorithm and sensor use as
670G; however, it utilises an improved 780G
pump device which has Bluetooth connectivity
and the ability to receive software updates.

Medtronic 780G

The other Medtronic AID system being assessed
is the MiniMed 780G. Also known as the
Advanced Hybrid Closed Loop (AHCL), the
780G is an upgraded version of the 670G with
Bluetooth connectivity and remote software
updates added [22]. The ability of the system to
automatically deliver correction boluses was
also added [22]. The 780G system uses the
Medtronic 780G insulin pump, and, similarly to
the 670G AID system, the 780G is compatible
with the Medtronic Guardian 3 CGM and the
more recently launched Medtronic Guardian 4
CGM [22]. Like the 670G, the algorithm used by
the 780G is built into the insulin pump [22].
The 780G has received its CE mark and is cur-
rently available in some European countries;
however, FDA approval is still pending.

Tandem Control-IQ

The Tandem Control-IQ hybrid closed-loop
consists of the Tandem t:slim X2 insulin pump,
the Dexcom G6 CGM, and Control-IQ tech-
nology [22]. The Dexcom G6 can be used for
10 days [24]. The Control-IQ algorithm within
the insulin pump predicts glucose 30 min in
advance and correspondingly modifies insulin

Diabetes Ther (2023) 14:839–855 841
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delivery [24]. As with all of the other systems
being explored in this project, the Control-IQ
allows for higher glucose targets to be set for
announced exercise. The Control-IQ also allows
an additional target to be set at night-time [24].
Unlike the other AID systems discussed here,
this system relies on setting a basal program
which is used by the algorithm to adjust insulin
delivery. The system was approved by the FDA
in 2019 for use in people with T1D aged 14 and
above and was given CE marking for use in
people with T1D aged older than 6 years [24].
Currently, the Control-IQ is available in the US,
Canada, and some European countries.

CamAPS FX

The CamAPS FX is a HCL system compatible
with the Dexcom G6 and Libre 3 CGM devices
and the DANA Diabecare RS, DANA-i, and
Ypsomed Ypsopump insulin pumps. The
CamAPS FX has CE marking for use in people
with T1D aged 1 and above, and is available in
select European countries [24]. It allows for
multiple glucose targets that can be set at dif-
ferent times. The CamAPS FX is currently the
only commercial AID system licensed for use
during pregnancy [24]. As the CamAPS FX is an
Android app, a compatible Android smartphone
is required to use the system in order for glucose
levels to be managed through Bluetooth con-
nected to a compatible pump and sensor [24].
Whereas the other AID systems being evaluated
in the real-world study are only compatible with
rapid-acting insulin, the CamAPS FX is also
compatible with ultra-rapid insulin [24].

Diabeloop Generation 1 (DBLG1)
The Diabeloop Generation 1 (DBLG1) system
integrates a Kaliedo insulin patch pump, Dex-
com G6 CGM, and a command module which
hosts the system’s algorithm [25, 26]. As with
the other AID systems being explored in this
project, the DBLG1 is a hybrid closed-loop sys-
tem that requires mealtime announcement of
carbohydrate intake [27]. The DBLG1 provides
users with the ability to access a real-time
overview of their glucose sensor data through
the web-based platform MyDiabeloop [25]. The

DBLG1 has received the CE mark for use in
adults with T1D and is available in some coun-
tries in Europe [28].

Diabeloop for Highly Unstable Type 1 Diabetes
(DBLHU)
The Diabeloop for Highly Unstable Type 1
Diabetes (DBLHU) is an AID system derived
from the DBLG1 that has recently received the
CE mark for the indication of unstable diabetes
[29, 30].

Omnipod 5

The Omnipod 5 consists of a tubeless insulin
pump, a wireless handheld device used to oper-
ate the pump, and the Dexcom G6 CGM [31].
Unlike most AID systems, there are no tubes
connecting the infusion site to the Omnipod 5
[31]. The system delivers insulin micro-boluses
every 5 min and, similarly to the other AID sys-
tems, requires the user to deliver mealtime
boluses [31]. Following the pivotal study as well
as further study data, it received FDA approval
and a CE mark for use in type 1 diabetes in
individuals aged 2 years or older [32].

The Need for Real-World Evidence

Evidence from the real-world use of commercial
AID systems is needed because of the limitations
of randomised controlled trials (RCTs). Inclu-
sion criteria used in RCTs are typically very
restrictive and often exclude people with
comorbidities [24]. By comparison, real-world
studies usually have fewer restrictions on popu-
lation inclusion and can therefore capture
information about groups that are often under-
represented in trials, as well as populations not
studied in clinical trials, and provide informa-
tion about potential interactions with comor-
bidities [33]. If trials for diabetes interventions
only include participants with good baseline
blood glucose control, these participants may
engage differently with the intervention being
trialled than participants with poor initial base-
line glycaemic control, making the RCT results
less generalisable. Less restrictive inclusion

Diabetes Ther (2023) 14:839–855 843



criteria in real-world studies can help to ascer-
tain more generalisable data [24].

Moreover, the ‘trial effect’ of RCTs may
unduly influence the measured benefit of an
intervention; the follow-up of participants in
RCTs is generally far more rigorous than in clin-
ical practice, and as a result, adherence to the
intervention being trialledmay be greater than it
would be outside of the trial setting, leading to
misleading results [24]. Real-world studies lack-
ing the same level of follow-up as RCTs may
therefore provide a more realistic estimate of the
treatment effect of an intervention.

RCTs are also hindered by the long duration
of time they take to complete, which, as well as
being frustrating for people, can slow the pace
of developments [33]. Adjustments to or
advances in interventions being investigated are
delayed by the time taken for RCTs to be con-
ducted and for the results to be published.
Conversely, real-world studies can generally be
completed more quickly, helping to overcome
these issues.

Evaluating Glycaemic Outcomes

Although previously there were inconsistencies
between the thresholds for and the reporting of
target glycaemic ranges, an international con-
sensus has since been reached [22]. The target
threshold for glucose levels in this project has
been chosen in order to reflect the international
consensus. The use of TIR as an outcome in this
project can be deemed a valid outcome as it has
been found that TIR is a metric that matters to
people with T1D; an analysis survey of 4,268
people with diabetes found that the greatest
incentive participants had to choose one ther-
apy over another was the share of time in the
ideal glucose range for ‘most of the day’ [5, 20].
Furthermore, TIR has been found to have a
strong association with risk for microvascular
complications and can therefore be justified as a
valid endpoint [11].

Aim

This systematic review will explore the existing
literature for commercial hybrid HCL systems

that have published data and have received CE
or United States Food and Drug Agency (FDA)
approval for use in type 1 diabetes to help
understand the literature for HCL systems as a
whole and allow comparisons between the dif-
ferent systems. Psychosocial outcomes will also
be investigated separately.

METHODS

Systematic Review

The Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) checklist
was used to plan, devise, and report the sys-
tematic review [34].

Study Design

The search strategy was based on search terms
describing thenamesof thedifferent commercial
AID systems that are currently licensed or being
licensed for use: the Medtronic 670G; the Med-
tronic 780G/Advanced Hybrid Closed Loop; the
Control-IQ; the CamAPS FX; the DBLG1; the
DBLHU; and the Omnipod 5. In order to further
refine the searches, in some instances the Boo-
lean operators ‘AND’ and ‘OR’ were used. The
literature search was conducted using PubMed
from inception to October 2022. The search
using PubMed, which is an interface that can
search theMedline database as well as additional
content, was also supplemented by searches of
system manufacturer websites which had col-
lections of publications relating to their AID
systems.

Titles, abstracts, and full-text articles were
screened. After the removal of duplicate results
and papers that did not meet the inclusion cri-
teria, the relevant data were extracted from each
of the papers included in the final review. These
datawere recorded in anExcel spreadsheet before
being analysed by two independent reviewers.

Eligibility Criteria

The following inclusion criteria for the system-
atic review were used: papers focused on single-
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hormone commercial hybrid AID systems; par-
ticipants with T1D; studies with endpoints
relating to glycaemic control; and the study
design was either a randomised controlled trial,
a crossover trial, an observational/real-world
study, a feasibility study, or a pilot study.
Studies with solely psychosocial endpoints were
collated and analysed separately from the sys-
tematic review. Studies with glycaemic and
psychosocial endpoints were included in both
the systematic review and the analysis of psy-
chosocial outcomes.

The following exclusion criteria were used:
studies less than 4 weeks in duration (unless
they were real-world, feasibility, or pilot stud-
ies); studies published after July 2022 in peer-
reviewed journals; studies not published in
English; studies that focused on DIY, dual-hor-
mone, or non-hybrid systems. There were no
restrictions on age or pregnancy status.

The eligibility criteria were chosen with the
intention of being broad to maximise the
available literature on the subject of commercial
AID systems.

Endpoints

The following endpoints were the main focus of
the systematic review: the percentage of TIR;
the change in TIR; HbA1c; and the incidence of
severe hypoglycaemia, diabetic ketoacidosis
(DKA), or serious adverse events.

Psychosocial outcomes for the separate
review included quality of life (QoL) measures,
patient-reported outcome measures (PROMs),
patient-reported experience measures (PREMs),
validated psychological, sleep, and treatment
satisfaction scores, and qualitative data.

Data Collection and Analysis

For each of the included papers, the following
data were extracted: the study duration; the
number of participants; the eligibility criteria;
the study type; the country the study was con-
ducted in; the primary and secondary end-
points; the methods; the results; and the
limitations of the study.

Data from studies C 4 weeks long waere
analysed; for AID systems with multiple papers
of this duration, findings were reported from
studies of the longest duration and/or with the
highest number of participants. Data from
studies C 4 weeks in duration were tabulated
and full details of the research are included in
the Supplementary Material.

Studies with psychosocial endpoints and
results were analysed separately, and psychoso-
cial outcomes were summarised from the
studies.

Compliance with Ethics Guidelines
This article is based on previously conducted
studies and does not contain any new studies
with human participants or animals performed
by any of the authors.

RESULTS

In total, 353 search results were identified. After
duplicates and papers that did not meet the
inclusion criteria were excluded, a total of 75
papers were included in the final review. The
full selection process is shown in Fig. 2. The
following number of studies were included for
each HCL system: 19 papers for Medtronic
670G; eight for Medtronic 780G; 11 for Control-
IQ; 14 for CamAPS FX; three for DBLG1; one for
DBLHU; and three for Omnipod 5. In addition
to six studies that were also included in the

Fig. 1 Components required for hybrid closed-loop
systems. Figure taken from [21].
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systematic review, 17 articles were identified as
having psychosocial outcomes. These 23 studies
were analysed separately to the systematic
review.

Medtronic 670G

In total, 19 studies were included: 11 real-world
studies (Table 1 in the Supplementary

Fig. 2 Systematic review flowchart
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Information); five trials; two pilot studies; and
one analysis of trial data (Table 2 in the Sup-
plementary Information) [35–53]. Thirteen
studies included participants under 18 years.
Twelve of the studies were conducted in the
United States of America (USA), two in Israel
and the USA, two in Europe, two in Qatar, and
one in Australia. The 670G AID system was in
use for the following time periods: 1 month
(two studies); 3 months (11 studies); 6 months
(four studies); 1 year (two studies).

Medtronic 780G

A total of eight studies were included (Table 3 in
the Supplementary Information): five trials and
three real-world studies [54–61]. Three included
participants under 18 years old. One study was
conducted in Spain, one in France, two in Italy,
one in New Zealand, one in the USA, and two
multicentre studies involving Belgium, the
Netherlands, Finland, Italy, Qatar, and the UK
and involving France, Germany, and the UK,
respectively. The studies were of a varied dura-
tion: 4 weeks (two studies); 8 weeks (one study);
12 weeks (one study); 3 months (one study);
6 months of use (one study).

Control-IQ

In total, 11 studies were included (Table 4 in the
Supplementary Information), one of which was
a pilot study, five were trials, two were analyses
of trial data, two were real-world studies, and
one was an analysis of real-world data
[23, 62–71]. Eight of the studies included par-
ticipants under 18 years old. Ten were con-
ducted in the USA and one in France. The
duration of the studies varied from 4 weeks (two
studies) to 7 weeks (one study), 3 months (one
study), 6 months (three studies), 7 months (one
study), 9 months (one study), and 1 year (two
studies).

CamAPS FX

A total of 14 studies were included (Table 5 in
the Supplementary Information): 11 trials, two
analyses of trial data, and one real-world study

[10, 72–84]. Four of the studies included par-
ticipants under 18 years old, one included only
participants over 60 years old, and two of the
studies included pregnant women. Six of the
studies were conducted in the UK, seven in both
the UK and Europe, and one in the UK and USA.
The duration of the studies varied from 4 weeks
(six studies) to 6 weeks (two studies with two
3-week crossover arms), 8 weeks (one study);
12 weeks (three studies), 6 months (one study),
and 8 months (one study).

DBLG1

Of the three studies included, one was a real-
world study and two were trials (Table 6 in the
Supplementary Information). One of the studies
included children, and all six of the studies were
conducted in France. All studies were greater
than 4 weeks in duration: one real-world study
where the AID system was used for 6 months
and two trials where the AID system was used
for 12–13 weeks [26, 33, 85].

DBLHU

Only one study pertaining to the DBLHU was
included in the systematic review—a trial with
an adult population conducted in France
(Table 6 in the Supplementary Information)
[29]. One of its two crossover periods was
4 weeks dedicated to DBLHU use. This study
found that TIR was higher with DBLHU
(73.3% ± 1.7%) compared with a Predictive
Low Glucose Suspend (PLGS) system
(43.5% ± 1.7%; P\0.0001) [29]. No device-re-
lated adverse events occurred [29]. The study
was limited by its very small sample size (n = 5)
[29].

Omnipod 5

Of the three studies included, two were trials
and one was a real-world study (Table 7 in the
Supplementary Information) [32, 86, 87]. Two
of the three included participants under
18 years old, and all three were conducted in
North America: two in the USA and one in
Canada. The duration of the studies varied from
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3 months (one study) to 4 months (one study)
and 6 months (one study).

Psychosocial Outcomes

A total of 23 studies were identified in the lit-
erature search as having psychosocial endpoints
(Table 8 in the Supplementary Information)
[23, 29, 38, 41, 44, 66, 67, 76, 83, 88–101]. These
were analysed separately to the 59 papers
included in the systematic review, although
eight of the 23 studies were also featured in the
systematic review with a focus on their gly-
caemic endpoints. Of the 23 studies, seven
assessed the 670G, two assessed the 780G, five
assessed the Control-IQ, eight assessed the
CamAPS FX, and one assessed the DBLHU.

DISCUSSION

Findings

Findings suggest that HCL systems are generally
safe to use and improve users’ TIR without
increasing hypoglycaemia. The Omnipod and
Diabeloop systems have relatively little pub-
lished literature but are comparatively newer
than the other AID systems explored. In con-
trast, the 670G, the first commercial hybrid AID
system, currently has the greatest amount of
evidence regarding its performance.

Although more studies are needed, psy-
chosocial outcomes with these systems have
thus far been generally positive, with no sug-
gestion that AID systems worsen psychosocial
outcomes, and in some instances AID systems
have demonstrated an improvement in psy-
chosocial outcomes, such as satisfaction.

Implications

The majority of existing evidence regarding the
performance of commercial AID systems has
demonstrated their effectiveness and safety
within the setting of pilot and feasibility studies
and trials. Real-world evidence has largely come
from insurance-driven systems, and this may
alter the characteristics of the participants, who

may come from a higher socio-economic status
as compared to publicly funded systems and
therefore have higher levels of health and digi-
tal literacy as well as engagement with self-
management.

People with poor baseline control are typi-
cally underrepresented in existing literature
about AID systems, with eligibility criteria from
studies across the different systems typically
excluding participants with a high HbA1c and
those with a recent history of severe hypogly-
caemia or DKA [24, 26, 49, 52, 67, 79].

Improvement of TIR with HCL systems is an
important finding, as it has been found that for
every 10% absolute change in TIR, there is a
0.8% (9 mmol/mol) change in HbA1c [102].
This is significant, as lower HbA1c levels are
correlated with a reduced risk of complications
from diabetes [103]. Further study is needed to
ascertain whether improvements in TIR with
HCL systems are sustained over time.

Strengths and Limitations

The strengths of this review include a compre-
hensive analysis of the evidence relating to
commercial HCL systems with an objective,
replicable methodology. At present there is no
recent systematic review on commercial AID
systems and hence this work may provide a
valuable addition to the understanding of HCL
systems.

However, there are some limitations to this
systematic review. Many of the participants in
the studies included had optimal baseline TIR
and HbA1c and may have been of high socioe-
conomic status. Furthermore, the majority of
the studies were conducted in the USA, so the
results may be less generalisable to different
healthcare systems or populations with differ-
ent demographics. Due to the differences in
study designs and trial populations between the
various AID systems, it was not possible to
conclusively determine differences between
them.

Moreover, a meta-analysis was not con-
ducted, and statistical tests were not used, as the
broad inclusion criteria and heterogeneity of
the included papers meant that this was not
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possible. Hence, it was also difficult to compare
the performance of different systems with
regard to improvements in time in range. It
should also be noted that HbA1c was not used
as an outcome in some studies due to their
durations being less than 3 months. It is also
possible that duplication of data may have
occurred as a result of individual data being
replicated in different studies.

As search terms specific to psychosocial
studies were not included in the literature
search, studies with psychosocial endpoints
may have been missed inadvertently. Many
studies included psychosocial outcomes,
although many of these did not have sufficient
sample sizes or sufficient duration for a statis-
tical analysis of their results, meaning that there
is a limit to the conclusions that can be drawn
from the analysis of these papers. There was also
a lot of heterogeneity in how psychosocial
outcomes are measured and reported, with no
international consensus on how to measure
these in technology studies.

Another limitation of the review is that most
of the studies were affiliated with HCL system
companies; many studies received industry
funding, with some authors being company
employees, receiving grants during the studies,
or owning shares in the company. Whilst in the
vast majority of cases the companies were not
involved in the study design or the writing of
the manuscript, this was not always the case.

Recommendations

Future studies should include more diverse
populations, with a greater range of ages, eth-
nicities, and socioeconomic statuses. More
research is also needed on the performance of
HCL systems in people with poor baseline
HbA1c and TIR to provide a more representative
intervention effect size.

As newer commercial HCL systems are
developed, more independent evaluations are
needed for comparisons between the different
systems, in addition to more real-world studies,
studies that are longer in duration, and inde-
pendently financed studies.

Finally, meta-analyses, cost-effectiveness
analyses, and further research on the effects of
HCL systems on psychosocial outcomes such as
quality of life, diabetes-related distress, diabetes
burden, and fear of hypoglycaemia are needed.

CONCLUSIONS

The results of this systematic review demon-
strate that commercial HCL systems can be used
effectively to improve TIR in type 1 diabetes,
including in real-world settings. Findings fur-
ther support the efficacy of commercial AID
systems in improving glycaemic control and
exemplify their safety by showing that they can
be used without increasing the incidence of
severe hypoglycaemia. More real-world studies
are needed, particularly with regard to more
diverse participant populations and for com-
paring recent commercial HCL systems. Addi-
tional research is needed to evaluate differences
between HCL systems and the cost-effectiveness
and psychosocial impact of these systems so
that their role in T1D management can be fur-
ther established.
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ñeda J, Grossman B, Shin J, Cohen O. Real-world
performance of the MiniMedTM 780G system: first
report of outcomes from 4120 users. Diabetes
Technol Ther. 2022;24:113–9.

60. Carlson AL, Sherr JL, Shulman DI, et al. Safety and
glycemic outcomes during the MiniMedTM

advanced hybrid closed-loop system pivotal trial in
adolescents and adults with type 1 diabetes. Dia-
betes Technol Ther. 2022;24:178–89.

61. Choudhary P, Kolassa R, Keuthage W, et al.
Advanced hybrid closed loop therapy versus con-
ventional treatment in adults with type 1 diabetes
(ADAPT): a randomised controlled study. Lancet
Diabetes Endocrinol. 2022;10:720–31.

62. Kanapka LG, Wadwa RP, Breton MD, et al. Extended
use of the control-IQ closed-loop control system in
children with type 1 diabetes. Diabetes Care. 2021.
https://doi.org/10.2337/dc20-1729.

63. O’Malley G, Messer LH, Levy C, et al. Clinical
management and pump parameter adjustment of
the control-IQ closed-loop control system: results
from a 6-month multicenter randomized clinical
trial. Diabetes Technol Ther. 2020. https://doi.org/
10.1089/dia.2020.0472.

64. Brown SA, Beck RW, Raghinaru D, et al. Glycemic
outcomes of use of CLC versus PLGS in type 1 dia-
betes: a randomized controlled trial. Diabetes Care.
2020;43:1822–8.

65. Isganaitis E, Raghinaru D, Ambler-Osborn L, et al.
Closed-loop insulin therapy improves glycemic
control in adolescents and young adults: outcomes
from the International Diabetes Closed-Loop Trial.
Diabetes Technol Ther. 2021. https://doi.org/10.
1089/dia.2020.0572.

66. Bisio A, Brown SA, McFadden R, et al. Sleep and
diabetes-specific psycho-behavioral outcomes of a
new automated insulin delivery system in young
children with type 1 diabetes and their parents.
Pediatr Diabetes. 2020. https://doi.org/10.1111/
pedi.13164.

67. Bisio A, Gonder-Frederick L, McFadden R, Cher-
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