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Abstract

Epithelial tight junctions define the paracellular permeability of the 
intestinal barrier. Molecules can cross the tight junctions via two 
distinct size-selective and charge-selective paracellular pathways: 
the pore pathway and the leak pathway. These can be distinguished by 
their selectivities and differential regulation by immune cells. However, 
permeability increases measured in most studies are secondary to 
epithelial damage, which allows non-selective flux via the unrestricted 
pathway. Restoration of increased unrestricted pathway permeability 
requires mucosal healing. By contrast, tight junction barrier loss 
can be reversed by targeted interventions. Specific approaches are 
needed to restore pore pathway or leak pathway permeability increases. 
Recent studies have used preclinical disease models to demonstrate the 
potential of pore pathway or leak pathway barrier restoration in disease. 
In this Review, we focus on the two paracellular flux pathways that are 
dependent on the tight junction. We discuss the latest evidence that 
highlights tight junction components, structures and regulatory 
mechanisms, their impact on gut health and disease, and opportunities 
for therapeutic intervention.
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with hypercalciuria and nephrocalcinosis — is caused by mutation of 
claudin-16, which forms paracellular cation channels within the renal 
tubule. In the absence of claudin-16, paracellular Mg2+ and Ca2+ absorp-
tion in the thick ascending limb of the nephron fails1,2. Conversely, loss 
of claudin-14, which enhances paracellular barriers, in the organ of 
Corti causes deafness in mice and autosomal recessive nonsyndromic 
hearing loss 29 (DFNB29) in humans3–6.

In the intestines, the epithelial monolayer separates subepithelial 
immune cells from the luminal microbiome7. The balance between 
paracellular permeability and barrier function is, therefore, especially 
delicate because the epithelial monolayer must prevent unregulated 
paracellular flux of potentially pathogenic luminal materials8 while 
also allowing the selective paracellular permeability that is required for 
nutrient and water absorption9. This situation contrasts with that in the 
nephron, where both the lumen of the renal tubule and the interstitial 
space are sterile under normal conditions. In the gut lumen, which 
contains a diverse microbiome, disruption of the balance between 
selective permeability and barrier function is associated with a wide 
range of intestinal and systemic disorders10,11.

In this Review, we consider several disorders that involve intestinal 
barrier dysfunction, focusing on changes to paracellular permeability 
and the function of tight junctions. We delineate molecular mecha-
nisms that alter paracellular permeability and cause intestinal barrier 
loss. We also endeavour to differentiate between barrier loss as a con-
tributor to disease pathogenesis and barrier loss as a consequence of 
disease processes.

Intestinal permeability in disease
Intestinal permeability is increased — that is, barrier function is 
reduced — in many intestinal and systemic diseases (Table 1). Of these 
diseases, the most well studied intestinal disorders are inflammatory 
bowel disease (IBD) and coeliac disease. Although tight junction perme-
ability is increased in IBD, the extensive barrier loss seen in advanced, 
active disease is more likely to reflect epithelial damage12–16. Similarly, 
increases in intestinal permeability in advanced graft-versus host dis-
ease (GVHD) can reflect tight junction regulation or immune-mediated 
epithelial damage17. Although discrimination between these disparate 
mechanisms of barrier loss is possible, most studies have relied on the 
use of only a single probe, such as fluorescein isothiocyanate–4-kDa 
dextran in mouse models, to measure permeability. As a result, the data 
are insufficent to differentiate between leak pathway and unrestricted 
pathway flux. Thus, correlations observed between the extent of barrier 
loss and the severity of disease in IBD, coeliac disease and GVHD are 
most likely to be secondary to epithelial damage. By contrast, increased 
intestinal permeability in Crohn’s disease during remission is more 
likely to reflect increased tight junction permeability18,19, particularly 
as increased permeability can occur up to 1 year before disease reac-
tivation. Notably, psychological stress, which can increase intestinal 
permeability in rodents, is a risk factor for reactivation of Crohn’s 
disease in patients20,21.

Reports that some healthy first-degree relatives of patients with 
Crohn’s disease have modest intestinal barrier dysfunction led to the 
hypothesis that loss of intestinal barrier function is a primary event in 
Crohn’s disease pathogenesis. The idea that loss of barrier function 
is an early pathogenic event is supported by evidence that increased 
intestinal permeability in healthy first-degree relatives of patients with 
Crohn’s disease is associated with the risk-associated NOD2 3020insC 
polymorphism22. Perhaps the most convincing evidence comes from 
another study of healthy relatives of patients with Crohn’s disease, 

Key points

 • Increased intestinal permeability occurs in a wide range of 
disorders, including inflammatory bowel disease, coeliac disease 
and graft-versus-host disease, but the relative contributions of barrier 
dysfunction and immune responses are unclear.

 • Intestinal barrier loss can be a consequence of tight junction 
dysfunction or of epithelial damage; in most studies, these 
mechanisms are not distinguished.

 • Paracellular transport across the tight junction can occur via the 
pore pathway or the leak pathway, which have distinct size-selectivity 
and charge-selectivity and are differentially regulated by immune 
signalling.

 • Claudin-2 increases Na+ and water flux across the pore pathway but 
larger molecules are unable to traverse claudin-2 channels.

 • The leak pathway allows macromolecules to cross the epithelial 
barrier and is regulated by the cytoskeleton and epithelial long myosin 
light chain kinase splice variant 1 (MLCK1).

 • Blocking MLCK1 recruitment to the tight junction limits tight junction 
barrier loss without interfering with essential MLCK functions in 
epithelial cells and cells of other types.

Introduction
Epithelia separate the organism from the external environment and 
define individual compartments within tissues. At some sites, the 
epithelia form a nearly complete barrier, disruption of which is cat-
astrophic. For example, massive disruption of the epidermal (skin) 
barrier by burn injury or mutagenesis in animal models can be fatal. 
However, at other sites, such as renal tubules and intestines, the bal-
ance between permeability and barrier function is nuanced, as selec-
tive permeability is essential for physiological processes but must 
also be precisely regulated.

Flux across the epithelial barrier occurs via transepithelial trans-
port, which involves transcellular and paracellular pathways. Transcel-
lular transport involves movement of molecules through cells, and is 
mediated by apical and basolateral transmembrane transporters with 
exquisite substrate specificity. Paracellular transport is less selective 
and can involve movement of molecules across the epithelial barrier 
via the pore pathway or the leak pathway. A third permeability route, 
the unrestricted pathway, is created by epithelial damage (Box 1). 
Flux across the pore and leak pathways reflects permeability of tight 
junctions, which seal the space between adjacent epithelial cells and 
are the rate-limiting components of paracellular transport. Both pore 
and leak pathways are size-selective, and the pore pathway is charge-
selective. However, both pathways lack the structural specificity 
of transcellular transport. For example, l-glucose can be absorbed 
paracellularly but is not recognized by transmembrane transport 
proteins and, therefore, cannot be absorbed via the transcellular route.

Although barrier loss is considered most often in the context of dis-
ease, insufficient selective permeability — that is, barrier enhancement —  
can also contribute to disease. For example, the first monogenic 
tight junction disease to be discovered — familial hypomagnesaemia 
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Box 1

The pore, leak and unrestricted permeability pathways
Intestinal permeability can reflect contributions of three distinct 
pathways: the pore pathway, the leak pathway and the unrestricted 
pathway (see the figure). The pore and leak pathways reflect 
flux across tight junctions, whereas the unrestricted pathway is 
independent of tight junctions.

Pore pathway permeability is defined by claudin proteins, 
which form either channels or barriers at the tight junction291–294. 
Channels generated by pore-forming claudins are charge-selective 
and size-selective; the maximum diameter of solutes that can 
pass through them is 0.6 nm. Claudins form only cation-selective 
channels in the gastrointestinal tract, but anion-selective claudin 

channels are present at other sites, such as the nephron. Immune 
signals, including IL-13 and IL-22, lead to increased transcription and 
expression of intestinal epithelial claudin-2, which increases pore 
pathway permeability (see the figure, top)45,50,86.

The tight junction leak pathway allows molecules with diameters 
up to ~12.5 nm to traverse the epithelial barrier. The molecular 
structure of the leak pathway is poorly understood, but its permeability 
can be regulated by long myosin light chain kinase splice variant 
1 (MLCK1)125,140,141,157. MLCK1 phosphorylates myosin regulatory light 
chain to trigger endocytosis of the tight junction protein occludin, 
leading to an increase in tight junction permeability (see the figure, 
bottom left). MLCK1 expression and enzymatic activity can be 
activated by cytokines that include IL-1β and tumour necrosis factor 
(TNF)124,125,135,140,158,295. Altered expression of other tight junction proteins, 
including tricellulin or angulin 1, might also modify leak pathway 
permeability55,146,147,296.

The unrestricted pathway refers to the diffusion of material across 
regions that lack a continuous epithelial barrier owing to epithelial 
cell damage or death (see the figure, bottom right). This route is 
independent of tight junctions, as they are either absent or severely 
damaged at these sites. The unrestricted pathway allows flux of very 
large molecules and even intact bacteria.

In summary, the pore pathway is a high-capacity pathway that 
is exquisitely charge-selective and size-selective, whereas the 
leak pathway is a low-capacity pathway, is not charge-selective, 
and, although size-selective, allows flux of molecules 20-fold 
larger than those accommodated by the pore pathway. Thus, the 
two tight-junction-dependent pathways are complementary. 
The unrestricted pathway is tight-junction-independent, high-capacity 
and non-selective.

Adapted from ref. 297, Springer Nature Limited.
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in which the risk of developing disease was twofold to threefold higher 
among those with increased intestinal permeability than among those 
with normal permeability23.

In healthy relatives of patients with Crohn’s disease, increased 
intestinal permeability was also associated with reduced microbial 
diversity and alterations in specific genera and microbial metabolic 
pathways24. By contrast, faecal calprotectin — a marker of mucosal 
inflammation but not of barrier loss — was increased in some healthy 
relatives but was not an independent risk factor for development of 
Crohn’s disease25. Reports of increased intestinal permeability up to 
3 years before onset of Crohn’s disease suggest that barrier loss is 

the initial trigger that activates intermediate events, such as mucosal 
immune activation, that culminate in disease. Together, these obser-
vations suggest that barrier loss is a primary event in Crohn’s disease 
pathogenesis.

Some data suggest that increased intestinal permeability is asso-
ciated with poorly understood conditions, including irritable bowel 
syndrome and autism spectrum disorders26–30. The mechanistic under-
pinnings of these associations have not been defined and, in both 
patients and animal models, the question of whether barrier loss is a 
cause or consequence of disease remains. The observation that mice 
with genetically induced increases in intestinal permeability develop 

Table 1 | Diseases associated with intestinal barrier defects

Disease Findings in patients Findings in animal models

IBD (Crohn’s disease and 
ulcerative colitis)

Increased permeability is a risk factor for IBD in healthy relatives of 
patients with Crohn’s disease and for relapse in patients with Crohn’s 
disease18,19,22,24,174,182,183

Il10-knockout mice develop a permeability defect before 
disease onset; experimental IBD is more severe in genetically 
modified mice with increased intestinal permeability; 
genetic or pharmacological reduction of pore pathway or 
leak pathway function limits the severity of experimental  
IBD59,98,117,134,141,163,184,185

Graft-versus-host disease Positive correlation of pre-conditioning gastrointestinal toxicity 
(presumed to indicate degree of transient barrier loss) with disease 
activity17,186

Gut damage is an essential driver of experimental disease; 
intestinal permeability is increased and tight junction 
protein organization is altered in experimental disease; 
disease progression and severity are attentuated in long 
MLCK-knockout mice137,187–191

Type 1 diabetes mellitus Permeability is increased in patients with pre-diabetes and diabetes 
mellitus192–194

Permeability increases precede disease; barrier restoration 
can delay disease onset195,196

Metabolic syndrome 
(including type 2 diabetes 
mellitus, obesity and 
nonalcoholic fatty liver 
disease)

Increased intestinal permeability is a risk factor for type 2 diabetes 
mellitus and is associated with obesity and nonalcoholic fatty liver 
disease194,197–201

Hyperglycaemia, high-fat diet, nonalcoholic fatty liver 
disease and obesity are associated with increased intestinal 
permeability202–208

HIV/AIDS Increased permeability in HIV enteropathy; positive correlation 
with disease stage; increased in patients with untreated HIV 
infection90,209,210

Increased intestinal permeability in simian immunodeficiency 
virus infection is associated with microbial translocation and 
systemic immune activation211,212

Multiple organ dysfunction 
syndrome

Correlates with increased disease severity213 Associated with shock; disease progression is limited 
in knockout mice that are protected from leak pathway 
permeability increases214–217

IBS Increased in diarrhoea-predominant, post-infectious and 
non-post-infectious IBS; unaltered in constipation-predominant 
IBS28,218–229

Increased intestinal permeability is associated with and can 
cause changes in visceral sensitivity31,230,231

Coeliac disease Positive correlation between increased permeability and 
disease activity; increased permeability in patients and healthy 
relatives; gluten-free diet can lead to barrier restoration232–235

Barrier loss is associated with disease in models of coeliac 
disease236–238

Environmental enteric 
dysfunction

Increased permeability; altered expression of absorptive and 
barrier-enhancing proteins239–247

Barrier loss is associated with malnutrition240,248,249

Food allergy Increased in people with food allergy250–252 Permeability increased in mice after food antigen 
challenge253–257

Sepsis Increased permeability in sepsis; increased plasma zonulin258–261 Permeability increased in experimental sepsis; relationship 
to disease progression is not defined262–266

SARS-CoV-2 infection Permeability is increased in severe systemic disease; some data 
suggest that barrier restoration using a zonulin antagonist is 
beneficial267–276

No direct measures of intestinal permeability

Parkinson disease Permeability increased in a subset of patients277,278 No direct measures of intestinal permeability

Asthma Permeability increased in people with asthma; IBD associated with 
increased risk of asthma279,280

Correlation between disease and intestinal permeability in 
some models281,282

Multiple sclerosis and 
amyotrophic lateral sclerosis

Increased intestinal permeability in a subset of patients283–285 Increased intestinal permeability in experimental allergic 
encephalitis model286

Rheumatic diseases (arthritis 
and ankylosing spondylitis)

Increased intestinal permeability in some patients287,288 Increased permeability in mouse models; barrier restoration 
can limit disease287,289,290

IBD, inflammatory bowel disease; IBS, irritable bowel syndrome; MLCK, myosin light chain kinase.
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anxiety-like behaviours, hyporesponsiveness to rectal distension 
and activation of neurons within the thalamus, hypothalamus and 
hippocampus31 demonstrates that increased intestinal permeability 
can effect changes in behaviour, visceral sensation and neurological 
activity. These mice also have an altered microbiome composition.

Tight junctions and intestinal barrier function
In the absence of epithelial damage, the tight junction is the rate-
limiting determinant of passive paracellular transport. At the tight 
junction, the intercellular spaces between adjoining cells are eliminated 
and the outer leaflets of the plasma membrane lipid bilayer of adjacent 
epithelial cells are closely apposed and appear to fuse32 (Fig. 1). Subapi-
cal to the tight junction are the adherens junctions and desmosomes, 
which are linked to actin-based microfilaments and cytokeratin-based 
intermediate filaments, respectively. These cytoskeletal structures 
provide the tensile strength that supports tight junctions and maintains 
cell shape.

Tight junction pathways and proteins
The first tight junction protein to be discovered was zonula occludens 1  
(ZO-1)33 (Fig. 1), followed by the two related proteins ZO-2 and ZO-3, 
and the unrelated protein cingulin34–37, though all of these proteins 
are intracellular peripheral membrane proteins. These discover-
ies were followed by the discovery of the tetraspan transmembrane 
tight junction proteins occludin38 and the claudins, which are encoded 
by 27 genes in mammals39,40.

When expressed in non-epithelial cells, claudins can self-assemble 
into large polymers to form structures that are reminiscent of tight 
junction strands seen by freeze–fracture electron microscopy41 (Fig. 1). 
Many claudins are critical for barrier function, but others form charge-
selective and size-selective paracellular channels. The ensemble of 

expressed claudins dictates the size-selectivity and charge-selectivity 
of specific sites within tissues. Detailed characterization has demon-
strated that the charge-selectivity of claudin channels is determined 
by specific residues within the first extracellular loop42,43. Regardless 
of whether they are cation-selective or anion-selective, all claudin 
channels studied to date are size-selective and allow paracellular flux 
of only molecules with a diameter of <0.6 nm (refs. 43–46). These 
channels define the pore pathway47 (Box 1) and are exemplified by 
claudin-2, which mediates paracellular flux of small cations, such as 
Na+, and water42,43,48,49. Claudin-2 cannot, however, accommodate the 
commonly used macromolecular probes lactulose, mannitol or 4 kDa 
dextran48,50,51, emphasizing the need to consider the physical charac-
teristics of the solute being measured when assigning mechanisms 
of changes in paracellular permeability.

Although rejected by the pore pathway, molecules larger than 
0.6 nm, including lactulose, mannitol and 4 kDa dextran, can cross 
tight junctions via a second paracellular flux route known as the leak 
pathway (Box 1), which can accommodate molecules with diameters 
of up to ~12.5 nm and is not charge-selective47,52. The specific molec-
ular structure of the leak pathway has not been identified, but its 
permeability is regulated by occludin53,54, tricellulin (also known as 
MARVEL domain-containing protein 2, a member of the tight junction-
associated MARVEL protein (TAMP) family)55, ZO-1 (refs. 52,56) and 
perijunctional actomyosin53,57–59.

Pore and leak pathway functions in health
The major pore-forming claudins expressed within the intestinal epi-
thelium are claudin-2 and claudin-15 (refs. 9,60), both of which form 
cation-selective channels49,61,62. Mice that lack either claudin-2 or 
claudin-15 are viable, but mice that lack both claudins die before wean-
ing9, consistent with the idea that these proteins are, at least partially, 
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Fig. 1 | Tight junction structure and morphology. a, Transmission electron 
micrograph showing the tight junction, adherens junction and desmosome, 
which, together, comprise the apical junctional complex. The tight junction 
is located just below the base of the microvilli. The magnification shows the 
transition from the luminal space, between the microvilli, into the tight junction, 
where morphologically detectable paracellular space is obliterated. b, Schematic 

of the apical junctional complex shown in part a, showing the location of the 
tight junction proteins zonula occludens 1 (ZO-1), occludin, claudin-2 and other 
claudin family members. Long myosin light chain kinase 1 (MLCK1) is associated 
with perijunctional F-actin and is a key regulator of tight junction permeability. 
c, Freeze–fracture electron micrograph showing tight junction strands at the 
base of apical microvilli.
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functionally redundant. Nevertheless, intestinal hypertrophy occurs 
in claudin-15-knockout, but not claudin-2-knockout, mice63,64.

Paracellular Na+ efflux via claudin-2 and claudin-15 channels is 
critical to transcellular nutrient transport. Brush border absorption  
is largely driven by Na+–nutrient cotransporters that rely on the Na+ gra-
dient between the intestinal lumen and the cytoplasm of epithelial cells 
(Fig. 2). During this process, Na+ enters the cytoplasm and is exported 
across the basolateral membrane into the lamina propria by the Na+–K+ 
ATPase65. In the absence of paracellular Na+ transport, transcellular 
transport rapidly depletes luminal Na+ and nutrient cotransport across 
the apical brush border membrane stops. Flux across claudin-2 and 
claudin-15 channels allows Na+ efflux from the lamina propria to the 
lumen, where it can drive additional cycles of Na+–nutrient cotransport.

The requirement for Na+ efflux in the intestine explains the 
critical roles of claudin-2 and claudin-15 in nutrient absorption but 

does not explain why expression of these claudins is so precisely 
regulated. At birth, intestinal epithelial claudin-2 expression is high 
throughout the crypt–villus axis of the intestinal epithelium60,63,66, 
but claudin-2 expression is markedly diminished and limited to 
crypt epithelium after weaning. Concurrently, claudin-15 expres-
sion increases throughout the crypt–villus axis. Although only subtle 
functional differences between these claudins have been detected 
in vitro48,62, this precise developmental regulation suggests that 
the in vivo properties of claudin-2 and claudin-15 channels must 
differ substantially. Hypothetically, claudin-2 might allow greater 
paracellular Na+ flux than claudin-15, which would be advantageous 
for the rapid growth that occurs during early postnatal development 
and depends on Na+–nutrient cotransport. Alternatively, channel 
open state probabilities or other subtle functional characteristics of 
claudin-2 and claudin-15 might differ. This question could be resolved 
by single-channel analysis but, unfortunately, such data have only 
been reported for claudin-2 (ref. 46).

Na+–nutrient cotransport triggers downstream signalling in the 
epithelial cell. These signalling events activate MLCK, which phos-
phorylates perijunctional myosin regulatory light chain (MLC) and 
increases leak pathway permeability67–69. This process amplifies 
paracellular nutrient transport via solvent drag (Fig. 2), whereby the 
osmotic gradient created by transcellular transport drives paracellular 
water absorption70. The absorbed water comes from the unstirred layer 
immediately adjacent to the epithelium, which is rich in small nutrient 
monomers owing to the activity of brush border digestive enzymes. 
This paracellular fluid absorption allows paracellular nutrient absorp-
tion to amplify transcellular transport71–74. Importantly, solvent drag 
only contributes substantially to nutrient absorption when luminal 
concentrations of nutrient monomers are high72. This subtlety pro-
bably explains why passive paracellular nutrient absorption via solvent 
drag has been detected in some studies and not others75–84. In contrast 
to transcellular transport, paracellular absorption via solvent drag is 
not stereospecific and can accommodate molecules for which there 
are no apical transporters, such as mannitol72,85.

Paracellular amplification of transcellular absorption, or solvent 
drag, probably explains why the rate of nutrient transport across the 
intestinal epithelium cannot be saturated72. Clinically, solvent drag 
contributes to the efficacy of simple Na+ and carbohydrate-containing 
oral rehydration solutions that have been used to treat countless indi-
viduals with potentially fatal, high-volume diarrhoeal diseases, such 
as cholera. By contrast, the glycosuria that occurs in diabetes mellitus 
suggests that no corresponding paracellular pathway for glucose 
resorption exists within the renal tubule.

The pore pathway in disease
Intestinal epithelial claudin-2 has been the subject of intense scrutiny 
owing to its markedly increased expression in a broad range of inflam-
matory disorders. Claudin-2 upregulation was first described in the 
contexts of ulcerative colitis and Crohn’s disease86,87. Subsequent work 
demonstrated that intestinal epithelial claudin-2 is also upregulated 
in coeliac disease88, irritable bowel syndrome89, HIV enteropathy90, 
enteric infection50, necrotizing enterocolitis91 and Whipple disease92. 
The factors that mediate claudin-2 upregulation are incompletely char-
acterized, but in vitro and in vivo studies have implicated IL-1, IL-6, IL-13, 
IL-22 and tumour necrosis factor (TNF) as potential enhancers of clau-
din-2 expression50,86,93–96. By contrast, some in vitro studies suggest that 
butyrate can suppress claudin-2 expression and increase barrier func-
tion via an IL-10 receptor-dependent mechanism97. Together, these data 
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Fig. 2 | Coordination of transcellular and paracellular transport. The 
gradient of Na+ between the gut lumen and the cytoplasm of epithelial cells 
provides the driving force for nutrient absorption across the apical brush 
border membrane, such as glucose absorption via the intestinal epithelial 
Na+–glucose cotransporter SGLT1. Nutrients then exit the cell via facilitated 
exchange proteins, such as the glucose transporter GLUT2, and Na+ exits via 
the Na+–K+ ATPase. Na+–glucose cotransport also triggers signal transduction 
pathways that activate long myosin light chain kinase 1 (MLCK1) and increase 
tight junction permeability. The osmotic gradient generated by transcellular 
nutrient and Na+ transport draws water across the tight junction and, owing to 
the high concentration of nutrient monomers in the unstirred layer, nutrients are 
carried along with this fluid in a mechanism known as solvent drag71. This process 
would quickly exhaust luminal Na+ if not for claudin-2 and claudin-15, which form 
paracellular Na+ channels that enable efflux of absorbed Na+ in order to provide 
the driving force for continued transcellular nutrient absorption9,63.
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indicate that the mucosal immune system can fine-tune claudin-2 
expression.

Administration of recombinant IL-13 to mice increases claudin-2 
expression and augments intestinal paracellular cation permeability98. 
Similarly, transgenic claudin-2 overexpression within the intestinal 
epithelium increases paracellular permeability to cations to levels 
similar to those in IL-13-treated wild-type mice98. By contrast, IL-13 has 
no effect on intestinal permeability in mice in which the Cldn2 gene, 
which encodes claudin-2, is knocked out. Thus, claudin-2 upregula-
tion is both necessary and sufficient to increase paracellular cation 
permeability in vivo. The impact of this effect on disease is discussed 
in the following sections.

Claudin-2 attenuates diseases induced by luminal insults
A pair of studies of Cldn2-transgenic and Cldn2-knockout mice provided 
initial evidence that increased claudin-2 expression is beneficial in 
dextran sulfate sodium (DSS)-induced colitis98,99. However, claudin-2 
overexpression also increases faecal water content50, suggesting 
that increased claudin-2 expression might reduce the severity of 
colitis simply by diluting DSS within the distal colon. An alternative 
possibility is that claudin-2 expression promotes epithelial growth and 
mucosal repair100–102, as discussed below (see ‘Claudin-2 and epithelial 
proliferation’).

Claudin-2 expression is increased during enteric infection in 
humans103. Similarly, the model pathogen Citrobacter rodentium trig-
gers IL-22-dependent claudin-2 upregulation within 2 days of infection 
in mice50 (Fig. 3). Although IL-22 is pleiotropic, an increased number 
of mucosa-associated C. rodentium, delayed pathogen clearance and 
a greater severity of mucosal damage in Cldn2-knockout mice relative 
to wild-type mice demonstrate that IL-22-dependent claudin-2 upregu-
lation contributes to host defence50. The observation that transgenic 

claudin-2 overexpression limits C. rodentium-induced colitis provides 
further support for this conclusion.

The passage of either Na+ or water through claudin-2 channels104,105 
could mediate the increased pathogen clearance and reduced disease 
severity associated with claudin-2 expression. In studies to dissect 
these mechanisms, wild-type, Cldn2-transgenic and Cldn2-knockout 
mice were infected with C. rodentium. Polyethylene glycol (PEG) was 
added to their drinking water 4 days later to create an osmotic gradi-
ent that increased fluid flow into the intestinal lumen. PEG treatment 
normalized the number of mucosa-associated C. rodentium, pathogen 
clearance and mucosal damage across genotypes, demonstrating 
that paracellular water efflux is the primary means by which claudin-2 
promotes enteric pathogen clearance.

The effect of PEG was unlikely to have been a result of fluid efflux 
simply washing bacteria off the epithelial surface, as C. rodentium is 
an attaching and effacing pathogen that forms pedestals and is not 
easily displaced from intestinal epithelial cells. Moreover, intestinal 
epithelial cells turn over every few days during infection, so the cells 
present at the peak of disease (11 days after infection) are not the same 
cells that were initially colonized. Therefore, one possible explanation 
for the findings is that claudin-2-mediated paracellular water efflux 
reduces the efficiency with which new cells are infected. This hypoth-
esis remains to be tested. Nevertheless, evidence indicates that the 
diarrhoea induced by claudin-2 upregulation is beneficial in the context 
of enteric infection. These results provide the first experimental data 
to show that diarrhoea promotes enteric pathogen clearance, an idea 
that has persisted for centuries despite a lack of supporting evidence106.

Claudin-2 exacerbates immune-mediated colitis
Claudin-2 transcription is exquisitely responsive to cytokine stimu-
lation and is increased in a wide range of human and experimental 
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disorders associated with mucosal inflammation. Given its protective 
role during enteric infection and DSS-induced injury, claudin-2 upregu-
lation might also be expected to be beneficial in inflammatory disease. 
This hypothesis was tested by inducing immune-mediated colitis by 
T cell transfer in immunodeficient, claudin-2 wild-type, transgenic and 
knockout mice98. In contrast to the effects of claudin-2 in infectious 
colitis, its overexpression exacerbated immune-mediated colitis and 
was associated with severe weight loss, increased cytokine production, 
mucosal T cell infiltration and histopathological damage. Conversely, 
Cldn2 knockout attenuated all measures of colitis severity. Together 
with the effects of claudin-2 expression on pathogen clearance, these 
data suggest that claudin-2 upregulation triggers defence mecha-
nisms that include immune activation and, therefore, exacerbates 
immune-mediated disease. Although the mechanisms by which claudin- 
2-mediated paracellular Na+ and water flux enhances immune activation 
is unknown, this phenomenon could explain the observed exacerbation 
of immune-mediated disease by high-Na+ diets107–114.

The findings in Cldn2-knockout mice also provide further sup-
port for the idea that substantial functional differences exist between 
claudin-2 and claudin-15 in vivo. Although claudin-15 expression is 
not altered in human IBD or experimental immune-mediated colitis, 
it was upregulated in colitic Cldn2-knockout mice98. However, Cldn2-
knockout mice remained protected from immune-mediated colitis, 
indicating that claudin-15 cannot compensate for claudin-2 loss in 
this context.

Although disease severity was lower in Cldn2-knockout mice than 
in wild-type mice, survival was inferior98. The cause of death among 
Cldn2-knockout mice was intestinal obstruction. This observation 
could reflect an inability to increase luminal hydration, owing to lack 
of claudin-2-mediated water transport, that synergized with colitis-
associated epithelial proliferation, mucosal expansion and luminal 
narrowing to allow formation of luminal faecaliths and intestinal 
obstruction. Consistent with this interpretation, induction of mild 
osmotic diarrhoea increased faecal water content, prevented intesti-
nal obstruction and increased survival of the Cldn2-knockout mice50. 
Osmotic diarrhoea did not, however, affect overall disease severity 
in claudin-2 wild-type, transgenic or knockout mice98. Therefore, 
the increased survival due to osmotic diarrhoea does not reflect 
direct mitigation of immune activation or tissue damage.

The protection afforded by Cldn2 knockout suggests that phar-
macological inhibition of claudin-2 function might be effective 
in immune-mediated disease. Of several reported approaches to 
claudin-2 channel inhibition115–118, only one has been assessed in vivo98. 
This approach relies on casein kinase 2 (CK2) inhibition, occludin 
dephosphorylation and assembly of a claudin-2–ZO-1–occludin com-
plex that inactivates claudin-2 channels98,117. CK2 inhibition did not 
interfere with IL-13-induced increases in claudin-2 expression but did 
prevent IL-13-induced changes in paracellular Na+ permeability. CK2 
inhibition markedly attenuated the severity of immune-mediated 
colitis in claudin-2 wild-type mice98. Although CK2 is a ubiquitously 
expressed, promiscuous kinase, CK2 inhibition did not affect disease 
severity in Cldn2-knockout mice, indicating that its therapeutic benefit 
is largely due to claudin-2 channel inactivation. Notably, CK2 inhibition 
did not cause intestinal obstruction in Cldn2 wild-type mice, pro-
bably owing to incomplete claudin-2 channel inactivation. Together 
with the fact that the intestinal lumen diameter is much greater in 
humans than in mice, this observation suggests that pharmacological 
claudin-2 channel inhibition is unlikely to cause intestinal obstruction 
in humans.

Claudin-2 and epithelial proliferation
Some evidence suggests that claudin-2 promotes epithelial prolifera-
tion100,101,119,120. For example, the rate of intestinal epithelial proliferation 
was nearly doubled in one strain of mice with transgenic claudin-2 over-
expression100. As mentioned above, this proliferation might contribute 
to the protection that claudin-2-transgenic mice have from DSS-induced 
colitis100. However, epithelial proliferation was not increased in a differ-
ent Cldn2-transgenic mouse model50. The reasons for this discrepancy 
are unclear, as Cldn2 expression was under the control of the 9 kB vil-
lin promoter121 and pore pathway permeability was increased in both 
models. However, the transgenic mice differed in that one expressed 
human claudin-2 at high levels100, whereas the other expressed EGFP-
tagged mouse claudin-2 at lower levels50. Although further study is 
needed, this difference could underlie the discrepancy between the two 
models and could also explain increases in leak pathway permeability 
that occurred in the first, but not the second, model.

Other data that suggest a role for claudin-2 in regulating epithelial 
proliferation include studies of SW480 and HCT116 human colon can-
cer cells, which demonstrated that claudin-2 overexpression increases 
proliferation in vitro, accelerates tumour growth in vivo and reduces 
apoptosis triggered by the chemotherapeutic agent 5-fluorouracil122. 
In a study in patients with colon cancer, high claudin-2 expression cor-
related with lower overall and disease-free survival, further supporting 
the notion that claudin-2 can promote epithelial proliferation123. Thus, 
although the mechanisms are not defined, claudin-2 overexpression 
might promote intestinal epithelial cell proliferation in some contexts.

The leak pathway in disease
Although the leak pathway is activated physiologically during 
Na+–nutrient cotransport, far greater increases in leak pathway 
permeability are induced by TNF124–126 (Box 1). The reasons for this 
difference between physiological and pathophysiological tight 
junction regulation are unclear because both depend on MLCK acti-
vation, but they might relate to the fact that occludin endocytosis 
occurs during TNF-induced barrier loss but occludin distribution is 
unaffected during Na+–nutrient cotransport-induced permeability 
increases53,68,125,127. Occludin is also internalized during MLCK-mediated 
barrier loss induced by the TNF-related cytokine LIGHT, IL-1β or 
lipopolysaccharide128–133.

In experimental, immune-mediated IBD, activation of intestinal 
epithelial MLCK accelerates disease progression, whereas genetic 
deletion of intestinal epithelial MLCK attenuates disease59,134. Interest-
ingly, the claudin-2 upregulation that normally occurs in experimental, 
immune-mediated IBD is reduced in mice that lack intestinal epithelial 
MLCK134 and is restored by transgenic expression of constitutively 
active MLCK within intestinal epithelia134. Thus, the leak pathway 
and pore pathway are linked in disease. Notably, transgenic expres-
sion of constitutively active MLCK within intestinal epithelial cells, 
which modestly increases leak pathway permeability but does not 
induce disease, increases both mucosal IL-13 production and epithe-
lial claudin-2 expression. Thus, increased leak pathway permeability 
can, via mucosal immune activation, trigger claudin-2 upregulation45. 
Conversely, as noted above, leak pathway permeability is increased 
in one of two claudin-2 overexpressing transgenic mice despite the 
absence of overt disease. Although the precise relationship between 
pore pathway and leak pathway regulation in the context of disease 
remains to be determined, the ability of distinct cytokines to spe-
cifically and independently regulate pore pathway or leak pathway 
permeability is striking.
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TNF, LIGHT and IL-1β all trigger transcriptional and enzymatic 
activation of MLCK135–137, although reports differ as to whether the tran-
scriptional activation is mediated by nuclear factor-κB, p38 mitogen- 
activated protein kinase (MAPK) or the transcription factor activator  
protein 1 (AP-1)135,138–140. Regardless of these discrepancies, MLCK activa-
tion clearly leads to perijunctional MLC phosphorylation and occludin 
endocytosis125,140,141. Despite ongoing debate regarding the functional 
significance of occludin, the consensus is that occludin, along with 
other proteins, is a critical regulator of leak pathway permeability. 
This role of occludin has been demonstrated in several in vitro stud-
ies52,142–144, but the strongest evidence comes from in vivo studies that 
have shown that blockade of occludin endocytosis or transgenic occlu-
din overexpression limits TNF-induced leak pathway barrier loss54. This 
observation suggests that reduced occludin expression could explain 
the increased permeability of the leak pathway observed in human 
disease, including IBD86,145.

The tricellular tight junction proteins tricellulin and angulin 1 
might also be important regulators of leak pathway permeability. 
In vitro studies have shown that deletion of either tricellulin or angulin-1 
increases leak pathway permeability146–148. Similar to tricellulin, siRNA-
mediated knockdown of the other TAMPs, MARVELD3 (refs. 146,149) 
or occludin142,143, also increased leak pathway permeability. Tricellulin 
redistribution from tricellular to bicellular tight junctions150 follow-
ing occludin loss54,125 could, therefore, be an intermediate event that 
allows occludin to regulate leak pathway permeability. Thus, although 
a great deal has been learned about proteins that contribute to leak 
pathway barrier function and mechanisms of experimental and patho-
physiological leak pathway regulation, the molecular structure of the 
leak pathway remains enigmatic.

Diverse occludin functions
Unexpectedly, intestinal epithelial specific occludin knockout protects 
mice from experimental colitis and epithelial injury driven by intrinsic 
and extrinsic TNF signalling pathways. This finding was ultimately 
explained by the observation that occludin enhances activity of the 
promoter for CASP3, which encodes caspase 3, through an undefined 
mechanism145. In cultured cell lines and mice, occludin downregulation 
led to a reduction of ~50% in caspase 3 expression that conferred pro-
tection from a diverse range of pro-apoptotic stimuli145,151. Analyses of 
biopsy samples suggests that this process also occurs in human disease, 
as occludin downregulation correlates with reduced epithelial caspase 3 
expression in patients with ulcerative colitis or Crohn’s disease.

Thus, in addition to increasing leak pathway permeability, occlu-
din downregulation can promote epithelial survival. However, this 
effect might not be entirely beneficial, as it could allow evolution of 
deleterious mutations that would have otherwise been eliminated by 
apoptosis. Consistent with this hypothesis, in vitro studies suggest 
that occludin functions as a tumour suppressor in some contexts151–155. 
Further exploration will, therefore, be required to fully understand 
extra-junctional functions of occludin.

Distinct functions of long MLCK splice variants
Epithelial MLCK is expressed from the same gene (MYLK) that 
encodes smooth muscle MLCK156. However, epithelial (long) MLCK is 
~225 kDa (refs. 156,157), whereas smooth muscle (short) MLCK is only 
~130 kDa (Fig. 4). Long MLCK transcription, which is activated by TNF, 
IL-1β and other stimuli135,158, generates mRNA transcripts that include 
additional 5′ exons that are not present in short MLCK transcripts156. 
This difference reflects the location of the short MLCK promoter 

within an intron of long MLCK. Nevertheless, the carboxy-terminal 
catalytic and calmodulin-binding regulatory domains are identical 
in long and short MLCK. The 5′ region that distinguishes long MLCK 
from short MLCK undergoes extensive alternative splicing156. Of 
the splice variants generated, only two — long MLCK1 and MLCK2 —  
are expressed in intestinal epithelial cells157 (Fig. 4). Although the 
underlying mechanisms have not been defined, splicing seems to 
be precisely regulated during differentiation, as MLCK2 is expressed 
throughout the crypt–villus axis but MLCK1 expression is limited to 
the upper villus157. Moreover, the increased MLC phosphorylation in 
active Crohn’s disease is specifically associated with perijunctional 
MLCK1 recruitment159,160 (Fig. 4).

The two intestinal epithelial long MLCK splice variants differ by a 
single exon that is present in MLCK1 but not in MLCK2 (ref. 157). The 69 
amino acids encoded by this exon complete the third immunoglobulin–
cell adhesion molecule domain (IgCAM3)157. This domain must, there-
fore, contribute to preferential perijunctional localization of MLCK1 
relative to MLCK2, which is distributed more diffusely through the 
cytoplasm141,157. TNF triggers even greater recruitment of MLCK1 to  
the perijunctional actomyosin ring141. Similarly, MLCK1 is concentrated 
within the perijunctional actomyosin ring in intestinal biopsy samples 
from patients with active IBD141,160,161. This inflammation-inducible 
perijunctional MLCK1 recruitment, together with increased barrier 
function after MLCK1-specific knockdown157, suggests that this splice 
variant is central to tight junction regulation.

These findings prompted solution of the IgCAM3 crystal structure, 
which was then used for in silico screening of small drug-like mole-
cules that were predicted to bind to IgCAM3 (ref. 141). In vitro testing 
identified one compound that diverts MLCK1 from the perijunctional 
actomyosin ring and reverses cytokine-induced MLCK1 recruitment 
in vivo and in excised human intestine141. This molecule, known as diver-
tin, blocks MLCK1-mediated phosphorylation of perijunctional MLC, 
thereby preventing subsequent occludin endocytosis and increases 
in leak pathway permeability141. Divertin does not, however, interfere 
with other functions of long or short MLCK, including its involve-
ment in epithelial cell migration and smooth muscle contraction, 
because IgCAM3 is not present in short MLCK and is distant from the 
MLCK1 catalytic and regulatory domains141. This functional selectiv-
ity is critical, as in vivo inhibition of MLCK activity leads to hypoten-
sion and visceral paralysis, including aperistalsis, thereby precluding 
therapeutic use of enzymatic inhibitors162.

Therapeutic targeting of MLCK1 recruitment
Divertin was remarkably effective in a mouse model of immune-
mediated IBD — its effects were equal or superior to those of anti-TNF 
therapy by all measures, including survival141. This result supports 
the hypothesis that divertin-mediated interference with IgCAM3-
mediated protein–protein interactions prevents perijunctional MLCK1 
recruitment and, ultimately, disease progression.

A screen for potential MLCK1 binding partners was used to identify 
protein–protein interactions targeted by divertin. This process led 
to the discovery of tacrolimus binding protein FKBP8 as an MLCK1-
interacting protein160 (Fig. 4). MLCK1–FKBP8 interactions were spe-
cifically increased in TNF-treated intestinal epithelial monolayer 
cultures160. These interactions tended to occur near the perijunctional 
actomyosin ring160. Similarly, increases in perijunctional MLCK1–
FKBP8 interactions were detected in biopsy samples from patients 
with Crohn’s disease160. Tacrolimus also prevented TNF-induced 
perijunctional MLCK1 recruitment, MLCK1–FKBP8 interactions and 
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perijunctional MLC phosphorylation in human intestinal organoids160. 
Finally, tacrolimus prevented MLCK1 recruitment, occludin internaliza-
tion and barrier loss after acute T cell activation in mice160. Surprisingly, 

divertin did not interfere with FKBP8 binding to recombinant MLCK1 
IgCAM domains one to four in vitro. Thus, despite the efficacy of diver-
tin in experimental colitis, agents that prevent MLCK1 interactions 
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Fig. 4 | Epithelial and smooth muscle myosin light chain kinase. a, The human 
MYLK gene encodes long (non-muscle) and short (smooth muscle) isoforms of my-
osin light chain kinase (MLCK) protein. Two long MLCK transcriptional start sites 
that result in expression of the same protein have been identified. However, exten-
sive alternative splicing within the 5′ half of the transcript occurs, which, in intesti-
nal epithelial cells, results in expression of two long MLCK splice variants, MLCK1 
and MLCK2. These variants differ by a single exon (black), removal of which causes 
the third of the nine immunoglobulin-cell adhesion molecule (IgCAM) domains to 
be incomplete in long MLCK2. The short MLCK promoter is located within a long 
MLCK intron and drives transcription of smooth muscle MLCK, which lacks the six 
amino-terminal IgCAM domains that are present in long MLCK1. The kinase and 

calmodulin (CaM)-binding domains are encoded by sequences within the 3′ half of 
MYLK and are identical in long and short MLCK proteins. b, Inflammatory signals, 
such as tumour necrosis factor (TNF), trigger MLCK1 binding to FKBP8. This bind-
ing facilitates MLCK1 recruitment to the perijunctional actomyosin ring, where 
it phosphorylates MLC. This phosphorylation causes occludin internalization to 
increase leak pathway permeability. In contrast to MLCK1, MLCK2 distribution is 
not affected by TNF. c, MLCK1 expression and recruitment to the perijunctional  
actomyosin ring (arrows) are increased in Crohn’s disease. The insets show the 
boxed areas. MLCK1 and total MLCK are shown, as the absence of unique MLCK2  
sequences prevents generation of MLCK2-specific antibodies. Nuclei appear 
yellow. Part a adapted from ref. 141, Springer Nature Limited.
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with FKBP8 or other MLCK1 binding partners should also be sought 
as potential therapeutics.

Conclusions
The first tight junction protein, ZO-1 (ref. 33), was discovered nearly 
40 years ago, and numerous other tight junction proteins have been 
identified since37–39,149,163–167, leading to substantial data describing 
the molecular interactions responsible for selective permeability 
and barrier regulation144,146,147,168–172. This work has led to conceptual 
advances, including the pore and leak pathway model of paracellular 
permeability47,173, and foundational understanding of tight junction 
cell biology, physiology and pathobiology.

In the same year that ZO-1 was discovered33, increased intesti-
nal permeability was identified in a subset of first-degree relatives 
of people with Crohn’s disease174. More recently, these modest leak 
pathway permeability increases were validated as an independent 
risk factor for IBD24. However, all human studies to date have relied on 
probes, such as lactulose and mannitol, that are too large to cross the 
pore pathway. Thus, despite increased claudin-2 expression in human 
disease64,86,87,92,175,176 and experimental data showing that claudin-2- 
dependent pore pathway permeability increases exacerbate disease in  
mice50,98,100, the relevance of claudin-2 to human intestinal disease 
remains to be determined. Our understanding of how barrier function 
and disease are affected by polymorphisms in barrier-related genes 
associated with IBD, including INAVA177–179 and CDH1 (refs. 180,181), 
which encode innate immune activator and E-cadherin, respectively, 
is even more limited.

In conclusion, our understanding of how permeability of the pore 
and leak pathways contributes to health and disease remains relatively 
rudimentary. Thus, although much has been accomplished, much more 
remains to be discovered. Remaining challenges include identification 
of the sites and molecular structure of the leak pathway, elucidation of  
the differences that must exist between seemingly redundant claudins, 
and the definition of non-canonical tight junction protein functions. 
Nevertheless, the promise of tight junction-targeted therapeu-
tics remains compelling, and implementation of such therapeutic 
approaches is growing progressively closer.

Published online: xx xx xxxx
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