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Abstract 

The bubbling community of microorganisms, consisting of diverse colonies encased in a self-produced protective 
matrix and playing an essential role in the persistence of infection and antimicrobial resistance, is often referred to as a 
biofilm. Although apparently indolent, the biofilm involves not only inanimate surfaces but also living tissue, making it 
truly ubiquitous. The mechanism of biofilm formation, its growth, and the development of resistance are ever-intrigu-
ing subjects and are yet to be completely deciphered. Although an abundance of studies in recent years has focused 
on the various ways to create potential anti-biofilm and antimicrobial therapeutics, a dearth of a clear standard of 
clinical practice remains, and therefore, there is essentially a need for translating laboratory research to novel bed-
side anti-biofilm strategies that can provide a better clinical outcome. Of significance, biofilm is responsible for faulty 
wound healing and wound chronicity. The experimental studies report the prevalence of biofilm in chronic wounds 
anywhere between 20 and 100%, which makes it a topic of significant concern in wound healing. The ongoing 
scientific endeavor to comprehensively understand the mechanism of biofilm interaction with wounds and generate 
standardized anti-biofilm measures which are reproducible in the clinical setting is the challenge of the hour. In this 
context of “more needs to be done”, we aim to explore various effective and clinically meaningful methods currently 
available for biofilm management and how these tools can be translated into safe clinical practice.
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Background
Biofilms have been known since the seventeenth cen-
tury when they were first described as animalcules by 
Anton von Leeuwenhoek. But it was not until the early 
twentieth century that their amazing interaction with 
wound biology was unraveled. Although bacteria are 
ubiquitous, their existence as attached colonies enables 
them to assume multicellular behavior. Heukelekian and 
Heller in 1940 first observed that a suitable “surface” 
enables bacteria to grow in colonies, and once an active 
bacterial slime is established, the biological process is 

greatly accelerated [1]. Geesey et  al. used phase-con-
trast microscopy and proposed that the slime-enmeshed 
microbial colonies constituted 99% of functional com-
munities within which most sessile bacteria live [2]. This 
led to the dismission of the classical paradigm of plank-
tonic bacterial lifestyle which was widely prevalent in the 
previous century. Electron microscopic studies revealed 
microbiological variety and the physical arrangement of 
this shiny, translucent layer [3]. Characklis et al. in 1973 
highlighted its tenacity against eradication methods and 
revealed that bactericidal hypochlorite did not reduce the 
slime [4]. Although believed to be dreary, dull, flat layers 
of cells covered with slime, it was the advent of confocal 
microscopic images, which opened the door to a wider 
and deeper perspective of wound–biofilm interaction. 
They have a complex architecture that makes one won-
der whether simple prokaryotes could transform into 
eukaryotic complexities. Bill Costerton [5] coined the 
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term “biofilm” and in 2002, biofilms were first described 
as a microbially derived sessile community character-
ized by cells that are irreversibly attached to a substra-
tum or interface or to each other, embedded in a matrix 
of extracellular polymeric substance (EPS) that they have 
produced, and exhibit an altered phenotype with respect 
to growth rate and gene transcription. This led to a sig-
nificant question “what is the need for bacterial evolu-
tion through such intricacies with the ultimate desire for 
grouped behavior?”

A biofilm confers bacteria certain abilities which are 
absent in the free-living planktonic form. It provides a 
microbial home for the colonizing organisms by creating 
an appropriate physicochemical environment and ren-
ders protection from the host, environment, and other 
competing species. Microbes existing in a biofilm are 
1000–1500 times more resistant to antibiotics than in 
their planktonic state. They also facilitate the uptake of 
nutrients and the removal of metabolic products through 
the primitive circulatory system [6]. An important char-
acteristic seen in biofilm bacteria is gene transfer and 
quorum sensing both of which confer biofilms with dis-
tinct properties that provide protection, aid inter-cellular 
communication and preferentially encourage the growth 
of beneficial species [7, 8]. Biofilm-related gene expres-
sion regulation is yet another mechanism that offers 
protection against antibiotics. Eventually, the presence 
of such an “evolved species” makes the wound persistent 
and chronic. Even with the possession of modern tech-
nologies to study these organisms, researchers have real-
ized their incompetence to completely understand the 
biofilms. The ability of the microorganisms to adapt and 
attach to any environment poses a great challenge in the 
treatment of recalcitrant wounds.

Biofilm: mischief maker in an armored cocoon
The transition of free-floating planktonic forms to bio-
film growth involves complex, multiple signals from 
spatial and temporal reorganization to changes in gene 
expression. However, this “cocooned” infestation is not 
necessarily pathogenic. Percival et  al., in their review of 
microbial biofilm, proposed that it is not the dormant, 
relatively benign, or commensal bacteria that impairs the 
wound-healing process but the presence of biochemically 
and genetically upregulated pathogenic biofilm bacteria 
which do [9]. These colonized resistant benign biofilm 
bacteria upon upregulation can revert to virulent patho-
genic biofilm bacteria causing harm, tissue damage, and 
finally dissemination. Further interaction of the polymi-
crobial biofilm community with its surrounding environ-
ment creates devastating “hyper-inflammation”, thereby, 
establishing a chronic and recalcitrant wound-healing 
process [10]. The direct effect includes the production 

of destructive enzymes and toxins, whereas the indirect 
effect promotes a hyper-inflammatory state which slowly 
brings the wound-healing process more bacteria-centric 
(controlled by bacteria) rather than host-centric (con-
trolled by the host’s physiological processes). Eventually, 
it results in an imbalance between the favorable growth 
factors and the destructive lytic enzymes, free radicals 
which subsequently affect cell proliferation and wound-
healing capability. The persistent inflammation in the 
wound bed allows for abundant nutrient-rich exudate 
that helps further the bacterial cause. Furthermore, this 
hyper-inflammation prevents a Th2 response, a process 
of development of adaptive immunity, necessary to train 
the immune system for better recognition and killing.

The facilitating factors and environment
A. Host factors

1)	 Wound depth: Although not well understood, stud-
ies involving wound samples have shown that ulcer 
depth is positively associated with an anaerobic envi-
ronment and proliferation of facultative anaerobic 
bacteria although the relation is inverse in relation to 
Staphylococcus [11, 12].

2)	 Wound duration: Gardner et  al. demonstrated that 
considering the entire wound microbiome, ulcer 
duration positively correlated with bacterial diver-
sity and species richness with a relative abundance of 
Proteobacteria and negatively correlated with a rela-
tive abundance of Staphylococcus [12].

3)	 Local tissue hypoxia: Microvascular complications 
lead to tissue ischemia causing a considerable delay 
in wound healing [13]. Studies have linked miRNAs 
to angiogenesis and various stages of wound healing. 
It is believed that tissue hypoxia and low oxygen ten-
sion, alter their levels impairing the wound-healing 
process as evidenced by murine models of ischemic 
wounds [14, 15]. This hypoxic environment coupled 
with the presence of necrosed tissue, promotes the 
proliferation of facultative anaerobes [16].

4)	 Immune system: Chronic wounds exhibit a per-
sistent inflammatory phase, causing physiological 
changes in the wound bed and predisposing to a wide 
variety of bacterial species colonization [17]. It is sug-
gested that the downregulation of  TLR-2  in injured 
tissue impedes the immune system and inflamma-
tory response, which causes a reduced chemotactic 
effect that delays the recruitment of various inflam-
matory cells [18–20]. The sustained production of 
pro-inflammatory cytokines, impaired immune cell 
function, poor angiogenic response, microvascular 
complications, compromised keratinocytes, down-
regulation of fibroblast proliferation and migration, 
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and subsequent decrease in production of growth 
factors associated with wound healing have been 
reported and implicated as causes of delayed healing 
in diabetic animal models [21, 22].

B. Microbial factors

1)	 High bacterial diversity: Dowd et  al. introduced 
the concept of functional equivalent pathogroups 
(FEP) in which individual members of the biofilm 
community do not cause disease individually but 
it is their co-aggregation into an FEP that provides 
the synergistic effect. This gives the biofilm com-
munity the favorable factors necessary to maintain 
sustained inflammation and infection in the wound 
[23]. Redel et al. observed that ecological alterations 
in the wound micro-environment influence the risk 
of wound infections [24]. Oates et  al. concluded 
that chronic diabetic foot wounds harbored greater 
eubacterial diversity than healthy skin with Staphy-
lococcus aureus being the most common organism 
[25]. These studies were derived mostly on microbi-
ome-based studies from wound and cutaneous sam-
ples of patients with chronic wounds, thus revealing 
the in vivo situations.

To understand the bacterial diversity, Percival et al. in 
their review paper reflected on the presence of anaer-
obes in DFUs and infection [26]. The role of anaerobes 
in biofilms and their coexistence with aerobic species has 
been largely under investigation. But current evidence 
emphasizes the significance of anaerobes in multi‐spe-
cies biofilm communities [27–29]. The true frequency 
of anaerobes in surgical wounds remains unclear, largely 
related to a diverse variety of bacterial culture methods, 
the types of samples taken for analysis, and the transport 
media used. However, anaerobes are predominantly seen 
in DFUs that are deeper, more chronic, and associated 
with ischemia, gangrene, or a foul odor [30].

Summarizing the available literature, the most encoun-
tered bacteria in chronic wound biofilms are the ESKAPE 
pathogens (Enterococcus faecium, S. aureus, Klebsiella 
pneumoniae, Acinetobacter baumannii, Pseudomonas 
aeruginosa, and Enterobacter spp). Others such as coag-
ulase-negative staphylococci and Proteus spp. are also 
involved [31, 32]. While the focus until now had largely 
been on the diverse bacterial pathogens in chronic 
wounds, the role of fungi (particularly Candida species) 
in wound biofilms is assuming increased significance [33, 
34]. However, it should be emphasized that majority of 
this literature has been the result of studies on bacteria 

isolated from the wounds rather than directly studying 
the biofilm from the wounds.

2)	 Microbial load: It is well documented that wounds 
are susceptible to infections when the microbial load 
reaches a critical level or “critical colonization” [35]. 
However, the concept is contentious. Bendy et al. in 
1964 first proposed that microbial numbers play an 
important role in the non-healing of wounds [36]. 
This was supported by other studies emphasizing 
the critical level which was hazardous for the heal-
ing process [37, 38]. However, in 1997, Robson et al. 
in his study documented that healing occurred even 
in presence of high bacteria count [39]. This obser-
vation questioned the concept of the role of micro-
bial load in assessing the risk of wound infection and 
healing progression. The fact that bacteria are ran-
domly distributed within the wound environment 
and determining their microbial density is very sub-
jective, revolutionized the idea that microbial num-
ber alone should not be used to predict wound infec-
tion.

3)	 Microbial pathogenicity: Polymicrobial nature of 
biofilms in chronic wounds produces a synergistic 
effect that results in non-virulent bacterial species 
becoming virulent and causing damage to the host. 
These synergistic interactions within a biofilm even-
tually affect the bio-volume and bio-functionality of 
the biofilm [40]. However, it is the critical control 
and modulation of gene expression which enables 
phenotypically different forms of bacteria to survive 
during adverse external conditions [41]. This concept 
of biological insurance confers resistance to the host 
immune response and various antimicrobials [42]. In 
addition, the synergistic, antagonistic, and mutualis-
tic cooperation between the microbes in the wound 
bed facilitates a complex yet balanced microbial 
community that exists in a state of homeostasis with 
the host wound bed [43, 44]. The stability and long-
term survival of this microbial community are pos-
sible through the formation of an efficient commu-
nication system that can coordinate the function and 
activities of different species as well as gene expres-
sion [24, 45]. To study the notion of biofilm dissemi-
nation, Guilhen et al. suggested that biofilm detaches 
and disperses in response to various environmental 
and biological signals which helps in their coloniza-
tion into the surrounding environment [46].

Several virulence traits of P. aeruginosa are involved in 
biofilm formation. Among the surface appendages, type 
IV pili help in adhesion in biofilm formation, flagella help 
in maturation of the biofilm, lipopolysaccharide (LPS) 
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layer activates neutrophils to ‘trap’ pathogens thus indi-
rectly protecting itself. Besides, the secretion systems 
(type III–VI) also help in inflammation and invasion. 
Among the secreted proteins, EPS of P. aeruginosa is also 
the main constituent of P. aeruginosa biofilms. Lipase 
A and alginate secreted by the bacteria interacts in the 
extracellular matrix of the biofilm resulting in drug resist-
ance. Several quorum-sensing (QS) pathways regulate 
the release of further virulence factors such as elastase, 
rhamnolipids, and exotoxin A for the maturation of the 
biofilm [47]. Similarly, another biofilm-forming organ-
ism S. aureus also possesses specific virulence traits like 
microbial surface components recognizing adhesive 
matrix molecules (MSCRAMMs), fibronectin-binding 
proteins, autolysins (AtlA), protein A, biofilm-associated 
protein (Bap), and teichoic acids that help in adhesion to 
surfaces and host cells and in maintaining the structural 
integrity of the biofilm [48].

In this context, an emerging concept of ‘theft biofilm’ 
should be discussed, where the host skin lipids are ‘stolen’ 
by the bacteria from the skin wound micro-environment 
to induce the excessive production of several virulence 
factors. In particular, researchers have shown that P. 
aeruginosa, possessing the largest biofilm aggregates, is 
capable of utilizing host lipid factors in the upregulation 
of the ceramidase system which in turn augments biofilm 
formation [49].

C. Environmental factors
Heterogeneity within the biofilm  seems mandatory 
to maintain its ecological stability. Hence, any exog-
enous and endogenous  physiological and biochemical 
changes will alter the relative microbial competitiveness 
within the wound and, therefore, alter the homeostasis. 
The demographic characteristics, personal hygiene of the 
patient, glycemic control, and previous antibiotic expo-
sure all seem to impact the biofilm and its development 
[50].

The clinical significance of biofilms in wounds
A. Recalcitrant wound healing
Two hypotheses have been postulated to understand the 
complex pathway that leads to biofilm-mediated recalci-
trant wound healing. First, the specific bacterial hypoth-
esis suggests that although heterogeneity and complex 
microbial diversity are integral to the biofilm in a chronic 
wound, only a few bacterial species contribute to wound 
infection and are involved in non-healing wounds. In 
contrast, the non-specific bacterial hypothesis considers 
the whole biofilm as a unit and suggests that the complex 
heterogeneous microflora causes delayed wound heal-
ing. These theories are yet to be proven conclusively, as 
it appears that no one possibility in any given wound at 

any point in time is responsible for any specific outcome. 
Their understanding can help us use directed therapies to 
tackle infection and promote wound healing [9, 26].

There have been studies demonstrating the clinical 
translation of metagenomics-based data. In a longitudi-
nal, prospective study on the microbiome of diabetic foot 
ulcer wounds, it was shown that the microbial ‘genetic 
signature’ of the biofilm clearly regulated clinical out-
comes. While variants of S. aureus in the wound–biofilm 
microbiome predicted unfavorable outcomes, commen-
sals such as Corynebacterium striatum and Alcaligenes 
faecalis from the wound margins also influenced healing. 
In addition, wound debridement significantly caused a 
‘microbiome shift’ in wound microflora with reduction 
in low-virulence pathogenic anaerobes for a better out-
come, as against the antibiotic treatment [51].

Quantitative estimation of bacterial aggregates from 
varying depths of the wound surfaces had revealed the 
localization of S. aureus biofilms superficially as com-
pared to those of P. aeruginosa, which were found much 
deeper. The knowledge of this spatial organization of 
the biofilm microflora further supports the benefit of 
debridement in its clinical management [52]. Another 
microbiome shift in wound flora is often observed with 
the administration of topical and systemic antimicro-
bials, which causes a relative increase in members of 
Pseudomonadaceae at the cost of a decrease in Strepto-
coccaceae [12]. The concept of FEPs, clinical interven-
tions causing microbiome shifts in biofilms and actual 
impact of wound debridement in terms of biofilm man-
agement and promotion of wound healing has been bet-
ter revealed by translation of molecular data to that of 
clinically relevant outcome.

B. Antimicrobial tolerance and resistance
Tolerance and resistance to antimicrobial agents is a 
common property of biofilms. Tolerance to antimicrobial 
agents refers to the ability of the members of the bacte-
rial biofilm to transitorily withstand lethal concentration 
of antibiotics or biocides primarily by slowing down the 
vital processes. Such type of inactive and non-dividing 
cells is called persister cells. The metabolic processes, 
which are often the targets of antimicrobial agents, are 
downregulated in persisters. However, they can revert 
to their normal metabolic functions and replication rate 
once the antimicrobial agents are removed. In this rel-
evance, small colony variants (SCVs) of S. aureus and P. 
aeruginosa are very good examples for their persistence 
in host cells. These SCVs have often been isolated in clin-
ical samples thus emphasizing their existence inside the 
host micro-environment [53].

The resistance of biofilms to antibiotics is impressive 
when compared with planktonic cells. Evidence suggests 
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that when microbes exist in a biofilm, they can become 
10–1000 times more resistant to the effects of antimicro-
bial agents [53]. Although this fact is well established, its 
underlying molecular mechanisms are not completely 
understood. Various mechanisms for developing anti-
microbial resistance have been suggested (as detailed 
below), but it is probably the combination of these mech-
anisms that provide the outcome.

Diffusion barrier
The polysaccharide matrix is suggested to act as the bar-
rier which prevents access to the bacterial cell. De Beer 
et al. concluded that the limited penetration of chlorine 
into the biofilm matrix is an important factor influencing 
the reduced efficacy of this biocide as compared with its 
action against planktonic bacteria [54]. Suci et al. studied 
the penetration of ciprofloxacin through P. aeruginosa 
biofilms with the help of infra-red spectrometry in a cul-
ture-based in  vitro model. They found that transport of 
the antibiotic to the biofilm-substratum interface during 
the 21-min exposure to 100 microgram/ml was found to 
be significantly impeded by the biofilm. These results sug-
gest that barriers to drug transport inside bacterial cells 
may be an important factor in antimicrobial resistance 
[55]. However, Dunne et  al. through an in  vitro dialysis 
chamber-based model simulating infected bioimplants 
failed to demonstrate sterilization of staphylococcal 
biofilm even though a combination of  vancomycin and 
rifampicin improved the perfusion of the drugs thereby 
suggesting an alternate method of antimicrobial resist-
ance [56]. Anderl et  al. in their study to investigate the 
penetration of ampicillin and ciprofloxacin through bio-
films in an in vitro model showed that despite full pene-
tration of these antibiotics, there was increased resistance 
of the wild-type strains to ciprofloxacin and the mutant 
strains to ampicillin as well as ciprofloxacin, suggesting 
other mechanisms of antibiotic resistance [57].

Nutrition limitation
Due to nutrient limitations, mature biofilms show a grad-
ual transition of bacterial growth from slow to no growth 
[58]. This physiological change accounts for their survival 
against antibiotics. It was also observed that the sensi-
tivity of both planktonic and biofilm bacteria to antimi-
crobials increased with increasing growth rate, thereby 
indicating that a slow growth rate protects the biofilm 
cells from antimicrobial action [59–61].

General stress response
Interestingly, recent studies have shown that a slow 
growth rate of deeper bacteria within the biofilm is not 
due to nutrient limitation per se, but secondary to a gen-
eral stress response such as temperature changes, pH 

changes, and the presence of other chemical agents [62, 
63]. This hypothesis is plausible as the stress response is 
the cause of physiological changes that protect the bacte-
ria from environmental stresses. It has been also shown 
that RpoS (a gene encoding sigma factor in Escherichia 
coli which regulates the stress response and allows cells 
not only to survive environmental adversities but also 
prepares them for subsequent stress) is the central reg-
ulator of this response and its deletion results in differ-
ences within biofilm cell density [64].

Quorum sensing (QS)
QS is a cell–cell communication mechanism that syn-
chronizes gene expression in response to population cell 
density. Davies et al. reported that an inter-cellular signal 
molecule in the development of P. aeruginosa biofilms led 
to the formation of flat, undifferentiated biofilms unlike 
the wild-type biofilms, which are sensitive to the bio-
cide sodium dodecyl sulfate [65]. However, it has also 
been shown that antibiotic resistance remains unaffected 
in defective QS [66]. Thus, the interpretation of the QS 
mechanism in the development of antibiotic resistance 
needs support from further studies.

Biofilm‑specific phenotype
The activation or repression of genes when cells attach to 
any surface results in the expression of the “biofilm-type 
increased resistance” phenotype. Induction of multidrug 
efflux pumps and alteration in outer membrane proteins 
are some of the acquired protective mechanisms that 
protect the bacteria from the detrimental effects of anti-
microbial agent [67–70].

Host immune response resistance
The transition from planktonic form to complex bio-
film produces small molecules, which increase inflam-
mation and induce host cell death. Although planktonic 
cells are readily cleared, biofilms reduce the effectiveness 
of immune cells to overcome the epithelial barrier, host 
microbiome, and various complement fractions to ensure 
survival. Overall, biofilms stimulate a unique immune 
response that is yet to be fully understood.

Host immune responses to biofilm constituents
The deep embedment of bacteria helps to evade the host 
immune system. Instead, the immune system comes first 
in contact with components of the EPS matrix which 
is a diverse, hydrated mixture of extracellular DNA 
(e-DNA, bacterial and host), proteins, polysaccharides, 
and lipids. Besides being a mechanical barrier, EPS helps 
elicit the host immune response both in form of immu-
nomodulation and immunogenetic. Some studies have 
also suggested that bacterial exopolysaccharides block 
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the host immune response by reducing the production of 
pro-inflammatory cytokines and reactive oxygen species. 
Besides inactivating innate immunity, they also inhibit 
complement activation and adaptive immunity [71]. It is 
important to note that the spectrum of the host response 
to biofilms and their specific components remains 
unclear, and more research is needed in this area. As 
in  vitro studies do not take into consideration of the 
complex wound bed environment, it is also unclear how 
in vitro results can be translated into clinical scenarios.

Host cell response to pathogenic biofilms
Neutrophils play an important role in effectively con-
trolling and eliminating bacterial pathogens. Several 
mechanisms like phagocytosis, release of antimicrobial 
peptides, release of reactive oxygen species and forma-
tion of web-like chromatin structures called neutrophil 
extracellular traps (NETs)  seem to be involved. These 
NETs protect against large-sized pathogens including 
biofilms which are not effectively engulfed by neutrophils 
alone. NETosis causes release of chromatin and other 
proteins from the neutrophils in a controlled manner 
thus clearing the pathogen. Studies conducted on por-
cine burn wound have clearly demonstrated that biofilms 
of S. aureus ‘skew’ the neutrophils through its leucoci-
dins and diminish the effects of NETosis. Similarly, LPS 
layer of P. aeruginosa also induces the activation of NETs 
only to protect itself from other invading pathogens and 
strengthen its biofilm [72].

Pathogenic biofilms weaken the host immune cells 
through several mechanisms such as immobilizing poly-
morphonuclear neutrophils (PMNs), decreasing the 
phagocytic potential of macrophages, inhibiting reac-
tive oxygen species production, and reducing bacterial 
opsonization. In addition, bacteria have evolved to utilize 
both PMNs and macrophages to enhance hyper-inflam-
mation, and thus leading to a bacteria-centric immune 
process in which persistent hyper-inflammation is main-
tained in the wound bed resulting in inflammatory exu-
date formation, which keeps on providing nutrition to 
the microbes [73, 74]. The weakened immune response 
that fails to translate from innate to a more organized 
adaptive immunity is ineffective to control and kill the 
microbes in the long run, contributes to hyper-inflam-
mation, causing collateral damage to host tissue due to 
heightened levels of matrix metalloproteases, neutrophil 
elastases, and inflammatory cytokines [75].

Tools for the detection of biofilms
Biofilms cannot be detected in any wound with the naked 
eye. The presence of a slimy, shiny, translucent layer on 
the wound surface is a non-specific finding and at best is 

a piece of probable indirect evidence of the presence of 
biofilm. To aid in their recognition, several clinical cues 
have been identified [75, 76]:

1.	 Wound failing to heal despite the standard of care, or 
local infection persisting for more than 45 days

2.	 Persistence of formation of necrotic tissue and friable 
granulation tissue in the wound bed

3.	 Failure of antimicrobial agents to facilitate healing
4.	 Layer of slime on the wound surface that can be eas-

ily removed but rebuilds quickly
5.	 The wound heals partially only to break down again

These clinical cues should arouse suspicion and help to 
initiate early biofilm-based wound care, although their 
actual identification requires advanced laboratory tech-
niques. It must be emphasized here that neither there 
is any quantifiable marker for biofilm detection nor any 
objective method to define the areas in a wound affected 
by biofilm. The molecular methods such as DNA/RNA-
based analyses [77] and meta-genomic or more recently 
whole-genome sequencing [78] are more sensitive and 
accurate but have their own limitations, the most signifi-
cant of which is their inability to provide information on 
whether microbial cells are viable, whether the organisms 
are in a biofilm or planktonic phenotype. False positive 
detection of contaminating DNA from the clinical envi-
ronment (including the patient’s skin, surgical instru-
ments, and gloves) is also a matter of concern.

The discovery of Bap in S. aureus as well as other Bap 
homologs on many other bacterial species is revolu-
tionizing the field of biofilm biomarkers. These pro-
teins are found to be present on bacterial surfaces and 
are reported to be involved in biofilm formation [79]. 
Other biofilm matrix components such as cellulose, 
EPS, and e-DNA can also be used as potential biomark-
ers and may offer species identification [80–82]. Various 
other approaches such as proteomics and metabolomics 
are rapidly expanding due to the ability to study biofilm 
physiology more closely and accurately [83, 84].

Biofilm imaging technology is an advancing field that 
provides greater insight into the dynamics and complexi-
ties of biofilms. The ability to visualize 3D biofilm images 
combined with fluorescent staining using confocal scan-
ning laser microscopy (CSLM) helps to visualize biofilms 
in real-time [85]. Besides these novel technologies, the 
traditional methods of in  vitro culture techniques still 
exist. The slow-growing persisters may not form colo-
nies under routine culturing conditions and thus cause a 
false-negative result. Nevertheless, biofilms with a highly 
heterogeneous population of fastidious strains require 
specific growth factors for their cultivation.
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Even though the field of biofilm diagnosis is fast 
evolving, routine biofilm characterization and detec-
tion have multiple challenges. Therefore, the need for 
a standardized and reliable method for detection in 
clinical settings cannot be overlooked.

Therapeutic options
The biofilm construct, wound micro-environment, and 
the intrinsic specialties of the biofilm bacteria make 
the biofilm extremely tolerant to antibiotics and anti-
microbial agents. It additionally creates the demand 
for developing novel anti-biofilm strategies that can be 
used clinically at the bedside and help improve thera-
peutic response, and provide a better clinical outcome. 
Table  1 summarizes various anti-biofilm therapeutic 
strategies available.

Therapies targeting bacteria
These modalities target microbial structure and func-
tion. The mechanisms can range from direct toxicity 

to the bacterial cell to inhibition of their enzymes and 
bacterial signaling pathways.

Bacteriophage therapy

Bacteriophages are viruses and the natural preda-
tors of bacteria. Their ability to negate the protective 
biofilm stems from these proposed mechanisms:

(a)	 High host specificity thereby preserving beneficial 
bacterial flora

(b)	 Production of phage-encoded enzymes (polysac-
charide depolymerase, and alginase) disrupting the 
biofilm matrix

(c)	 Its intrinsic ability to multiply within the bacterial 
host cell and liberate new virus particles by bacte-
rial cell lysis.

(d)	 The cell kill is highly specific and the phage popula-
tion also goes down as soon as the bacterial popula-
tion decreases.

Studies on animal wound infection models have dem-
onstrated positive results in the early phases of biofilm 

Table 1  Anti-biofilm strategies

Anti-biofilm strategies Mechanism of action Examples

(A) Inhibition of biofilm initiation

1 Alteration of physical properties of biomaterials 
[86–88]

Alteration of hydrophobicity, surface charge Hyaluronic acid, Hydrogel membranes, fluori-
nated silica/titanium coatings

2 Alteration of chemical properties of biomateri-
als [89–91]

Altering the exterior of biomaterial Ion coatings, biocides, antibiotics

(B) Inhibition of biofilm establishment/Biofilm dispersals

1 Quorum quenchers [93, 95] Disruption of the biofilm mode of existence Meta-bromo-thiolactone, FS3, Daptomycin

2 Anti-Quorum sensing peptides [96] Attenuate quorum sensing RNA III-inhibiting peptide

(C) Biofilm eradicators

1 Destroy extracellular polymeric substances 
(EPS) [97]

Disruption of protective EPS to expose bacteria 
to antibacterial agents

Deoxyribonuclease I (DNase I), Dispersin B, 
Alginate lyase

2 Nanoparticles [98] Creating artificial channels in EPS Laser-induced nanobubbles, Magnetic nano-
particles

3 Antimicrobial peptides [99, 100] Disruption of the cell membrane, inhibition of 
enzymatic activity

LL-37, Oritavancin

4 Quaternary ammonium compounds (QACs) 
[101–103]

Disruption of the bacterial membrane–cell lysis Mono-/bis-/tris-QACs, XF-70, XF-73

5 Antimicrobial lipids [104, 105] Cell lysis, disruption of electron transport chain, 
inhibition of bacterial enzymes

Glycerol monolaurate, Docosahexaenoic acid, 
Eicosapentaenoic acid

6 Bacteriophage [106–108] Anti-biofilm mediators PhilBB-PF 7A

7 Natural [109–112] Variable 1. Plant extracts: Green tea, Dandasa, fresh garlic 
extract (FGE)
2. Honey: Sidr, Manuka
3. Essential oils: Cumin, Cinnamon oil

8 Novel/modified antibiotics [113–115] Broad-spectrum antibiotics Vancomycin-D-octaarginine (V-r8), Pentobra

9 Others [116, 117] Adjuncts to enhance the sensitivity of conven-
tional antibiotics

1. Electrochemical treatment: damage bacterial 
membrane
2. Cryogenic freezing
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formation although the beneficial effect was not sustained 
in well-formed biofilm [118]. The effect of bacteriophage 
in a mouse wound model against multidrug-resistant P. 
aeruginosa showed promising outcomes [106]. The phage 
therapy was then tested on patients with non-healing 
infected wounds that showed significant improvement in 
wound healing [119]. Needless to say, the use of bacterio-
phages as therapeutic agents is yet to be widely accepted. 
The added benefit of their synergism with concurrent 
antibiotic use cannot only enhance bacterial killing but is 
also likely to reduce antibiotic resistance.

Nano‑antimicrobials and metals
The ability of nano-formulations to cross the biofilm bar-
rier and overcome antimicrobial resistance has increased 
their popularity in recent years. Besides having an intrin-
sic antimicrobial activity (such as silver), these also target 
biofilm matrix and enhance the effect of other modali-
ties (magnetic hyperthermia-based technology). Both 
in vitro and in vivo studies have demonstrated that silver 
inhibits both early and mature biofilms [120, 121]. The 
broad-spectrum antimicrobial ability of these formula-
tions comes from their ability to bind to bacterial struc-
tures and destabilize the intermolecular adhesion bonds. 
Besides using nanoparticles, recent work utilizes the use 
of nanohybrid enzymes with the aim to activate reactive 
oxygen species [121, 122]. However their cytotoxicity at 
high concentrations precludes their clinical use at pre-
sent. Nonetheless, their physical ability to penetrate the 
dense matrix with a low likelihood to develop resistance 
makes them effective against biofilms.

Besides silver, other metals such as cerium and gallium 
also demonstrate anti-biofilm effects. They interfere with 
the formation and maturation of biofilm. Consequently, 
these can be used as a topical application in wound care, 
thus disrupting and preventing biofilm formation [123]. 
However, with a handful of approved products, further 
research is needed for the clinical use of these metals as 
effective armaments against biofilms.

Another method for increased delivery of antimicro-
bials to the wound site is through the implantation of 
biomaterial containing the desired antimicrobial. This 
method of local and sustained delivery of antimicrobials 
has been successfully used in preventing biofilm-related 
wound complications, especially infections in bones 
[124]. The presence of the antimicrobials at the site of the 
wound affects the wound micro-environment leading to 
disruption of the biofilm and initiation of the prolifera-
tive phase and healing.

Blue light therapy
Several studies have demonstrated the positive benefits 
of photo biomodulation in wound healing. Although 

biological mechanisms are yet to be understood com-
pletely, studies have shown that visible light between 
the 400 nm and 500 nm wavelengths has an antimicro-
bial and anti-biofilm effect [125]. Halstead et al. in their 
in  vitro study tested blue light against planktonic and 
biofilm bacteria and showed significant bacterial sensi-
tivity to the blue light treatment [126]. It is interesting to 
note that Gram-positive bacteria are less susceptible and 
the effect on the older biofilm is still a matter of debate. 
The ease of administration, minimal side effects, action 
against a wide variety of microorganisms, and low poten-
tial for tolerance, makes them propitious in the manage-
ment of chronic biofilms.

QS inhibitors
QS is an important signaling system consisting of oligo-
peptides which are released in the extracellular fluid and 
facilitate cell-to-cell communication in bacterial colonies. 
QS is responsible for maintaining bacterial population 
density and virulence factor production [127]. Inhibiting 
these pathways can prevent biofilm formation and reduce 
bacterial virulence. Studies have shown that chlorogenic 
acid decreases bacterial load and accelerates healing in 
a mouse wound model of P. aeruginosa  infection via QS 
[128]. In S. aureus, QS has been shown to be inhibited by 
RNAIII inhibiting peptide (RIP) and its derivatives [129, 
130]. QS inhibitors due to their marked synergistic effect 
with antibiotics can be used as adjuncts to increase the 
susceptibility of biofilms to antimicrobials [134]. How-
ever, their toxic effects on the host cells at working con-
centration [127, 132] and their reduced efficacy in the 
in vivo model limit their clinical use at present [133]. In 
this context, a polyphenolic phytochemical, curcumin, 
has been extensively studied as an anti-biofilm agent. 
Curcumin acts by inhibiting the QS systems and disrupts 
biofilm formation by inhibiting bacterial adhesion to host 
receptors [134]. Several nano-formulations incorporating 
curcumin are available for applications both on wound 
surfaces and on implantable devices to prevent biofilm 
formation.

Matrix‑degrading enzymes
Biofilm matrix degradation is yet another promising 
anti-biofilm strategy. The use of DNAase I, Dispersin 
B (DspB), and a-amylase to degrade complex biofilm 
structure allows for increased antibiotic penetration and 
therefore increases its efficacy [135, 136].

This novel biofilm degrading strategy not only inhibits 
biofilm formation but also disrupts the mature biofilms 
of S. aureus, Vibrio cholerae, and  P. aeruginosa [137]. 
However, the cost of synthesizing pure enzymes for clini-
cal application makes it expensive and limits their clinical 
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use. Nonetheless, combining biofilm matrix-degrading 
enzymes and antibiotics is a highly effective tool for 
removing biofilms from recalcitrant wounds [138].

Antimicrobial peptides and natural compounds
Antimicrobial peptides are positively charged, amphip-
athic peptides, 15–30 amino acids in length that can be 
produced by bacteria and fungi. They bind to negatively 
charged structural molecules on the microbial membrane 
and thereby exert a broad spectrum of antimicrobial 
activity [139]. The major advantage is their ability to act 
on slow-growing, non-multiplying bacteria as encoun-
tered in biofilms. The ability to modify their primary 
amino acid sequences to enhance their effectiveness and 
stability makes them attractive anti-biofilm agents [140]. 
However, their increased susceptibility to body fluid pH, 
proteolytic activity, and ionic strength makes their clini-
cal application challenging.

Natural and plant-based derivatives have also been used 
as preventive measures against biofilms. In this regard, 
the antibacterial effects of honey, both sidr and manuka 
need mention. The antibacterial effects are presumed to 
be multifactorial and are thought to be due to the sub-
stantial content of dicarbonyl methylglyoxal (MGO), 
bee defensin-1, a number of phenolic compounds, and 
complex carbohydrates. Antimicrobial effects exerted 
by the osmotic effect of high sugar concentration, low 
pH, and the presence of hydrogen peroxide produced by 
bee-derived glucose oxidase, are other mechanisms of its 
antibacterial activity [123]. Furthermore, manuka honey 
has been shown to affect gene expression in multi-drug-
resistant Staphylococcus aureus (MRSA) [108].

Ultrasonic treatment
Although low-frequency ultrasound is not effective alone 
in killing biofilm-growing bacteria, it can be combined 
with antibiotics to enhance antibiotic transport across 
the biofilms by enhancing the sensitivity of biofilms to 
antimicrobial agents [141]. Studies have shown that this 
combination helps in the increased killing of P. aerugi-
nosa and S. aureus associated biofilms and those caused 
by drug-resistant E. coli [142, 143]. Employing ultrasonic 
therapy in the management of non-healing wounds is 
a promising non-invasive means to decrease bacterial 
bioburden.

Electrical and electrochemical approaches
Recent years have ignited the interest in electroceuti-
cals and the effect of electrical current in various stages 
of wound healing [139]. Human studies have shown 
that electrical stimulation increases cutaneous perfu-
sion and accelerates wound healing [144]. In a study by 
Banerjee et al., the growth of P. aeruginosa was markedly 

arrested in the presence of wireless electroceutical dress-
ing (WED), which in the presence of wound exudate gets 
activated to generate an electric field. Due to its ability to 
produce ROS, biofilm thickness was decreased and the 
activity of quorum-sensing genes was repressed [145]. 
Similarly, another study demonstrated the ability of WED 
to disrupt biofilm aggregates and accelerate wound clo-
sure by restoring skin barrier functions [146]. These elec-
troceuticals provide novel therapeutic options to improve 
wound outcomes by enhancing re-epithelization and dis-
rupting biofilms. Its low cost, better safety profile, and 
long shelf life provide added advantages to its use.

Therapies targeting wound micro‑environment
Modification of local pH
The wound bed pH shifts from acidic to alkaline to 
neutral and then again acidic as the wound heals [147, 
148]. Studies have shown that failure of most acute and 
chronic wounds to heal is correlated with alkaline pH 
of 7.15 to 8.9 [138, 149]. The arduous wounds which 
are stalled due to a prolonged inflammatory phase are 
also subjected to increased protease activity that is pH 
dependent. Acidification of wounds using topical acetic 
acid [150], polyacrylic acid, and polycarboxylate vinyl 
resins have been employed to study wound healing. It 
is argued that wound acidification being an adjuvant to 
healing, controls  P. aeruginosa, which is present in 40% 
of chronic wounds and is often resistant to antimicrobial 
therapy [151].

Negative pressure wound therapy (NPWT)
Negative pressure wound therapy (NPWT) applies con-
tinuous or intermittent sub-atmospheric pressure to the 
wound surface. Currently, it is a standard of care in dif-
ficult wound management. NPWT may assist wound 
healing by increasing tissue perfusion and help in the 
production of granulation tissue besides reducing exu-
dates, edema, and bacterial contamination [152]. Recent 
work suggests that NPWT with the instillation of anti-
microbials such as diluted hypochlorous acid contrib-
utes to a significant reduction in wound bioburden and 
thereby shows promising results in wounds with mature 
biofilms [153]. With the added advantage of absent bacte-
rial resistance development, this technique in combina-
tion with topical antiseptics is ideal in the management 
of difficult-to-heal wounds.

Hyperbaric oxygen therapy (HBOT)
It is well known that persistent hypoxia in chronic 
wounds limits healing. HBOT is an evolving therapy in 
which 100% oxygen above atmospheric pressure is sup-
plied to the tissues for a defined period with the aim to 
increase the partial pressure of oxygen in the circulation 
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and thereby increase its delivery to the wound bed. It aids 
wound healing by improving oxygenation, decreasing 
inflammation, and enhancing neovascularization [154]. 
Its positive effect on reducing bacterial biofilms both 
in  vitro and in  vivo has also been demonstrated [155]. 
This may be due to its antimicrobial effect via inducing 
oxidative stress and host immune system modulation 
apart from acting synergistically with the antibiotics and 
thereby enhancing its effects [156, 157]. With almost no 
likelihood of the development of bacterial resistance, the 
efficacy of HBOT as an adjunct therapy against biofilms 
is promising.

Surfactants
Surfactants have the capacity to unite compounds with 
different polarities and reduce the surface tension of the 
surrounding medium and thereby decreasing their abil-
ity to stick together. Besides being used as wound scrubs 
surfactants can also be used as carriers of antimicrobials. 
In comparison to the standard silver sulfadiazine cream, 
surfactants have pro-healing effects on full-thickness 
skin wounds [159]. Surfactant polymer dressing has 
been shown to decrease the growth rate of both Gram-
positive and Gram-negative organisms, but the result-
ant effect was mostly bacteriostatic [160]. Surfactants 
work by disrupting the EPS matrix and converting the 
biofilm bacteria to planktonic phenotype. This makes 
bacterial removal easier from wound surfaces and their 
susceptibility toward antibiotics when used in combina-
tion. These molecules can be used to coat dressings and 
sutures and have fewer chances of developing resistance.

Therapies targeting bacteria and chronic wound 
micro‑environment
Probiotics
The use of live bacteria for achieving health benefits 
ranges from simple prevention of viral gastroenteritis to 
the treatment of inflammatory bowel disease. With their 
immunomodulatory role and ability to replace biofilm-
growing pathogens, their use is being considered for the 
prevention of biofilm formation. Walencka et al. in their 
study to evaluate the ability of the Lactobacillus acido-
philus-derived substances to inhibit S. aureus and S. epi-
dermidis biofilms concluded that inhibition of bacterial 
attachment and biofilm disruption occurs by influencing 
cell-to-cell and cell-to-surface interactions [160].

Furthermore, Sadowska et  al. observed the antago-
nistic effect of bacteriocin-like inhibitory substances 
produced by L. acidophilus against the S. aureus strains 
[161]. Varma et al. investigated the anti-infective proper-
ties of Lactobacillus fermentum by co-incubating with S. 
aureus and P. aeruginosa and observed growth inhibition, 
increased cytotoxicity, and decreased biofilm formation 

[162]. Although the results of laboratory studies are 
promising, there is still a long way to identify the ideal 
probiotic that can be used clinically as an anti-biofilm 
tool.

Mesenchymal stem cells
Mesenchymal stem cells (MSCs) due to their antimicro-
bial effect hold tremendous potential for wound infection 
management. These exert anti-infective effects through 
both direct and indirect mechanisms. Their ability to 
secrete antimicrobial peptides as well as modulate pro- 
and anti-inflammatory immune responses have aroused 
interest in their therapeutic potential in biofilm-laden 
wounds [163]. Probably, the most compelling evidence 
is derived from the article by Johnson et  al. who stud-
ied the effects of MSC administration in canine models 
of biofilm-infected wounds, and concluded that the best 
outcome was found in the co-administration of activated 
MSC with antibiotics. Furthermore, repeated systemic 
administration of activated  MSC had better bacterial 
clearing and wound healing [164]. Wood et  al. demon-
strated that human adipose tissue-derived mesenchymal 
stem cells (AT-MSCs) inhibited the growth of S. aureus 
and P. aeruginosa, which was attributed to secretion of 
antibacterial factors, enhanced phagocytosis and reduced 
bacterial adhesion [165]. Their attractive differentiat-
ing potential and ability to speed up the wound-healing 
process by promoting angiogenesis and reducing scar 
formation makes them a promising tool. However, het-
erogeneity in their preparation, suboptimal wound bed 
preparation, cell viability, and the need for larger con-
trolled clinical trials for ensuring safety, preclude their 
widespread clinical use.

The current consensus for the management 
of wound biofilms
Since the biofilm is invisible to the naked eye, identifica-
tion of biofilm “clinical cues” guides an astute clinician to 
initiate biofilm-based multifaceted treatment early. The 
presence of a shiny, slimy layer on a non-healing wound 
bed that reforms rapidly after its removal and does not 
respond to standard wound care treatment and antimi-
crobial intervention is arguably the best indirect evidence 
of the presence of biofilm in the wound. However, the 
World Union of Wound Healing Societies (WUWHS) 
position statement indicates that ‘all non-healing chronic 
wounds potentially harbor biofilms’ and insists that treat-
ment of such wounds should be directed towards dis-
ruption of biofilms and prevention of their reformation 
[166]. Another consensus document also indicates simi-
lar observations and suggests a holistic approach [167]. 
However, it should be acknowledged that the major-
ity of the studies on the management of biofilm-related 
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wound infections have shown a reduction in biomass or 
bioburden in wounds rather than eradication of the bio-
films. That is to say, the complete eradication of biofilms 
is extremely difficult. Therefore, a pertinent question is 
whether better results in wound healing are expected 
after reduction or after the complete eradication of bio-
films. While studies demonstrate that responses to treat-
ment greatly increase even after the reduction of the size 
of biofilms, recurrence or reformation of biofilms poses 
a real challenge. As biofilm formation involves a con-
stant balance between the planktonic bacteria and the 
biofilm-associated bacteria, it would be wise to speculate 
that the reduction of either population of cells helps to 
tilt the balance towards the host’s immune factors. How-
ever, as bacterial evolution has been faster than expected, 
there might be other emerging strategies to outsmart this 
approach. Until further evidence comes in support, reli-
ance on a holistic approach is a better mode of tackling 
wound biofilms.

The biofilm-based wound care (BBWC) is the holistic 
approach to biofilm management with an emphasis on 
initial aggressive debridement and cleansing to reduce 
the biofilm burden as well as increase antimicrobial sus-
ceptibility [168]. The aim is to step-down or bulk up the 
treatment depending on the healing progression. Once 
the necrotic, devitalized tissue is removed and the wound 
bed is prepared, the step-down process ensures the pre-
vention of microbial recontamination and subsequent 
biofilm reformation. This can be achieved using topical 
antimicrobials and barrier dressing. In case the wound 
seems still recalcitrant after 4 weeks of the chosen treat-
ment, the patient and the wound should be reassessed 
and an alternative treatment strategy should be planned 
(Fig. 1).

A. Prevention of biofilm formation
Once the early presence of biofilm is suspected, a proac-
tive approach should be considered to reduce its burden 
and maturation. The newer anti-biofilm agents can spe-
cifically target the early stages of biofilm formation.

Prevention of attachment
Anti-adhesion agents such as mannosides, pillicides, and 
curlicides have shown very promising results in in vitro 
studies [169–172]. Other agents such as lactoferrin, eth-
ylene diamine tetraacetic acid (EDTA) [173], xylitol, and 
honey have been shown to cause bacterial destabilization 
and block the attachment [174]. Other agents which dis-
rupt biofilm EPS (such as EDTA) [168, 170] and interfere 
with signal transduction mechanisms (such as farnesol, 
Iberin, aioene, and manuka honey) [175] also prevent 
biofilm formation and stabilization.

Prevention of colony formation and biofilm maturation
Bacteriophages, nanoparticles, antimicrobial pep-
tides, anti-biofilm polysaccharides, and EPS degrad-
ing enzymes, all exert a significant inhibitory effect on 
micro-colony aggregation and biofilm maturation.

Biofilm dispersion
This strategy is based on the principle that dispersion 
forces the biofilm to assume planktonic phenotype mak-
ing them more susceptible to the combined administra-
tion of antimicrobial agents. Ma et  al. exploited the use 
of biofilm dispersal protein, thereby providing a new tool 
that can facilitate biofilm dispersion [171, 172]. Studies 
have also shown that d-amino acids promote biofilm dis-
assembly by disrupting adhesive fiber interactions [178]. 
Another biofilm-disassembly molecule, Norspermidine 
works complementary to D-amino acids [179], thereby 
making these useful in anti-biofilm therapy.

Fig. 1  Biofilm-based wound care (BBWC): schema of workflow
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B. Disruption of existing biofilm
For the wound-healing process to progress smoothly, 
the wound bed must be well perfused, moist, free of 
necrotic, dead tissue, and clear of infection. Meticulous 
wound care with regular cleansing, debridement, and 
barrier dressing can help extirpate the obstinate biofilm 
and promote healthy granulation tissue formation and 
re-epithelization.

Regular cleansing
Regular wound irrigation should be part of routine 
wound management. This is to remove the necrotic 
material and reduce bacterial load. Low-pressure irriga-
tion using a bulb syringe is sufficient for most wounds. 
For highly contaminated wounds, high-pressure pulse 
irrigation using sterile saline should be considered.

Repeated debridement
Wound debridement facilitates the separation of necrotic 
tissue from the wound bed. This can be accomplished 
by various means such as sharp, mechanical, autolytic, 
and enzymatic debridement [180]. Sharp debridement, 
although effective and rapid to reduce the bacterial load 
and stimulate healthy granulation tissue, has the major 
disadvantage of being painful. Autolytic debridement 
is the natural method in which proteolytic enzymes in 
wound fluid remove the necrotic tissue from the wound 
bed. This natural process can be augmented with the use 
of semi-occlusive dressings which keeps the wound moist 
for a long time. Although easy and feasible, the major 
drawback of this technique is the time taken to produce 
satisfactory results and the high risk of anaerobic growth 
which requires frequent monitoring.

Enzymatic debridement is yet another way to digest the 
proteins in dead nonviable tissue while preserving the 
healthy tissue underneath. Commercially available colla-
genase and papain are two widely used agents. Although 
they are slow and effective in wounds with minimal 
necrotic tissues, these are usually used in adjunct to sur-
gical debridement [181].

C. Prevention of biofilm reformation
Once the wound bed is adequately prepared, antimi-
crobial/anti-biofilm agents should be applied locally 
to inhibit biofilm reformation. Several antimicrobials 
such as acetic acid, honey, iodine, polyhexamethylene 
biguanide (PHMB), and silver have been used in this 
regard. Although used synonymously, antimicrobials 
are broad-spectrum agents that are bactericidal or bac-
teriostatic to the microbes whereas anti-biofilm agents 
are novel compounds that act against biofilm at various 
stages of its formation [182].

As discussed above, one of the most important char-
acteristics of biofilms is their increased tolerance to anti-
microbial agents. Treatment based on laboratory-derived 
antimicrobial susceptibility tests may not always cor-
relate with therapeutic success. Topical application pro-
vides high local concentrations by delivering antibiotics 
directly to the site of infection with low or even undetect-
able serum concentrations, thus avoiding systemic side 
effects. Topical antibiotics are also beneficial in an avas-
cular area where parenterally administered antibiotics 
cannot easily reach. Furthermore, topical application may 
decrease the chances of developing antimicrobial resist-
ance [183]. In this context, antibiotic therapy may have 
a role in the treatment of established biofilm-associated 
infections and even as prophylaxis to prevent infection in 
certain circumstances [183].

Much of the evidence for topical antimicrobial is 
derived from in  vitro studies and due to the large dis-
parity between testing conditions and intended applica-
tion, most of these anti-biofilm strategies fail when used 
in  vivo [184]. While delivering antimicrobials topically, 
the concept of minimum biofilm eradication concentra-
tion (MBEC) should be kept in mind. Although MBEC 
is believed to be lower when the antimicrobial exposure 
time is longer [185], further studies are needed to con-
firm whether MBEC for in vitro studies translates simi-
larly in clinical infection.

D. Reassessment
It is an important aspect to determine the success of bio-
film treatment. All the initial cues which led to the suspi-
cion of biofilm should be reviewed. The parameters such 
as reduction in local signs of infection and the decrease 
in slough are important determinants of successful 
wound healing. In addition, it is suggested that all the 
treatment modalities should be given for at least 2 weeks 
before deciding on their efficacy [71].

The road ahead
Although extensive data arising out of in vitro and in vivo 
animal research do demonstrate various mechanisms by 
which this slimy layer interferes with the wound-healing 
process [186–189], most of the research studies discussed 
above are in the experimental phases barring a few which 
have been successfully introduced in the patient care. The 
real question remains how to detect biofilms in wound 
beds in real life and how much wound beds should be 
involved by biofilms to cause a significant delay in clini-
cal healing. To date, there are little data to suggest to what 
extent biofilm needs to be present to negatively impact 
healing. A non-invasive technique has been described that 
creates a “biofilm map” in the wound bed by “blotting” the 
wound and mapping it using a specific dye solution to tag 
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the free DNA shed by the biofilm in the wound [190]. It 
has given considerable clues to localizing biofilm on the 
wound surface and predicting wound behavior in terms 
of slough development in subsequent weeks depending 
on the extent of surface area stained by the dye. But more 
research is indicated for its commercial use. Since no gold 
standard technique exists for visualization and measure-
ments of biofilm in wounds, bench research forces us to 
reconsider whether the laboratory observations can be 
translated into clinical practice. Evidence-based practice 
can only be guided by clinical research, which at present 
is inadequate in substantiating the in  vitro anti-biofilm 
mechanisms tested in the laboratories. Therefore, well-
designed clinical trials are the need of the hour to test 
laboratory evidence and translate these novel techniques 
to reach the patient’s bedside.

Conclusion
The laboratory and clinical evidence now establish that 
the bacterial biofilm is a major potentiator of wound 
intractability and delayed healing. The pathogenesis is 
thought to be multifactorial and involves a diverse species 
of microbes and their intricate interaction with host cells 
in the wound bed micro-environment. More needs to be 
understood to detect and reverse the effects of biofilms 
in wounds. The in vitro experiments are mostly research-
based and may not have significant anti-biofilm effects 
in real-life scenarios. Moreover, most novel diagnostic 
tools are not clinically available. From a therapeutic per-
spective, the multimodality approach is currently being 
strengthened with the search for various anti-biofilm 
options. Although these recent laboratory developments 
are promising, translational research is the need of the 
hour to have a potential impact on wound health, long-
term morbidity, and quality of life. Even with the mount-
ing scientific evidence, clinical diagnosis is still limited 
by the so-called “diagnostic” clinical cues and mechani-
cal debridement along with topical antimicrobial therapy 
remains the pillars of wound–biofilm management.
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