Skip to main content
. 2023 Apr 21;22:11769351231167992. doi: 10.1177/11769351231167992

Table 5.

Table of performance metrics of different ML algorithms for SCLC.

ML model Class SCLC
Accuracy Precision Recall F1 score
Logistic regression 0 0.83 0.76 0.68 0.68
1 0.7 0.75 0.68 0.68
W. Avg 0.76 0.76 0.68 0.68
k-nearest neigh-bours 0 0.85 0.77 0.7 0.84
1 0.79 0.76 0.76 0.79
W. Avg 0.82 0.77 0.73 0.82
Support vector machine 0 0.88 0.86 0.74 0.88
1 0.82 0.84 0.87 0.71
W. Avg 0.85 0.85 0.8 0.79
Random forest classifier 0 0.88 0.87 0.79 0.87
1 0.77 0.83 0.88 0.79
W. Avg 0.85 0.85 0.85 0.84
XgBoost algorithm 0 0.80 0.81 0.86 0.80
1 0.79 0.80 0.79 0.85
W. Avg 0.81 0.81 0.83 0.82
AdaBoost algorithm 0 0.85 0.82 0.80 0.84
1 0.81 0.83 0.83 0.79
W. Avg 0.83 0.83 0.81 0.81