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Abstract
1.	 The conversion of forests into open areas has large effects on the diversity and 
structure of native communities. The intensity of these effects may vary between 
regions, depending on the existence of native species adapted to open habitats in 
the regional pool or the time since habitat change.

2.	 We assess the differences in species richness and functional diversity of dung 
beetle communities (Coleoptera: Scarabaeinae) between native forests and novel 
pasturelands of the Atlantic Forest and the Cerrado, two biomes with contrast-
ing histories of human occupation in Brazil. We conducted standardized surveys 
in seven forest fragments and adjacent pastures in each region and measured 14 
traits in individuals collected in each type of habitat at each particular site. We 
calculated functional richness, functional evenness, functional divergence, and 
community-weighted mean of traits for each area, and analyzed individual varia-
tion through nested variance decomposition and Trait Statistics.

3.	 Communities were richer and more numerous at the Cerrado. We did not find 
any consistent relationship between functional diversity and forest conversion 
beyond the changes in species diversity. Although landscape changes were more 
recent at the Cerrado, the colonization of the new habitat by native species al-
ready adapted to open habitats lessens the functional loss in this biome. This 
indicates that habitat change's effects on trait diversity depend on the regional 
species pool rather than on time since land conversion.

4.	 Forest conversion effects were primarily due to internal filtering. The effects of 
external filtering only appear at the intraspecific variance level, with contrast-
ing differences between the Cerrado, where traits related to relocation behavior 
and size are selected, and the Atlantic Forest, where selection operates for traits 
related to relocation behavior and flight. These results evidence the importance 
of considering individual variance to address the responses of dung beetle com-
munities to forest conversion.
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1  |  INTRODUC TION

Forest conversion is a major threat to biodiversity in tropical land-
scapes (Newbold et al., 2015). The conversion to open areas has large 
effects on native communities, through changes in habitat structure, 
the exclusion of native species, and the facilitation of invasions. Such 
replacement of native species by aliens may affect ecosystem func-
tioning and decrease the effectiveness of the community in utilizing 
resources and resisting other disturbances (Harrison et al.,  2014). 
Trait-based functional diversity can provide means to assess these 
effects on the biodiversity–ecosystem functioning relationship 
(Flynn et al., 2011).

Functional diversity can be measured from the range of varia-
tion in the functional traits of the species present in the commu-
nity, assuming that ecological functioning can be indirectly assessed 
through the diversity of traits with functional meaning (Dıáz & 
Cabido, 2001). Within this framework, a functional trait is any mea-
surable characteristic of the individual (morphological, biochemi-
cal, phenological, physiological, and behavioral) that affects either 
its fitness, the fitness of other individuals of the same or different 
species, or other abiotic ecosystem processes (Violle et al., 2007). 
Traits are used under the assumption that these characteristics pro-
vide information on the ability of individuals to perform particular 
functions and/or respond to biological interactions, thus providing 
a good proxy for ecological functionality. Therefore, by measuring 
different aspects of trait variation, different indices of functional di-
versity are thought to account for different aspects of functioning 
(Mason et al., 2005): Functional richness measures the functional 
(i.e., trait) space occupied by the species in the community; func-
tional evenness does so for the regularity in the use of this space; 
and functional divergence accounts for how the differences in the 
distribution of the species in the trait space, which may contribute 
to better use of resources.

The use of traits in functional ecology is less common—though 
increasing—for animals than for plants and has been mostly focused 
on the study of assembly processes (Moretti et al., 2017). One com-
mon approach to conceptualize the assembly process is commu-
nity filtering, where a series of filters determine which species are 
able to colonize the focal habitat fragment or locality and survive 
there. These filters are commonly divided into two categories: en-
vironmental (i.e., abiotic conditions) and biological (including com-
petition, facilitation or density-dependent processes). Although this 
approach widely used, using it poses some challenges, as some bio-
logical filters may affect environmental filters, and vice versa. This 

led to the proposal of external and internal filtering processes (Violle 
et al., 2012). External filtering would select species from the pool 
on a scale larger than the community, through environmental or bi-
ological factors such as large-scale climatic gradients, or predator 
pressure along the landscape. Whereas internal filtering would en-
compass processes occurring locally within the studied community, 
like density-dependent processes or microclimatic heterogeneity. 
These two types of filters are relative to the spatial scale of the com-
munity of interest, so this approach helps overcoming the complex 
interpretration of traditional filters, whose effects are often impos-
sible to separate one from another (Violle et al., 2012). Nonetheless, 
this approach allows evaluating the scale at which the largest effects 
on the community are occurring through intraspecific trait variation. 
Using only mean trait values per species does not allow assessing, 
for example, the effects on individuals who have trait values around 
the optimal mean, and can be benefited from density-dependent 
processes such as competition, increasing their fitness in the com-
munity. In this case, internal filters can increase variability by re-
ducing the competitive pressure on these individuals, affecting the 
distribution of trait values around the mean optimal value selected 
by the external filter (Turcotte & Levine, 2016).

It is important to highlight the reduced number of experiments 
assessing trait functionality in animal functional ecology (see Noriega 
et al., 2018 for insects). Dung beetles (Coleoptera: Scarabaeinae) are 
to some extent an exception to this, being one of the few groups 
where several of these experiments had been carried out (deCastro-
Arrazola et al., 2020; Emlen et al., 2005; Macagno et al., 2016; Nervo 
et al., 2014; Slade et al., 2007; but see deCastro-Arrazola et al., 2023). 
Indeed, dung beetles can inform about the processes involved in the 
responses to forest conversion. They are a good model for these 
studies because they present rapid responses to ecological changes 
and are easy to collect (Gardner et al., 2008; Nichols et al., 2007). 
Dung beetles are well-known for their feeding on mammal feces and 
the behavior of making and rolling dung balls shown by some of them 
(Halffter & Matthews, 1966). Their most iconic function is dung re-
moval, but they also provide other functions such as parasite and fly 
control, soil bioturbation, contribute to diminishing CO2 emission in 
pastures, incorporate NO3 in the soil, and act as secondary dispersal 
of seeds and enhance plant growth (deCastro-Arrazola et al., 2023; 
Nichols et al.,  2008; Slade et al.,  2016). Their distinct feeding be-
haviors provide a classification in guilds that provides a rapid ap-
proach to their functional diversity (Doube, 1990; see also Pessôa 
et al., 2017). They can be classified as Rollers that make a dung ball 
and roll away; Tunnelers that burrow the dung; and Dwellers that 
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live directly in the dung (Bornemissza, 1969; see also Tonelli, 2021). 
This knowledge of their natural history may help to better interpret 
the patterns observed in nature.

In the case of Neotropical dung beetles, the conversion of for-
est into pasture affects community structure by diminishing their 
richness and increasing the dominance of a few species (Nichols 
et al., 2007; Sánchez-de-Jesús et al., 2016). In functional terms, for-
est conversion affects dung beetle food relocation behavior, body 
size and daily activity (i.e., diurnal, nocturnal, or crepuscular) (Nichols 
et al., 2013), as well as their effects on ecosystem service provision 
(Noriega, March-Salas, et al., 2021). Although the effects of land-use 
change on the spatial and temporal dynamics of Neotropical dung 
beetle communities are relatively well-known (Dale et al.,  1994; 
Gardner et al.,  2008; Klein,  1989; Korasaki et al.,  2013; Lopes 
et al., 2011; Noriega, Santos, et al., 2021), there is a need for a better 
understanding of their responses considering their evolution in more 
forested areas, in comparison with Afrotropical and Palearctic re-
gions. Functional diversity indices can inform about these responses, 
and dung beetle functional richness and divergence decrease as the 
impact of forest conversion increases (Barragán et al., 2011).

The Atlantic Forest and Cerrado biomes are both biodiversity 
hotspots, and their biotas are the result of distinct evolutionary 
histories and ecological processes that, arguably, have resulted in 
different regional pools of species. In general, dung beetle diversity 
in the tropics is greater in the forests than in open areas (Hanski & 
Cambefort, 1991; but see Silva et al., 2014). However, their ecolog-
ical particularities create a conspicuous difference in the diversity 
of both biomes (Durães et al., 2005), since the natural landscapes 
of the Cerrado (aka. the Brazilian Savannah) host more natural open 
areas than those of the Atlantic Forest. Furthermore, the history of 
forest conversion in Brazil is spatially uneven (Leite et al., 2012). The 
Atlantic Forest was one of the first areas to be converted, mostly 
because it is situated in the coastal region, providing easy access 
to European settlers (Dean,  1997). Whereas the Cerrado was ex-
ploited more intensively in the expansion and internalization of the 
Brazilian population promoted by President Getulio Vargas in the 
1950s (Oliveira & Marquis, 2002). Given the contrasting ecology and 
history of these two biomes, we expect that the differences in the 
functional adaptations evolved by dung beetles at each one of them 
would also affect their ability to colonize the novel open habitats.

We evaluate the effects of forest conversion into pasture on 
the functional diversity of dung beetle communities in the Atlantic 
Forest and the Cerrado. More specifically, we use data on com-
munity composition and trait measurements gathered from stan-
dardized surveys of forest fragments and pastures from seven 
landscapes within each biome, to evaluate whether forest conver-
sion selects particular functional traits of dung beetles in each re-
gion through functional diversity indices and trait variations both 
between and within species. Therefore, we aim to answer the fol-
lowing questions: (1) How does forest conversion in the Atlantic 
Forest and the Cerrado affect the richness and functional structure 
of dung beetle communities? We expect that the effect in richness 
will be stronger than in the functional structure since dung beetles 

have a high functional redundancy; and that the time of conversion 
may decrease this effect (the Atlantic forest conversion event was 
about 100 years ago, whereas in the Cerrado, conversion happened 
roughly 40 years ago). (2) Is there a shift in the values of functional 
traits in the novel habitats created by the forest conversion? Here, 
we expect that traits related to dispersion or food reallocation will 
show larger values in pastures since the resource is more exposed, 
while in the forest traits related to maneuverability will be more im-
portant since the forest presents more obstacles during flight. (3) 
Which scale represents the variance found in the traits studied? 
We expect that individual variations (i.e., intraspecific variance) and 
internal filters will be most important in the habitats with greater 
competition intensity.

2  |  MATERIAL S AND METHODS

2.1  |  Study areas

This study was carried out in two different regions of Brazil: the 
Itajaí Valley (Santa Catarina) and the surroundings of Goiânia (Goiás) 
(Figure 1). The Itajaí Valley is part of the Atlantic Forest biome, an 
evergreen tropical rainforest that has a constantly humid condition. 
This biome comprises different vegetation types, such as season-
ally semideciduous and deciduous forests, mixed ombrophilpus 
Araucaria forests, and ombrophilous dense forests (IBGE, 2012). In 
this study, we selected all fragments in ombrophilous dense forests, 
a formation characterized by large trees with dense crowns, which 
can reach 35 m in height, giving rise to a continuous canopy struc-
ture, and by a dense shrub understory, formed mainly by shrubs, 
herbs, and seedlings. There is also a wide variety of epiphytes, con-
sisting of bromeliads, orchids, ferns, mosses, and lichens, resting on 
the branches of trees and shrubs (Vibrans & Sevegnani, 2013).

Goiânia region is located in the Brazilian Cerrado. This biome is 
subject to a regular and long drought period, which can last around 
6 months. It is characterized by highly heterogeneous vegetation, 
composed of a continuum of areas of savanna, ranging from open 
grasslands, with no trees or shrubs (“campo limpo”), to forests (lo-
cally known as “cerradão”) (IBGE, 2012). We selected all forest sites 
in fragments of “cerradão”. This formation is characterized by the 
predominance of tree species, which can reach from 8 to 15 m or 
taller, giving rise to a continuous canopy. Many species are decid-
uous, so the crown cover can vary from 50% to 90% throughout 
the year. The understory is formed by small shrubs, herbs, and a 
few types of grass (Sano, 2008). Trees’ crowns cast a considerable 
shadow, which makes the shrub and herbaceous layer smaller when 
compared to the other types of formations in the Cerrado.

2.2  |  Dung beetle surveys

In each region, Cerrado and Atlantic Forest, we selected seven areas 
separated at least 1 km from each other. In each one of those areas, 
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we conducted standardized surveys in two adjacent sites: one of 
forest and other of pasture. Dung beetle captures were made with 
baited pitfall traps consisting of 1-L pots with a solution of water, 
salt, and detergent. The baits were suspended above the trap with 
wire in a 50-mL plastic cup (Figure A1). Three different types of baits 
were used: human feces, rotten liver, and cow dung. We placed three 
replicates of each type of bait, so in total, nine pitfall traps were 
placed in each sampling site, spaced 50 m apart along a transect, and 
separated at least 50 m from the edge of the fragment (Figure A2). 
The traps remained for 48 h in both habitats (forest and pasture). 
We considered each pair of habitats as a sample unit. The surveys 
were conducted in the rainy seasons of 2016 and 2017. All collected 
beetles were identified by Fernando Z. Vaz-de-Mello (Universidade 
Federal de Mato Grosso) and deposited in the entomological collec-
tion of the Universidade Federal de Goiás. The dung beetle species 
pool in each region was obtained from the results of our surveys. 
Fragment size, shape, and conservation status may have some ef-
fects on dung beetle communities. We dealt with these undesired 
effects by surveying pasture and forest fragments in a pairwise man-
ner. Also, we accounted for the particularities of each area by using it 
as a random factor in the models.

2.3  |  Measuring dung beetle functional traits

We compiled information on a set of functional traits for each spe-
cies and site based on measurements of the dung beetle individuals 
collected in the surveys. In total, we selected 15 traits (Table 1) re-
lated to: dispersion (wing load, wing area/length ratio, and eye dorsal 
area; Byrne & Dacke, 2011; Dacke et al., 2013; Hongo, 2010); ex-
cavation (prosternum height, protibiae area, pronotum width, head 
length, and head width; Halffter & Matthews,  1966; Vilhelmsen 
et al.,  2010); resource use (body size, measured as pronotum 
length + elytra length, and volume measured as length × pronotum 
width × prosternum height; Andresen,  2003; Emlen et al.,  2005; 
Radtke & Williamson, 2005); food relocation (horizontal displace-
ment and metatibia length; Halffter & Matthews,  1966); breed-
ing behavior (nesting habit and nest shape—pear/ball; Halffter & 
Matthews, 1966), diel activity (Hernández, 2002); and specialization 
(i.e., food specificity; Falqueto et al., 2005).

The morphological traits were measured (Figure A3) in five in-
dividuals per species and habitat (forest/pasture) in each area, or 
all captured individuals for species with less than five individuals in 
each of the sites. That is, we measured traits in up to 10 individuals 

F I G U R E  1 Location of the regions and areas of the dung beetle surveys. (a) Goiânia region—Cerrado. (b) Itajaí Valley region—Atlantic 
Forest.
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per species per area, and up to 70 individuals per species per region. 
To obtain trait measurements, pictures of each individual were taken 
with a digital camera and using a stereoscope for smaller individu-
als, and the traits were measured in the software ImageJ (Rueden 
et al., 2017), using a graduated mm paper as a measure reference. 
Food specificity was measured using Levin's index of niche breadth 
(Levins, 1968), based on the abundance of individuals of each spe-
cies in traps with each type of bait of all traps placed in the same 
region, assuming that the wider the niche, the more generalist is the 
species.

2.4  |  Functional diversity indices

Trait measurements were used to calculate three functional di-
versity indices: Functional richness (FRich), functional evenness 
(FEve), and functional divergence (FDiv) (Mason et al., 2005; Villéger 
et al.,  2008). The indices were calculated for each habitat in each 
region, using the mean of the five individuals measured from that 
habitat. FRich measures the functional space of a community and 
is calculated by the convex hull volume of all the traits of the spe-
cies present in the community. FEve represents the regularity of 
abundance of the species in the functional space and is measured 
by using a minimum spanning tree based on trait similarity between 
species or individuals. FDiv represents the degree to which the 
distribution of species in the functional space maximizes the diver-
gence of traits in the community and is calculated by measuring the 

distance of the species to the centroid of the functional space. All 
functional indices were calculated using the “FD” function (Laliberté 
& Legendre, 2010).

2.5  |  Data analysis

2.5.1  |  Effects of forest conversion on species 
richness and functional diversity

Taxonomic differences in community structure between habitats 
(forest and pasture) and between regions (Cerrado and Atlantic 
Forest) were characterized through principal coordinate analysis 
(PCoA) sample ordinations. We used generalized mixed models to 
assess the effects of habitat on species richness and all functional 
indices, accounting for area differences by including this factor as a 
random effect, with the following model:

We also calculated the standardized effect size (SES) to remove 
the effect of species richness in the functional indices. For this, we 
first created null models by randomizing the community matrices 
with the function “randomizeMatrix” from the Picante package 
(Kembel et al., 2010). We set the null model for the “independent 
swap” algorithm proposed by Gotelli et al. (2011), which maintains 
species occurrence frequency and sample species richness. The 

FI∼Habitat + Region + Habitat × Region + (1 |Area)

TA B L E  1 Dung beetle traits selected to measure an their ecological meaning.

Trait Abreviation Biological interpretation Ecological function

1 Volume Vol. Individuals with greater volume and length will need more resource to 
fully develop

Amount of resource 
needed to 
development

2 Length Len.

3 Prosternun height Ps.H Individuals with higher prosternum will have more muscle mass for front 
leg use, increasing excavation strength and improving the individual 
use of different compacted soils

Soil and resource 
excavation

4 Pronotum width Pr.W Individuals with wider pronotum excavate larger tunnels

5 Protibia area Pt.A These traits are direct related with the digging action. So greater values 
in these traits indicates a greater “shovel” area that increases the 
individual digging ability

6 Head length He.L

7 Head width He.W

8 Eye dorsal area Ey.A Greater eye dorsal area means greater visual reception to 
maneuverability during flight and localization ability

Dispersal

9 Wing load W.Lo Greater wing load indicates greater flight ability

10 Metatibila length Me.L Individuals with larger metatibias have increased rolling ability Food relocation

11 Horizontal 
displacement

Ho.D Species that present rolling ability isolate part of the resource and 
disperses seeds in larger distances

12 Nesting Nes Species that present parental care behavior increase larval success Parental care

13 Pear/ball nest Pe.B

14 Specificity (Levins 
standardized 
index)

Le.S Greater value in this index means that the species have a wider niche Resource generalism

15 Dial activity Di.A This trait represent foraging time of the species Phenology
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null model was run with 1000 iterations and was replicated 999 
times. After randomizing the community, we recalculated FRich, 
FEve, and FDiv for each permutation. We then calculated SES for 
all indices using the “ses” function of the “Cati” package (Taudiere 
& Violle, 2016), setting 0.025 and 0.975 as the confidence interval.

2.5.2  |  Forest conversion and shift of functional 
traits in the novel habitats

To assess changes in the functional structure in the novel habitats 
created by forest conversion, we calculated the community-weighted 
mean (CWM; Garnier et al., 2004) of each trait for each assemblage. 
The CWM combines species trait data with abundance to assess the 
functional composition of assemblages, weighting the mean trait 
value of all species in an assemblage by their relative abundances. 
We used only quantitative traits (Table  1; traits 1–10) to calculate 
CWM.

2.5.3  |  Taxonomic and spatial scales influencing 
dung-beetle communities

To analyze the effects of habitat on trait variations between and 
within species (taxonomic scales), we used the decomposition of the 
variance in nested scales based on restricted maximum likelihood 
(REML; Messier et al., 2010). This allows assessing which biological 
scale shows greater variance in the traits.

Furthermore, we used T-statistics (Violle et al., 2012) to under-
stand how internal and external filters (spatial scales) are acting in 
the assemblages of both types of habitats. T-statistics are ratios of 
trait variance that measure how this variance is structured across bi-
ological and spatial scales. The three ratios calculated in T-statistics 
are the following:

which is the ratio between the within-population variance of trait val-
ues (�IP2 and the within-community variance of trait values 

(
�IC2

)
, both 

assessed at the individual level. This ratio measures the strength of 
internal filtering. It quantifies the overlap of intraspecific trait variation 
within communities, therefore, measures the niche overlap among co-
existing species. The higher its value, the higher the strength of inter-
nal filters and the trait overlap among coexisting species.

which is the ratio between the within-communities variance of trait 
values 

(
�IC2

)
 and the within regional pool variance of trait values (�IR2 , 

both assessed at the individual level regardless of species identity. This 

ratio measures the strength of external filtering. The higher its value, 
the lower the strength of external filtering and the higher the trait 
overlap among communities, at the individual level;

which is the ratio between the variance of the population mean trait 
values within communities (�PC2 and the variance of a given species 
population mean trait values within the regional pool (�PR2. This ratio 
also measures the strength of external filtering, but via population-
level means. The higher the value of TPC∕PR, the lower the strength of 
external filters at the species level and higher the niche overlap among 
coexisting species.

To calculate the magnitude of the differences between the ob-
served T-statistic values and those coming from a random assembly of 
individuals, we estimated the SES (Gotelli & McCabe, 2002) as follows:

where Iobs is the T-statistic observed value and Isim and �sim are, re-
spectively, the mean value and standard deviation of the null models 
(n = 999 randomizations). The null models were simulated with ran-
domization procedures for each T-statistic. We used the “Cati” package 
(Taudiere & Violle, 2016) for calculating T-statistics, SES, and generat-
ing the null models.

3  |  RESULTS

3.1  |  Effects of forest conversion on species 
richness and functional diversity

In total, 2681 individuals were captured in our surveys: 2143 in the 
Cerrado and 538 in the Atlantic Forest, pertaining to 63 species 
from 18 genera (Table 2, Tables S1 and S2).

In the Atlantic Forest, the most common species were Canthon 
rutilans cyanescens Harold, 1868 (43% of all captured individuals), 
Coprophanaeus dardanus (MacLeay, 1819) (15%), and Deltochilum 
multicolor Balthasar, 1939 (9%), whereas Canthidium sp.1 (61%), 
Onthophagus ptox Erichson, 1842 (25%), and Trichillum externepuc-
tatum Preudhomme de Borre, 1880 (23%) were so at the Cerrado. 
We found a regional effect and a marginal habitat effect on dung 
beetle richness (Table  3). The Goiânia region was richer, with 
42 species compared to the 21 species found at the Itajaí Valley. 
Forest habitats hosted more species than pastures in both regions 
(32 vs. 23 species in Cerrado, and 20 vs. 6 species at the Atlantic 
Forest). In the Atlantic Forest, only one species was exclusive from 
pastures and 15 were so from the forest, whereas the Cerrado re-
gion have 11 species exclusive to pastures and 20 exclusives to the 
forest. Results from a Principal Coordinates Analysis (PCoA) from 

(1)TIP∕IC =
�IP2

�IC2

,

(2)TIC∕IR =
�IC2

�IR2

,

(3)TPC∕PR =
�PC2

�PR2

,

SES =
Iobs − Isim

�sim
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species abundance data evidence the differentiation in the species 
pools of both regions (Figure 2). But also, that species composition 
differs clearly between forests and pastures in the Cerrado, while 
these habitat differences are smaller for the Atlantic Forest, since 
sites from both types of habitats largely overlap in these PcoA Axes 
(Figure 2). None of the functional indices were related to forest con-
version, even when removing the effects of richness and abundance 
by calculating the SES (Figure  3 and Table  3). Nonetheless, when 
traits are analyzed individually, we found regional effects in all traits 
except for the eye dorsal area and volume (Table 4).

TA B L E  2 Total abundances of the dung beetle species collected 
in forest and pasture plots of the Cerrado (Goiânia region, Goiás 
state) and Atlantic Forest (Itajaí Valley, Santa Catarina state).

Goiânia region 
(Cerrado)

Itajaí Valley 
(Atlantic Forest)

Forest Pasture Forest Pasture

Agamopus viridis 5

Ateuchus aff. pruneus 3

Ateuchus vividus 1

Canthidium aff. 
barbacenicum

14

Canthidium aff. lucidum 1 1

Canthidium aff. 
trinodosum

6

Canthidium sp.1 816

Canthidium sp.2 1 1

Canthidium sp.3 1

Canthon aff. luctuosos 1

Canthon aff. piluliformis 1 13

Canthon coloratus 1

Canthon conformis 2

Canthon curvodilatatus 2

Canthon lituratus 138

Canthon podagricus 1 4

Canthon rutilans 
cyanescens

229 4

Canthon sp. 1

Canthonela sp. 2 5

Coprophanaeus 
bellicosus

1

Coprophanaeus 
cerberus

1

Coprophanaeus 
cyanescens

27

Coprophanaeus 
dardanus

76

Coprophanaeus ensifer 2

Coprophanaeus 
saphirinus

10

Coprophanaeus spitzi 1

Deltochilum brasilense 13

Deltochilum enceladus 10

Deltochilum furcatum 28

Deltochilum 
morbilossum

11

Deltochilum multicolor 26 26

Deltochilum 
sextuberculatum

36

Deltochilum sp. 89

Dendropaemon 
nitidicolis

1

Goiânia region 
(Cerrado)

Itajaí Valley 
(Atlantic Forest)

Forest Pasture Forest Pasture

Dichotomius aff. 
carbonarius

22 1

Dichotomius aff. zicani 19 3

Dichotomius angeloi 1

Dichotomius ascanius 12

Dichotomius bos 1 28

Dichotomius cuprinus 4

Dichotomius mormom 9

Dichotomius nisus 1 34

Dichotomius 
quadrinodosus

1

Dichotomius sericeus 20

Dichotomius sp.1 3

Dichotomius sp.2 1

Dichotomius transiens 6

Digitontophagus sp. 27

Eurysternus caribaeus 47

Eurysternus nigrovirens 20

Eurysternus paralelus 19 5

Eutrichillum hirsutum 12 1

Isocopris inhiatus 1

Ontherus 
appendiculatus

1

Ontherus asteca 2

Onthophagus aff. 
hematopus

20

Onthophagus ptox 326 1

Ontophagus buculus 4 24

Phanaeus splendidulus 4

Trichillum adjuntum 1 5

Trichillum 
externepunctatum

15 296

Trichillum heydeni 1

Uroxys aff. 
epipleurysternusalis

57

TA B L E  2 (Continued)
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Model Value
Std. 
error df t-Value p-Value

S Habitat −4.43 2.30 13 −1.92 .08

Region −6.09 2.23 11 −2.73 .02

Habitat × Region 3.47 3.28 13 1.06 .31

FRich Habitat 0.00 0.08 13 0.01 1.00

Region 0.17 0.14 11 1.19 .26

Habitat × Region 0.15 0.12 13 1.26 .23

FEve Habitat −0.04 0.16 13 −0.27 .79

Region −0.07 0.16 11 −0.44 .67

Habitat × Region −0.07 0.23 13 −0.29 .78

FDiv Habitat −0.14 0.18 13 −0.77 .45

Region −0.16 0.17 11 −0.92 .38

Habitat × Region −0.15 0.26 13 −0.59 .57

FRichSES Habitat −0.01 0.37 7 −0.03 .97

Region −0.49 0.55 11 −0.88 .40

Habitat × Region 0.28 0.63 7 0.44 .67

FEveSES Habitat 0.56 0.52 7 1.08 .32

Region −0.61 0.52 11 −1.17 .27

Habitat × Region 0.55 0.84 7 0.66 .53

FDivSES Habitat −0.56 0.47 7 −1.19 .27

Region −0.65 1.21 11 −0.54 .60

Habitat × Region 0.31 0.81 7 0.39 .71

Note: S stands for species richness, FRich for functional richness, FEve for functional evenness, and 
FDiv for functional divergence. Significant and nearly significant models are highlighted in bold.

TA B L E  3 Results of the linear mixed 
models for the effects of habitat and 
region (and their interaction) on species 
richness and functional diversity indices, 
and their standardized effect sizes (SES).

F I G U R E  2 Pcoa Axis for the dung 
beetles surveyed in forest and pasture 
habitats of the Goiânia region and the 
Itajaí Valley (placed at the Cerrado and 
Atlantic Forest biomes, respectively). 
Circles represent Goiânia region, and 
triangles represent Itajaí Valley. In red 
Forest and in green Pasture.



    |  9 of 19PESSÔA et al.

3.2  |  Forest conversion and shift of functional 
traits in the novel habitats

The analyses on individual traits obtained by CWM analysis showed 
that the values of most of them differ between regions, with the 
Atlantic Forest (Table  S3) presenting larger values and greater 
variance in the community-weighted mean for all continuous traits 
(Table 4; Figure 4). In contrast, habitat type only showed nearly sig-
nificant effects on wing load.

3.3  |  Taxonomic and spatial scales influencing 
dung-beetle communities

Habitat contributed little to the nested variance of traits, and the dif-
ferences between species were the principal factor that promoted 
variance in both regions (Figure  5). Trait Statistics partly corrobo-
rated the results obtained by CWM: all traits in the Atlantic Forest 
and almost all traits in the Cerrado exhibited lower trait variations 
than null models in both habitats (Figures 6 and 7), emphasizing the 
importance of internal filters shaping the dung beetle community 
in both regions and habitats. The effects of external filtering, ex-
pressed by TIC∕IR, were more variable. Most of the traits had values 
that not differed from null models; meanwhile, traits that presented 
values of TIC∕IR lower than expected in pasture had values greater 
than expected in forest. In contrast, values of TPC∕PR did not differ 
from expected by chance for all traits for both regions (Figures 6 
and 7).

4  |  DISCUSSION

Our results show that the conversion of forest to pasture affected 
mainly species composition both in the Atlantic Forest and the 
Cerrado. Strikingly, although the overall functional structure of the 
communities was apparently not affected by habitat changes, the 
decomposition of these effects by traits points significant changes 
between regions and habitats. This is especially true for intraspe-
cific variation, as the variance of traits between habitats and regions 
comes from species differences, fostered by internal (i.e., within spe-
cies) filtering in almost all traits, with a small contribution of external 
filtering processes that affected only a few traits.

Although in both regions, the novel pastures are poorer in spe-
cies and host individuals with different trait values than the native 
forest habitats, the conversion of forest habitats into pastures af-
fected only dung beetle species richness. We expected that the 
more recent conversion at the Cerrado would have resulted in 
poorer pasture communities than in the Atlantic Forest, where na-
tive dung beetles have had more time for colonizing the novel hab-
itat. However, the pattern is the opposite: Atlantic Forest pasture 
assemblages are poor and dominated by a handful of alien species, 
whereas a large number of native species have been able to colonize 
the new open areas at the Cerrado. In any case, the differences be-
tween biomes due to differences in their species pools are apparent 
beyond the raw effects of habitat change. In biomes without open 
habitat species, pastures and cleared secondary forests are colo-
nized by generalist forest species or by exotic species from other 
regional pools, such as in the Atlantic Forest example shown here, 

F I G U R E  3 Dung beetle species 
richness and functional diversity in forest 
and pasture habitats of the Goiânia 
region and the Itajaí Valley (placed at 
the Cerrado and Atlantic Forest biomes, 
respectively). Box plots show the average 
and interquartile range of site values; 
dots identify extreme values. Green 
boxes represent forests and beige pasture 
communities.
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or the pastures in Amazonian regions, that are colonized mostly by 
limited numbers of Cerrado and Chaco species (Silva et al., 2014), re-
sulting in the diminished ecosystem functioning in perturbed forests 
of this biome (Noriega, March-Salas, et al., 2021). In the Cerrado, 
the novel habitat is colonized by species that were already adapted 
to utilize the (semi)open habitats of the Brazilian savannah. In con-
trast, in the Atlantic Forest of the Itajaí Valley, where there were 
no natural open habitats, the only exclusive pasture species were 
rare and the pasture is currently used only by a handful of generalist 
native Atlantic Forest species and invaders. These differences in the 
effect of, arguably, the same type of habitat filtering are the conse-
quence of the ecological and evolutionary differences throughout 

the historical formation of the pool of the two regional communities 
(sensu Ricklefs, 2015).

In the Argentinian forests, the regional context reflected in 
different degrees of impact of forest conversion on dung beetle 
communities, where humid forests presented a higher impact on 
dung beetle functional diversity than dry forests (Guerra Alonso 
et al., 2022). This contrasts with our results, where these regional 
differences did not reflect directly on the functional diversity of 
dung beetle communities. When the differences due to richness 
are removed (i.e., by using the Standardized Effect Size; Gotelli & 
McCabe, 2002), functional shifts between both types of habitats 
are relatively small, in apparent contrast with the large functional 

Model Value
Std. 
error df t-Value p-Value

Wing load Habitat 1.59 0.77 11 2.07 .06

Region 2.29 1.05 10 2.18 .05

Habitat × Region −2.37 1.17 11 −2.02 .07

Eye dorsal area Habitat 0.22 0.16 11 1.38 .20

Region 0.26 0.19 10 1.38 .20

Habitat × Region −0.24 0.24 11 −0.99 .34

Prosternum height Habitat 0.86 0.57 11 1.49 .16

Region 2.27 0.98 10 2.32 .04

Habitat × Region −1.25 0.88 11 −1.41 .18

Protibia area Habitat 1.70 1.03 11 1.64 .13

Region 2.83 1.30 10 2.18 .05

Habitat × Region −1.93 1.57 11 −1.23 .25

Pronotum width Habitat 1.31 0.90 11 1.45 .17

Region 4.37 1.37 10 3.18 .01

Habitat × Region −1.05 1.38 11 −0.77 .46

Head length Habitat 0.59 0.40 11 1.48 .17

Region 1.19 0.53 10 2.24 .05

Habitat × Region −0.70 0.60 11 −1.15 .27

Head width Habitat 0.82 0.54 11 1.51 .16

Region 2.45 0.83 10 2.96 .01

Habitat × Region −0.72 0.83 11 −0.88 .40

Body size Habitat 0.83 1.00 11 0.83 .42

Region 5.87 1.81 10 3.24 .01

Habitat × Region 0.67 1.54 11 0.44 .67

Volume Habitat 292.91 217.54 11 1.35 .21

Region 577.06 317.36 10 1.82 .10

Habitat × Region −293.02 332.67 11 −0.88 .40

Metatibia length Habitat 0.12 0.24 11 0.50 .63

Region 2.44 0.53 10 4.62 .00

Habitat × Region 0.53 0.37 11 1.44 .18

Standardized Levins Habitat −0.05 0.04 11 −1.32 .22

Region −0.12 0.05 10 −2.31 .04

Habitat × Region 0.13 0.06 11 2.18 .05

Note: Significant or nearly significant results are highlighted in bold.

TA B L E  4 Results of the linear mixed 
models of the community-weighted mean 
of individual traits.



    |  11 of 19PESSÔA et al.

losses found in novel habitats of other regions of the Neotropics 
(e.g., Argentinian Atlantic Forest, Gómez-Cifuentes et al.,  2017; 
Argentinian pastures, Giménez Gómez et al.,  2022; Mexican 
rainforest, Barragán et al., 2011; El Salvador tropical dry forest, 
Horgan, 2008; Brazilian Pantanal, Pessôa et al., 2017; Colombian 
Andean, Amazonian and Caribbean forests, Noriega, March-Salas, 
et al., 2021). This generalized loss of functionality has been at-
tributed to the smaller diversity of resources (Lumaret et al., 1992) 
and/or changes in microclimatic conditions (Gómez et al., 2018). 

The contrastingly smaller losses of trait variations found in our 
analysis compared with these studies may be due to our use of 
more continuous traits and individual trait measurements, which 
may have diluted functional effects. But also, the fact that, once 
the loss of species is accounted for, pasture species presented so 
extreme values of traits that functionality was maintained. In fact, 
open habitats may even increase the diversity of physiological 
response traits, accounting for the more extreme (micro)climatic 
conditions of pastures compared to forests (Giménez Gómez 

F I G U R E  4 Dung beetle CWM in 
forest and pasture habitats of the Goiânia 
region and the Itajaí Valley (placed at 
the Cerrado and Atlantic Forest biomes, 
respectively). Box plots show the average 
and interquartile range of site values; 
dots identify extreme values. Green 
boxes represent forests and beige pasture 
communities.
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et al., 2022). Besides that, the reduced loss of functional diversity 
in some biomes may be due to a high functional redundancy in 
their pool of dung beetle species, which allows maintaining the 
functionality in each type of habitat despite the regional changes 
in species composition. This difference between species is ob-
served in the effects on trait community weighted means. All traits 
presented only a regional effect (evidencing the differences in the 
functional solutions present in the pool of each biome), while only 
wing load presented a marginal difference between pasture and 
forest. All traits presented a higher CWM in the Atlantic Forest, 
due to greater habitat heterogeneity presented in this habitat. 
The lack of difference in the CWM of the traits contrasts Guerra 
Alonso et al. (2022) findings that traits related to size and food re-
location presented clear differences between forest and pasture, 
mainly due to forest energy restrictions to telecoprids and the 
consequence dominance of this habitat by paracoprids.

The partition of trait variance shows that interspecific variation 
had a greater contribution for the total variance of traits in both re-
gions, corroborating the results found both in dung beetles (Griffiths 
et al.,  2016) and other groups (De Bello et al.,  2009; Messier 
et al., 2010). However, even though traits vary more between than 
within species, our results indicate significant intraspecific variation 
between habitats. In fact, our results show no effects of filters when 
ignoring intraspecific variation (the metric TPC∕PR), while showing 

signal of external filtering for some traits when considering intraspe-
cific trait variation (the metric TIC∕IR). This result emphasizes the im-
portance of considering intraspecific variation in community studies 
(MacArthur & Levins, 1967; Violle et al., 2012).

Eye Dorsal Area in both regions, and Metatibia and Head Length 
in the Itajaí Valley, presented a slightly higher intraspecific contribu-
tion than other traits, although still much smaller than interspecific 
variation. Eye dorsal area can be related to both flight ability, a pe-
riod of daily activity, and the adaptation to different light conditions 
(Byrne & Dacke, 2011). While in both regions this trait presented low 
CWM, it presented a greater variance in the forest. This may be due 
to the presence of species adapted to closed areas suffering filtering 
of individuals with certain trait characteristics, thus increasing the 
phenotypic diversity of this trait within species. Indeed, the pasture 
presents a greater influence of light than forests, which can pres-
ent greater differences in the eye structure of diurnal and nocturnal 
species.

Metatibia length presented differences mostly between re-
gions. In the Atlantic Forest, pasture communities presented shorter 
metatibias, because the generalist species that dominate the open 
habitat are smaller, even despite the dominance of roller species. In 
contrast, Cerrado communities were characterized by more dwellers 
and smaller species than those of the Atlantic Forest, presenting no 
differences in CWM between habitats, though greater variance in 

F I G U R E  5 Nested partition of dung 
beetle trait variance surveyed in forest 
patches and pastures in Atlantic Forest 
and Cerrado.
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the forest probably because of the highest number of rollers and 
bigger species than in the pasture. In this biome, we also found in-
traspecific variance in the prosternum height and protibia area, two 
related to excavation (deCastro-Arrazola et al.,  2023; Halffter & 
Matthews, 1966). Indeed, soil texture and compaction affect the as-
sembly of dung beetle communities (Davis, 1996). Therefore, the un-
even compaction of the soil in the pasture may be selecting a larger 
interspecific variance in these traits, through the selection of indi-
viduals adapted to exploit soils both well-developed soils and those 
that have been compacted by cattle.

The greater promoter of individual variance in our data is in-
ternal filtering, which is consistent with other studies that use T-
statistics (Luo et al., 2016; Mungee & Athreya, 2021; Xavier Jordani 
et al., 2019; Zorger et al., 2019). The metric TIP∕IC was lower than 
expected by chance for almost all traits, suggesting little niche over-
lap, which can be promoted by local processes such as competition. 
Indeed, those strong internal filtering effects were expected, since 
dung beetles present highly competitive communities due to the 
use of an ephemeral resource (sensu Atkinson & Shorrocks, 1981; 
Elton, 1966), which may be even stronger in the pasture considering 
that microclimatic conditions of the dung pat diminish the opportu-
nity window of resource availability.

Several traits show a signal of external filtering, presenting op-
posing patterns in the two habitats. While the external filtering 
processes of the forest promoted overdispersion, increase in niche 
overlap, in the pasture they promoted clustering, niche packeting. 
In the pasture, the fluctuation of heat and humidity may impose an 
important filter for selecting species and individuals with particular 
trait values. While in the forest the greater environmental stability 
promotes heterogeneity in the traits and the persistence of more 
strategies for resource utilization. At the Cerrado, forest habitats 
increase the individual variation of Body Length and Volume, and 
metatibia length, while in the pasture, the individual variation in 
those traits and pronotum width decreases. In the case of metati-
bia length, a trait related to the ability to roll dung balls (Halffter & 
Matthews, 1966; Hanski & Cambefort, 1991), this effect may be due 
to the lower presence of rollers in the forest (Krell et al., 2003). The 
dominance of tunnelers and dwellers in the forest may increase the 
individual variation in this trait, in contrast to the dominance of roll-
ers in the pasture. Length, Volume, and Pronotum width represent 
different aspects of body size. Finally, individual variation in size may 
determine the amount of resources utilized for development (Emlen 
et al., 2005). Therefore, the greater variation in the forest may be a 
reflection of the uneven availability of resources in contrast with the 

F I G U R E  6 Standardized effect size 
of Trait Statistics obtained for 10 dung 
beetle traits in Cerrado forest patches (a) 
and pastures (b). The solid lines indicate 
the confidence interval of the null model 
for all traits to each T-statistic. Red dots 
indicate the average SES of all traits for 
each T-statistic. Blue and orange asterisks, 
respectively, represent values significantly 
lower and higher than expected compared 
to the null models (p < .05). Ey.A, eye 
dorsal area; He.L, head length; He.W, 
head width; Len, length; Me.L, metatibia 
length; Pr.W, pronotum width; Ps.H, 
prosternum height; Pt.A, protibia area; 
T_IC.IR, external filtering of individuals; 
T_IP.IC, internal filtering of individuals; 
T_PC.PR, external filtering of species; Vol, 
volume; W.Lo, wing load.
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greater presence of cow dung in the pasture. This fact, in addition 
to a competition promoted by ephemeral resources, can lead to fil-
tering processes in the pasture that promoted niche differentiation, 
while in the forest we found processes increasing niche packing and 
overlap.

5  |  CONCLUDING REMARKS

The contrasting results of our work with other studies regarding 
richness and functional diversity emphasizes the complementarity of 
both diversity components, since we found similar results of higher 
impacts of forest conversion in humid forests than in dry forests, but 
on another aspect of dung beetle diversity. Besides that, our work 
evidence that it is necessary to consider intraspecific variation to 
acount for all assembly processes and filtering mechanisms operat-
ing over ecological communities subject to rapid habitat shifts, as we 
did not find effects of forest conversion in neither the indices nor 
the external filtering of Trait Statistics that do not consider individ-
ual variance. This may be accentuated by the fact that competition 
for ephemeral resources may be stronger both at the species and 
the individual level in novel habitats. Including intraspecific variation 
increase our understanding of those processes shaping the commu-
nities under rapid global change.

To summarize, forest conversion into pasture impoverishes the 
diversity of dung beetle communities of the Cerrado and the Atlantic 
forest. However, the characteristics of the particular species avail-
able in the pool of each biome may diminish this effect, since the 
ability to colonize the novel habitat depends on the presence of spe-
cies either previously adapted to this environment, or showing larger 
phenotypic plasticity. In regions where the pool of species is poor 
in species adapted to open areas, time since the land clearance is 
not important for dung beetle community regeneration. Importantly, 
trait filtering occurs independently of the presence of species previ-
ously adapted to the new environment. Internal filtering presents a 
strong effect in all regions and habitats, even though we also found 
external filtering in some traits. Rather, differences between regions 
and habitats on the external filtering of communities could be ac-
cessed only when individual variance was considered, showing the 
importance of individual variance in the functional responses of 
dung beetle communities to forest conversion.
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APPENDIX 1

F I G U R E  A 1 Baited pitfall trap used to collect the dung beetles.

F I G U R E  A 2 Design of the surveys of the dung beetle 
communities in two regions (placed at the Atlantic Forest and 
Cerrado biomes). In each region, seven areas were selected, and in 
each area, two habitats were sampled: one forest patch and one 
pasture adjacent to the forest. In each habitat (forest and pasture), 
nine pitfall traps with three different types of baits (human feces, 
rotten liver, and cow dung) were placed along a linear transect at 
50-m intervals. In both transects, traps were placed at least 50 m 
from the habitat edge, to account for edge effects.
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F I G U R E  A 3 Dung beetle functional traits measured in five 
individuals per habitat per area. The traits were measured by 
ImageJ. 1. Dorsal eye area, 2. Head length, 3. Head width, 4. 
Pronotum length, 5. Pronotum width, 6. Elytra length, 7. Protibia 
area, 8. Metatibia length, 9. Prosternum height, and 10. Wing area. 
Body length was calculated summing pronotum length and elytra 
length. Wing load was calculated by the ratio of wing area by body 
size. And volume was calculated by multiplying body size, pronotum 
width, and prosternum height.
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