Skip to main content
. 2023 Apr 21;22:11769351231167992. doi: 10.1177/11769351231167992

Table 4.

Table of performance metrics of different ML algorithms for NSCLC.

ML model Class NSCLC
Accuracy Precision Recall F1 score
Logistic regression 0 0.68 0.68 0.68 0.71
1 0.68 0.68 0.68 0.81
W. Avg 0.68 0.68 0.68 0.77
k-Nearest neighbours 0 0.7 0.84 0.76 0.76
1 0.76 0.79 0.77 0.76
W. Avg 0.73 0.82 0.77 0.76
Support vector machine 0 0.74 0.88 0.8 0.84
1 0.87 0.71 0.78 0.86
W. Avg 0.8 0.79 0.79 0.85
Random forest classifier 0 0.79 0.87 0.86 0.84
1 0.88 0.79 0.82 0.89
W. Avg 0.85 0.84 0.84 0.86
XgBoost algorithm 0 0.86 0.80 0.83 0.82
1 0.79 0.85 0.82 0.79
W. Avg 0.83 0.82 0.82 0.81
AdaBoost algorithm 0 0.80 0.84 0.83 0.80
1 0.83 0.79 0.81 0.85
W. Avg 0.81 0.81 0.81 0.83