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ABSTRACT Agrobacterium tumefaciens incites the formation of readily visible macro-
scopic structures known as crown galls on plant tissues that it infects. Records from biolo-
gists as early as the 17th century noted these unusual plant growths and began examin-
ing the basis for their formation. These studies eventually led to isolation of the infectious
agent, A. tumefaciens, and decades of study revealed the remarkable mechanisms by
which A. tumefaciens causes crown gall through stable horizontal genetic transfer to
plants. This fundamental discovery generated a barrage of applications in the genetic
manipulation of plants that is still under way. As a consequence of the intense study of
A. tumefaciens and its role in plant disease, this pathogen was developed as a model for
the study of critical processes that are shared by many bacteria, including host perception
during pathogenesis, DNA transfer and toxin secretion, bacterial cell-cell communication,
plasmid biology, and more recently, asymmetric cell biology and composite genome
coordination and evolution. As such, studies of A. tumefaciens have had an outsized
impact on diverse areas within microbiology and plant biology that extend far beyond its
remarkable agricultural applications. In this review, we attempt to highlight the colorful
history of A. tumefaciens as a study system, as well as current areas that are actively dem-
onstrating its value and utility as a model microorganism.
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Undoubtedly, one of the most fascinating and important areas of microbiology is
the interaction of microorganisms with hosts. Indeed, the study of model bacterial

pathogens has been an active component of microbial science from its earliest days,
most notably, work on Bacillus anthracis and Streptococcus pneumoniae (1, 2). In study-
ing these pathogenic bacteria and their host associations, many important biological
phenomena have been discovered, including the elucidation of numerous processes
that have broadly contributed to our fundamental understanding of biology. Among
these, Agrobacterium tumefaciens, the causative agent of the plant neoplastic disease
crown gall, is a prime example of how fundamental discoveries can result from com-
prehensively studying a pathogen. A. tumefaciens has a remarkable history of yielding
important insights into microbial mechanisms of host interaction, as well as many core
processes that are shared across different bacteria.

EARLY STUDIES OF AGROBACTERIUM

The earliest records reporting studies of plant crown galls are credited to Italian biolo-
gist Marcello Malpighi (of Malpighian tubule fame) (3). However, it was another Italian
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scientist, Fridiano Cavara who recognized that crown galls on grapevines could be corre-
lated to the presence of a microbial isolate and that inoculation of this isolated “schizomy-
cete” could induce tumors on young grapevines, and his observations were published in
1897 (4). It was not until 10 years later in 1907 that renowned U.S. plant pathologist Erwin
F. Smith along with C. O. Townsend, applied bacteriological approaches to satisfy Koch’s
postulates for the etiologic agent of crown gall (5). Smith is often credited as first isolating
and characterizing the pathogen. The range of basic observations made in this initial char-
acterization that remain relevant today is startling. There are several excellent sources that
document the remarkable history of Agrobacterium research (6, 7) and an entire volume
that compiles and comments on many of the landmark discoveries that led to our current
knowledge of Agrobacterium biology (8). The history of A. tumefaciens research is high-
lighted by a striking series of discoveries during the 20th century and now into the 21st
century (Fig. 1, Table 1), and this delightfully complex bacterium continues to yield unex-
pected and illuminating new findings.

TAXONOMIC CHALLENGES

The taxonomic classification of Agrobacterium has had a storied and contentious his-
tory that often confounds scientists who do not study this bacterium, and even those
who do (9). Smith and Townsend originally named the causative agent of crown gall
Bacterium tumefaciens (5). The bacterium subsequently went through several different tax-
onomic designations until 1942, when the genus/species name Agrobacterium tumefaciens
was proposed (10). Three issues are at the heart of the confusion over the name of the
pathogen and its close relatives. First is that early classification schemes attempted to cap-
ture differences in pathogenicity and host range. For example, Agrobacterium tumefaciens
(biovar 1) and Agrobacterium rhizogenes (biovar 2) were classically used to infer those that
cause crown gall and hairy root diseases, respectively. The Agrobacterium vitis (biovar 3)
and Agrobacterium radiobacter species names were used to describe those that cause
crown gall disease on grapevine and strains that are not pathogenic, respectively.
However, pathogenicity is dependent upon a plasmid that can be lost but can also mobi-
lize broadly across taxonomic groups, making pathogenicity an unstable and horizontally
acquirable trait that does not accurately reflect relatedness among strains. For example,
members of biovar 2, reflecting a species-level phylogenetic group, can cause crown gall,
hairy root disease, infect grapevine, or be non-pathogenic. The second issue is the amalga-
mation of some lineages of Agrobacterium and rhizobia that drive nitrogen fixation in
legumes (also a mobilizable trait) into a genus and renaming them all Rhizobium (11, 12).
Adoption of this naming nomenclature has met limited acceptance among both agrobac-
terial and rhizobial research communities. The third issue is related to the second in that
effectiveness in communicating relationships among strains is undermined by repeated
revisions to taxonomic classifications. Consequently, multiple schemes persist and are varia-
bly adopted or abandoned by researchers who contribute to the long history of publication
on these bacteria (13). We do not tackle this topic here but recommend looking toward an
invited review that will attempt to relate some classification schemes to the inferred evolu-
tionary relationships among strains of Agrobacterium (Alexandra J. Weisberg, Yu Wu, Jeff H.
Chang, Erh-Min Lai, Chih-Horng Kuo, in preparation). The association of arguably ephemeral
properties such as pathogenicity with bacterial nomenclature understandably has impor-
tant legacy effects on Agrobacterium taxonomy, and throughout this review we use
Agrobacterium tumefaciens for simplicity.

A BURST OF BASIC RESEARCH PROPELLED APPLIED STUDIES

The initial work and much of the history of A. tumefaciens research was rightfully
focused on its interaction with plant hosts and eventually its development as a tool to
manipulate plants in profound ways. Following the isolation of A. tumefaciens and the
establishment of its etiological relationship with crown gall disease, progress on the micro-
organism was initially relatively sparse, with just a few key labs contributing. The labora-
tory of Armin Braun at the Rockefeller Institute in the 1940s provided several critical
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insights into the formation of crown gall (14, 15) and, importantly, developed the concept
of the “tumor-inducing principle” to describe the factor(s) that stimulates gall formation
(Fig. 1A, Table 1). Certainly, Braun and his lab members must have been influenced by the
seminal studies of Avery, Macleod, and McCarty (also performed at the Rockefeller
Institute) on the “transforming principle” in Streptococcus pneumoniae, which produced
the first evidence that DNA is the genetic material (1). The Braun group made the critical
insight that, once formed, the neoplastic growth in plants could continue to be propa-
gated in the absence of the infecting bacterium, implicating a genetic or heritable change
(14, 16). The true nature of the tumor-inducing principle would require many more years
to be revealed. Nonetheless, it is striking how in the cases of both Avery and Braun, and
their colleagues, who were studying very different biological phenomena, they were also
constructing the conceptual framework for horizontal gene transmission that would con-
tribute so importantly to our understanding of heritability and evolution, enabling the
dawn of molecular biology.

The late 1960s and early 1970s brought pivotal discoveries from laboratories in mul-
tiple countries about the host-microbe interactions that underlie crown gall. Initially,

FIG 1 Timeline of publications reporting impactful Agrobacterium discoveries. (A) Timeline of selected
discoveries arrayed linearly by year from 1650 to 2025. Lead scientists are indicated and usually match the
corresponding author on the publications. Broad periods are indicated by the colored labeled bars below
the timeline. “Major breakthroughs” refers to a very active period expanded in panel B. (B) Expanded view
of discoveries that defined T-DNA transfer and harnessed it for use in plant transgenesis. Basic science
discoveries are indicated by author names in orange text, and development of applications is indicated in
silver text. All citations are referenced in Table 1.
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Australian plant pathologist Allen Kerr recognized that the ability to cause crown gall
tumors was encoded on an element transmissible between bacteria (17). Next, crown
gall tumors were found to produce unique metabolites called opines that are semiex-
clusive nutrients for A. tumefaciens (18). Finally, studies by several groups including
those of Allan Kerr, Jeff Schell and Marc van Montagu in Belgium, and Eugene Nester
in the United States, among others, demonstrated the relationship between crown gall
disease and the episomal element, named the tumor-inducing plasmid (or Ti plasmid),
as the genetic prerequisite for crown gall disease (17, 19, 20). Together, these discov-
eries led to the then radical hypothesis that A. tumefaciens transfers its own genetic
material to plants. The groundbreaking studies of Mary-Dell Chilton in the Nester labo-
ratory provided definitive proof of the transfer of agrobacterial DNA to plant tissues
(21). Chilton’s findings initiated a barrage of research within both academia and indus-
try to understand the transferred DNA (T-DNA) and how it is generated, as well as to
harness the power of interkingdom horizontal gene transmission (Fig. 1B). A barrage of
brilliant work led to major advances in engineering the T-DNA and utilizing this natural
process to transfer genes into plants. In several cases, the labs elucidating the basis for
T-DNA transfer were the same ones propelling the applications for plant transgenesis,
working in concert with applied scientists in the private sector. The burst of fundamen-
tal observations led to a wave of novel applications (Fig. 1B, Table 1). This research also
yielded significant insights into plant cell biology and eventually provided transforma-
tion approaches for not only plants, but also fungal systems (22–24). It was a remark-
able period of discovery and innovation and is an excellent example of basic research
fueling applied science.

TABLE 1 Selected major discoveries and innovations in Agrobacterium research

Yr Discovery Lead scientist(s) Reference(s)
1679 Observation of crown galls on plants Malpighi 3
1897 Isolation/reinoculation of pathogen Cavara 4
1907 Etiological identification of pathogen Smith 5
1941 Bacteria-free tumors Braun 16
1948 Tumor-inducing principle Braun 14
1969 Genetic transfer of virulence Kerr 17
1971 Opine characterization Morel 18
1975 Plasmid as the basis of virulence von Montagu, Nester 19, 20
1977 Agrobacterial DNA in transformed plants Chilton/Nester 21
1980 Tumor-inducing (Ti) plasmid genetic map Schell 137

Organization of T-DNA genes in plant tumors Nester 138
Ti plasmid for gene introduction in plants Schell 139

1981 Fine structure genetic map of T-DNA in plants Nester 140
Mendelian transmission of transferred genes Schell 141

1982 T-DNA border sequences and transfer Chilton 142
1983 Expression of engineered genes in plants Schell, Woo 143, 144

Engineered mini-Ti plasmids Chilton 145
1985 Plant phenolics induce virulence Zambryski 27
1986 T-strand formation in early T-DNA transfer Zambryski 33

VirA-VirG two-component systems Nester 28
1987 Engineered insect resistance Leemans 146

Gene transfer to corn Hohn 147
Gene transfer to Arabidopsis Marks 148

1990 Nuclear targeting of the T-DNA Van Montagu 149
1991 Transgene codon optimization Fischhoff 150
1993–1994 Ti plasmid quorum sensing system Kerr, Farrand, Winans 57–59
1995 T-DNA transfer to Saccharomyces Hooykaas 23
2001 A. tumefaciens C58 genome sequence Nester, Slater 86, 87
2004 Type IV secretion of T-DNA Christie 37
2008 Type VI secretion in A. tumefaciens Lai 38
2012 Polar budding in A. tumefaciens Brun 74
2020 Ti plasmid diversity and evolution Chang 49
2022 Multipartite replicon coordination Wang 92
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AMODEL FOR FUNDAMENTAL PROCESSES

The major breakthroughs on pathogenicity and interkingdom gene transfer pro-
pelled a sustained period of modern discoveries with A. tumefaciens that has continued
to add crucial fundamental knowledge to inform molecular microbiology (Fig. 1A).
Seminal work in A. tumefaciens has impacted our understanding of microbe-host and
microbe-microbe interactions, particularly in the areas of secretion mechanisms and
cell-cell communication. Furthermore, A. tumefaciens is emerging as a model system
for bacterial cell biology with recent mechanistic insights related to polar growth, mul-
tipartite replicons, and plasmid biology. A. tumefaciens has been and remains a treas-
ure trove for important, fundamental findings that have influenced the entire field of
microbiology.

Host-microbe signaling and the two-component paradigm. For pathogenic
microorganisms, we now take for granted the concept of interkingdom communication in
which pathogens perceive and respond to host-released signals. A. tumefaciens-plant inter-
actions are among the first where such host-released signals were identified, as was the
signal transduction cascade that leads to virulence gene expression in response to these
signals (25, 26). Early studies used transposon mutagenesis to disrupt genes required for A.
tumefaciens virulence (vir genes), also fusing lacZ encoding b-galactosidase with the dis-
rupted loci (Fig. 1B, Table 1). The mutants were often avirulent, but also, several of the lacZ
fusions were inducible in the presence of plant extracts (25). Chemical characterization of
the plant exudates using the lacZ fusions as a bioassay identified phenolic precursors of lig-
nin, acetosyringone (AS), and related molecules, which are produced during the wound
healing response of plants (27). It was also demonstrated that many of the vir genes
required for T-DNA transfer are only significantly expressed in the presence of the plant sig-
nals (25). Subsequent genetic studies demonstrated that two of the vir genes, virA and
virG, were required for A. tumefaciens to respond to inducing conditions (26). Sequence
analysis of these loci showed first that VirG is similar to several proteins from E. coli now
called response regulators, including NtrC, OmpR, and PhoB, and that VirA is similar to pro-
teins now known as sensor kinases, NtrB, EnvZ, and PhoR (28, 29). These and other studies
of VirA and VirG established the two-component signal transduction mechanism in A.
tumefaciens but also contributed greatly to the establishment of this general model of
environmental response in bacteria (30). Demonstration of phosphotransfer between VirA
and VirG in response to acetosyringone not only reinforced findings from the Escherichia
coli two-component systems, but also broadened the scope of these regulatory systems to
include host perception by pathogens (31). The two-component regulatory paradigm is
now recognized as one of the most pervasive and influential systems in microbiology.

Type IV secretion systems. The type IV secretion system (T4SS) is central to horizontal
gene transfer, as this system is the apparatus used by conjugative plasmids and integrative
conjugative elements to mediate transfer (32). The T4SS is also a protein secretion system
used by pathogens important to human health. The T-DNA transfer process in agrobacteria
is dependent on a T4SS and has long been a model for these systems. The virB operon on
Ti plasmids encodes 11 proteins, all of which are involved in export of the T-DNA. It was
reported by Stachel et al. in 1986 (Fig. 1B) that induction of virulence and T-DNA transfer
created a single-stranded nick similar to that generated during the conjugation of bacterial
plasmids (33). As DNA sequences from diverse plasmids emerged, and broad comparisons
became possible, it was recognized that the virB gene products are similar to those of con-
jugative transfer systems (34, 35). Furthermore, secretion systems for bacterial toxins in
unrelated systems, such as the Bordetella pertussis toxin liberation system (Ptl) were also
found to be similar to the products of the virB genes (36). Several labs began focusing on
the VirB proteins, and they rapidly became a model for the emergent type IV secretion sys-
tems. A large number of studies on the VirB T4SS from multiple research groups revealed
many of the key mechanisms of T4SS, including an elegant study biochemically tracking
the route of T-DNA through the VirB T4SS (Fig. 1A, Table 1) (37). This work propelled the A.
tumefaciens VirB system to be the prototype for T4SS for many years, as more and more of
these systems in mammalian pathogens were shown to export protein substrates (32). It is
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now clear that the A. tumefaciens system independently secretes protein effectors and T-
DNA into plant cells during infection.

Type VI secretion systems. The type VI secretion system (T6SS) was identified in A.
tumefaciens strain C58 by Erh-Min Lai and colleagues during a screen for proteins secreted
under conditions that induce virulence gene expression (Fig. 1A, Table 1) (38). T6SSs deploy
toxic effector proteins to antagonize other bacteria (39). Studies of the T6SS of A. tumefaciens
have yielded key discoveries about mechanisms of effector loading, such as the molecular
features that determine specificity during engagement, and revealing a checkpoint for load-
ing during T6SS activation (40–46). Studies have also revealed similarities and differences
between T6SS and virulence gene regulation and provided a more complete view on the
ecology of pathogenicity (46). Acidic pH, predicted to mimic the environment of the plant
and rhizosphere, is crucial for inducing and activating the T6SS and virulence. Conversely,
unlike virulence genes, sugars had no detectable effect, while phenolics attenuated T6SS acti-
vation. Overall, findings support a model predicting that the T6SS is activated when cells are
near or associated with plants, but once virulence is induced, the T6SS is downregulated.

T6SS-associated effectors will cause self-intoxication, and cells must encode for immu-
nity against each of their effectors (39, 47). Consequently, the activity and diversification
of the T6SS is predicted to have a tremendous effect on the composition of bacterial
communities (48). The Agrobacterium group has been deeply sequenced, and genomic
data sets are valuable resources for understanding the natural variation of the T6SS (49).
The presence of T6SS loci is variable across Agrobacterium taxa, but when present, genes
encoding most of the structural and regulatory proteins are conserved in sequence and
organization (50, 51). The presence/absence polymorphism was inferred to reflect recur-
rent loss, at various points in the history of these bacteria. Biovar 2, multiple genomospe-
cies groups, and individual strains entirely lack a T6SS locus. Strains with T6SS-encoding
loci are variable in the number and types of effector genes. The T6SSs in taxa that repre-
sent the diversity within the genus have different patterns of activation, suggesting that
T6SSs of different strains or species-level groups are regulated under different environ-
mental conditions (51). The T6SS of Agrobacterium is a model for understanding proc-
esses that have shaped its evolution and mechanistic diversification (52). Overall, the role
of the T6SS in interbacterial competition among Agrobacterium cells is well supported,
but its involvement directly or indirectly in virulence toward plants remains unresolved
(43, 52).

Quorum sensing. A. tumefaciens has been a critical model system for understanding
cell-cell communication, particularly via quorum sensing. These findings have their origin
in the studies of Kerr and colleagues in the late 1960s (Fig. 1A, Table 1) on the conjuga-
tive transfer of the Ti plasmid between bacteria during plant infection (17). Others later
found that Ti plasmid conjugation was stimulated by specific opines, called conjugal
opines (53, 54). Alan Kerr and Lian-Hui Zhang isolated a small molecule that they called
conjugation factor that was produced by A. tumefaciens grown in the presence of specific
opines (55). Chemical characterization of the conjugation factor identified it as N-3-oxo-
octanoyl-homoserine lactone (3-oxo-C8-HSL), similar to the so-called autoinducer (N-3-
oxo-hexanoyl- homoserine lactone) that regulates bioluminescence in Vibrio fischeri, the
symbiont of certain fishes and bobtail squid (Fig. 1A, Table 1) (56, 57). In parallel with this
chemical characterization was the genetic identification of the TraR transcription factor
from two different Ti plasmids and the evidence that it regulated conjugal transfer gene
expression in response to 3-oxo-C8-HSL (58, 59). This inducer molecule was synthesized by
an enzyme called TraI, also encoded on the Ti plasmid (59, 60). TraR and TraI were among
the founding members of the larger LuxR-LuxI family of regulators. As with biolumines-
cence regulation by LuxR and its autoinducer synthase LuxI, TraI and TraR imparted popu-
lation density-dependent expression control on their target genes and Ti plasmid conjuga-
tion (61, 62), and the general population density response was subsequently described as
quorum sensing (63). Several other LuxR-LuxI type systems were also discovered in diverse
bacteria in this same period, most prominently LasR-LasI from Pseudomonas aeruginosa
(64), and acylated homoserine lactone (AHL) autoinducers were detected for multiple bac-
teria (65), resulting in a wave of research on quorum sensing that continues today.
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In addition to its foundational role in expanding quorum sensing beyond the biolu-
minescent marine vibrios, A. tumefaciens has provided several major contributions to
the mechanistic understanding of quorum sensing. These include TraI being the first
LuxI-type protein for which there was in vitro evidence that AHLs could be synthesized
from acylated-acyl carrier protein (ACP) and S-adenosylmethionine (AdoMet) precur-
sors (66), the identification of antagonistic regulators such as TraM that function with
TraR and TraI as an integral part of the quorum sensing mechanism (67, 68), and the
first three-dimensional structure of a LuxR-type protein (69). The structure reported for
TraR was associated with the AHL ligand, and double-stranded DNA, providing a
wealth of biochemical insights for other LuxR-type proteins. These and other funda-
mental insights shaped the field of bacterial cell-cell communication and established a
quorum sensing paradigm.

Polar growth. While most rod-shaped bacteria are assumed to elongate through
growth in the lateral cell wall, it is becoming increasingly clear that asymmetric modes
of peptidoglycan synthesis are prevalent among bacteria. It was in the early 1970s
when Tamio Fujiwara and Sakuzo Fukui first proposed that A. tumefaciens grows uni-
polarly based upon striking morphologies of mutants and careful observations of
microcolony formation (70, 71); however, it was not until the late 2000s that genome
sequencing revealed that the entire clade of Rhizobiales, including Agrobacterium spe-
cies, lacks the genes to encode the canonical elongation machinery (72). This opened
up new research directions for using A. tumefaciens to answer the question, how do
these bacteria maintain rod-like morphologies and elongate? Use of cell wall probes
and timelapse microscopy to track A. tumefaciens cell growth clearly demonstrated
that elongation is mediated by unipolar cell wall insertion (Fig. 1A, Table 1) (73, 74). As
with more overtly asymmetric bacteria such as Caulobacter species, there are a number
of extracellular polar structures such as a unipolar polysaccharide (UPP) adhesin and a
tuft of polar flagella, that are integrated with the polar growth process (75, 76). These
observations and processes have enabled A. tumefaciens to recently emerge as a
model for mechanistic studies of unipolar growth in bacteria.

Systematic characterization of enzymes involved in cell wall biosynthesis and hydrolysis
has resulted in several surprising findings that revealed diversification of these functional
bacterial processes. First, unlike the proposed auxiliary function of penicillin binding pro-
tein 1a (PBP1a) in other rod-shaped bacteria, in A. tumefaciens, PBP1a is an essential
enzyme required for polar growth (77). Second, while some LD-transpeptidases (LDTs) likely
have broadly conserved roles in the modification of existing cell wall material, Rhizobiales-
specific LDTs may function in peptidoglycan cross-linking during polar growth (77, 78).
Third, cell wall hydrolytic enzymes have unique functions in establishing polarity to enable
polar growth. While amidases and their regulators typically function in cell separation of
many bacteria at the culmination of division, amidase AmiC and its regulator EnvC are
required by A. tumefaciens to establish new poles following cell division (79). These obser-
vations suggested that AmiC-mediated modifications of the cell wall may serve as a signal
for the recruitment of the polar growth machinery to the correct pole. Finally, scaffolding
proteins such as PopZ and growth pole ring (GPR) protein reside at the growth pole and
may function to facilitate the organization of specific growth pole proteins, including those
important for cell wall and membrane biogenesis (80–85). The mechanism of polar growth
in A. tumefaciens and other members of the Rhizobiales has evolved through the expan-
sion, diversification, and altered regulation of the core cell wall synthesis machinery, and its
further investigation has promise in providing a more comprehensive understanding of
bacterial growth processes.

Multipartite replicons. A. tumefaciens has emerged as a model organism for under-
standing the evolution and mechanisms of DNA segregation in bacteria with multiple repli-
cons. The genome of the type strain A. tumefaciens C58 consists of four replicons: a circular
chromosome, a linear chromosome, and the pAtC58 and pTiC58 plasmids (86, 87). The cir-
cular chromosome contains an oriC-type origin of replication found in many bacteria chro-
mosomes, whereas the other replicons contain repABC origins, typical of plasmids in this
group of bacteria. Consequently, the linear chromosome is thought to have been a
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plasmid into which gene transfer events from the circular chromosome occurred over evo-
lution, enabling the transfer of some essential genes and an rRNA operon (86–88). These
findings provided the foundation for a more generalizable model of genome evolution
among bacteria with multiple replicons (88). It has been suggested that multipartite repli-
cons may allow for acquisition of additional genetic material, enable faster genome dupli-
cation, and provide an advantage for microbes in changing environments, including host
invasion (88–90). While the precise advantage for multipartite replicons remains unknown,
the maintenance and management of multiple replicons pose some unique challenges.

In A. tumefaciens, the origin of replication of the circular chromosome is localized to the
old pole of the cell, and during chromosomal replication the replicated origin migrates to
the new pole (Fig. 1A, Table 1) (91–94). This polar localization is dependent on the ParABS
chromosome segregation system, and docking of ParBI at the new poles is dependent on
PopZ, while PodJ is indirectly responsible for docking of ParBI at the old poles (85, 91, 92).
Like the circular chromosome, the origin of the linear chromosome is also dependent on
the presence of PopZ and PodJ for efficient localization to cell poles (91, 93). The absence
of GPR causes formation of spherical cells with origin location disrupted and a stochastic
appearance (93). PodJ and GPR play indirect roles in localizing origins to the cell poles,
while PopZ directly interacts with ParB and, to a lesser extent, RepB. Partition systems of
bacterial replicons have sequences analogous to centromeres that are recognized by cen-
tromere-binding proteins. In A. tumefaciens, centromere clustering occurs independently of
the polar organizing proteins (93). The circular and linear chromosomes have interarm
interactions that depend on the SMC complex and require direct interaction of the centro-
mere-binding ParB and RepB proteins (92, 93). These interactions result in a linear align-
ment of the chromosomes and may reduce chromosome entanglement, which if formed
and not resolved can have severe fitness effects on cells. Indeed, disruption of this cluster-
ing pattern leads to loss of the linear chromosome and plasmids from progeny, indicating
that coordination of centromere clustering is important for maintaining the integrity of
multipartite genomes (93). These findings in A. tumefaciens suggest that centromeric clus-
tering is a solution for ensuring that secondary replicons, such as virulence plasmids, are
maintained in the absence of the selective forces that would otherwise promote their
retention.

Plasmid biology. Plasmids innovate Agrobacterium spp. with several important
traits. Pathogenicity is the most renowned and the one that has elevated the promi-
nence of A. tumefaciens as a model and an indispensable biotechnology tool. Multiple
excellent and detailed reviews on the mechanism of Ti plasmid-dependent genetic
transformation of plants have been published (95–97). The oncogenic Ti plasmid en-
codes five core functions: (i) the vir gene products that are required for pathogenicity
and T-DNA transfer, (ii) the T-DNA that is delivered to and integrates with the plant ge-
nome to cause crown gall disease and opine production, (iii) opine catabolic functions,
(iv) the interbacterial conjugative transfer system, and (v) the plasmid replication func-
tions. Several oncogenic plasmids have been “disarmed” by removing genes within the
T-DNA and separating the disarmed T-DNA from the vir genes to make “binary” and
“helper” vectors, respectively (98). Engineering the Ti plasmid was not trivial, as these
plasmids are large and maintained at low copy numbers. The binary system is a foun-
dational technology for plant transformation and remains central to both agricultural
applications and basic research.

The study of Agrobacterium plasmids has also been illustrative for plasmid and bacte-
rial evolution. While plasmids carry cargo genes that give their bacterial hosts a fitness
benefit, there are costs for bearing plasmids, and advantages are realized only in certain
environments (99). Studies of the Ti plasmid demonstrated that costs are context de-
pendent, with higher costs measured under conditions depleted of resources and those
that induced expression of vir genes (100). These observations explain why copy num-
bers of Ti plasmids and expression of vir genes are tightly regulated (101–103). In addi-
tion, observations were consistent with a fundamental theory of cooperation, which is
that pathogenic cells bear costs to direct benefits to related cells, which in this case are
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presumably those with related plasmids (104). This perspective of “taking one for the
team” helps translate the understanding of molecular processes in single cells to under-
standing the evolution and ecology of populations.

Plasmids have traditionally been difficult to study because their sequences are challeng-
ing to resolve and analyze (105, 106). Conversely, because of the intensive work on onco-
genic Ti and Ri plasmids (related to Ti plasmids, but they incite hairy root formation rather
than galls, on plants), there is a depth of knowledge that positions them well as models for
tackling the challenge of inferring plasmid evolution. Phylogenetic and network-based
methods were used to analyze multiple scales of information and classify well over 100 on-
cogenic plasmids (Fig. 1A, Table 1) (49, 107). One of the major unexpected findings was
that the oncogenic plasmids formed a limited number of types that could be related to
each other and to a conceptional ancestral proto-oncogenic plasmid. Another major find-
ing was that these plasmids are highly modular, with the most conserved regions being
potential hot spots for homologous recombination, T-DNAs being extremely flexible, and
virulence being conferred by vir genes mixed and matched from different plasmids or
even distributed across plasmids (107). Nevertheless, despite the potential for tremendous
diversity, structural organization of plasmids can constrain recombination such that certain
events are more permissive, limiting most plasmids to the few extant types observed to
date.

Agrobacterium spp. have another group of diverse nononcogenic plasmids often loosely
referred to as “At” plasmids (108, 109). Although their existence has long been known, we
still have little understanding of their roles in agrobacterial fitness. Catabolism may be one
of the primary functions, as they can have homology to oncogenic plasmids, can catabolize
opines, and can provide access to other nutrients (109–111). Regardless, nononcogenic
and oncogenic plasmids can shape each other in multiple ways. Both classes can be simply
viewed as members of a common pool of molecules that can recombine and diversify
(107, 110). The members of this common pool can also influence signaling and stability
across the two classes of plasmids (112, 113). It is also notable that these plasmids may
have shaped the evolution of Agrobacterium genomes by capturing and shuffling genes
across multiple large replicons. Plasmids have had a significant effect accessorizing
Agrobacterium spp. with novel traits and shaping the structure and organization of their
genomes.

FROM BASIC SCIENCE BACK TO APPLICATION: BIOCONTROL

Species of Agrobacterium are exemplary for demonstrating societal benefits of genetic en-
gineering and biocontrol. Strain K84 of Agrobacterium was the first organism to be geneti-
cally engineered and commercialized for use as a live biocontrol product (114). K84 was dis-
covered in 1970 from a plot with a history of crown gall (115). It is a nonpathogenic biovar 2
strain that lacks an oncogenic plasmid and, unlike others tested, consistently prevented
crown gall disease following a 1:1 coinoculation with pathogenic strains, and was found to
be a hyperparasite of A. tumefaciens. The value of K84 was recognized immediately and it
emerged quickly as a highly successful preventative biocontrol strain (116). However, biocon-
trol is specific and reportedly effective against only strains that induce synthesis of the opine
nopaline in crown galls (117). Furthermore, toxicity and immunity are mediated by pAgK84,
a nononcogenic, nonconjugative but mobilizable plasmid, which raised concerns over poten-
tial for plasmid transmission causing breakdown of biocontrol (118–122). Concerns were mol-
lified by deleting a small region to eliminate plasmid transfer (123). K1026, the strain carrying
the engineered plasmid, is approved as a commercial biocontrol product in many countries
and has no evidence for breakdown of plant protection.

Biocontrol is mediated by agrocin 84, a disubstituted adenine nucleotide and structural
mimic of two molecules (124, 125). The protoxin is a mimic of a conjugative opine, agroci-
nopine A, and is consequently taken up by the cognate transporter (126, 127). The sugar
moiety of agrocin 84, necessary for uptake but not toxicity, is subsequently released to
yield a molecule that mimics leucyl-adenylate and interferes with translation by binding
the catalytic domain of leucyl-tRNA synthase, an enzyme that catalyzes the transfer of
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leucine to its cognate tRNA (128, 129). Cells carrying pAgK84 are resistant to agrocin 84
because the plasmid also encodes a novel variant of leucyl-tRNA synthase that is less sensi-
tive to inhibition (130). The success of agrocin 84 in limiting infection by A. tumefaciens is
exceptional and has helped make these bacteria potential sources for other forms of con-
trol. These include agrocin variants, secondary metabolites, and other compounds that
have yet to be detailed at the genetic and molecular levels (131–134). Lastly, it has long
been known that avirulent Agrobacterium cells can prevent disease presumably through
competition and limiting attachment of pathogens to plant surfaces (135, 136). While this
trait by itself may not be as useful for biocontrol, it makes nonpathogenic strains competi-
tive for plants and contributes in important ways toward the effectiveness of other control
mechanisms.

FUTURE OUTLOOK FOR THE AGROBACTERIUMMODEL SYSTEM

The purpose of this review is to highlight some of the rich history of A. tumefaciens as a
model pathogenic bacterial system, and even so, there is a great deal of important biology
and applications that we have been unable to cover. A model system allows researchers
to investigate phenomena in detail and manipulate processes in ways that take advantage
of the system’s natural attributes and properties, to reveal new insights into general prop-
erties that are otherwise opaque. The interkingdom gene transfer from A. tumefaciens to
plants certainly has warranted the intense level of attention it has received, and it is hard
to argue with the scientific, societal, and economic impact its study and application have
generated. Even with the tremendous and insightful research findings on Agrobacterium-
plant interactions, there remains much to be learned. For example, how do molecular inter-
actions with plant cells lead to nuclear import of T-DNA and integration of the T-DNA into
the plant genome? These remain active areas of investigation and will yield new findings
that have the potential to translate to innovations in genetic engineering. Beyond its util-
ity as a genetic engineering tool, Agrobacterium research has arguably had as large an
impact on our understanding of fundamental biological processes in bacteria, including
but not limited to cell-cell communication, secretion, cell growth, and chromosome dy-
namics. As with all good model systems, there are many phenomena and insights that
remain to be uncovered with the appropriate experiments, approaches, and perspective.
Agrobacterium research continues to inform multiple areas of biology and expands in
multiple new directions at the forefront of microbiology.
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