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ABSTRACT The ferric uptake regulator (Fur) protein is the founding member of the FUR
superfamily of metalloregulatory proteins that control metal homeostasis in bacteria. FUR
proteins regulate metal homeostasis in response to the binding of iron (Fur), zinc (Zur),
manganese (Mur), or nickel (Nur). FUR family proteins are generally dimers in solution, but
the DNA-bound complex can involve a single dimer, a dimer-of-dimers, or an extended
array of bound protein. Elevated FUR levels due to changes in cell physiology increase
DNA occupancy and may also kinetically facilitate protein dissociation. Interactions
between FUR proteins and other regulators are commonplace, often including coopera-
tive and competitive DNA-binding interactions within the regulatory region. Further,
there are many emerging examples of allosteric regulators that interact directly with FUR
family proteins. Here, we focus on newly uncovered examples of allosteric regulation by
diverse Fur antagonists (Escherichia coli YdiV/SlyD, Salmonella enterica EIIANtr, Vibrio para-
haemolyticus FcrX, Acinetobacter baumannii BlsA, Bacillus subtilis YlaN, and Pseudomonas
aeruginosa PacT) as well as one Zur antagonist (Mycobacterium bovis CmtR). Small mole-
cules and metal complexes may also serve as regulatory ligands, with examples including
heme binding to Bradyrhizobium japonicum Irr and 2-oxoglutarate binding to Anabaena
FurA. How these protein-protein and protein-ligand interactions act in conjunction with
regulatory metal ions to facilitate signal integration is an active area of investigation.

KEYWORDS metal homeostasis, transcription, metalloregulation, allosteric regulation,
repressor, activator

Iron is an essential element in all domains of life and is used as a cofactor in numerous
enzymes that are required for metabolism and growth (1). When iron levels are low,

the enzymes that are required for central metabolism, respiration, and DNA synthesis
may fail and thereby limit growth. Conversely, high concentrations of iron (Fe21) acceler-
ate reactions with hydrogen peroxide (H2O2) (via the Fenton reaction), which produces
toxic hydroxyl radicals that damage DNA and proteins (2, 3). Thus, it is crucial that iron
be maintained at optimal levels within the cell (4, 5). Fur (ferric uptake regulation pro-
tein) was first purified from Escherichia coli in 1987 and was found to be an iron-activated
repressor (6). Unlike many DNA-binding regulators, Fur is abundant, with an estimate of
10,000 proteins per cell in E. coli (7), which suggests that Fur may additionally serve as
an iron buffer. Fur is now recognized as the founding member of the FUR superfamily, a
diverse set of metal-regulated transcription factors (8). Here, we briefly summarize the
role of FUR proteins in the metal-dependent regulation of gene expression, a topic that
has been covered in more detail in several recent reviews (9–13). Then, we focus on the
ability of diverse proteins and small molecules to allosterically regulate FUR protein func-
tion, often in response to yet unknown signals.

MODEL FOR REGULATION BY FUR FAMILY PROTEINS

Fur is a homodimeric protein containing at least one iron-sensing site on each pro-
tomer (3, 10). Each Fur protomer may additionally have a structural zinc site that is
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important for protein folding (14, 15). In some cases, a secondary metal-sensing site
may be present (10, 16). At low ambient levels of cytosolic ferrous iron (Fe21), the regu-
latory metal-sensing site is unoccupied, and the dimeric Fur protein is in an “open”
conformation that is not conducive to DNA-binding. The binding of Fe21 to the regula-
tory site generates a “closed” protein conformation in which the two metal-binding
domains are appropriately positioned for high-affinity DNA-binding. The precise confor-
mation changes, and the molecular details of metal-binding and selectivity have been
visualized for several Fur family members and are reviewed elsewhere (10). This simple
model, in which Fur functions as an iron-dependent transcriptional repressor, accounts
for most Fur regulation, as characterized using genome-wide methods (17–25). Because
cytosolic pools of Fe21 are affected by the oxygen tension in the cell, Fur can also func-
tion indirectly as a sensor of O2 (24).

FUR family proteins include the ferric uptake regulator (Fur) (6), zinc sensor Zur (12),
nickel sensor Nur (26, 27), manganese sensor Mur (28–30), and their orthologs (some-
times with different names). Each of these metalloregulators senses changes in ambient
metal levels to regulate metal ion homeostasis (see [9] for a recent review). In addition,
members of the PerR (peroxide stress) subfamily of regulators sense H2O2 stress rather
than metal status (reviewed in [11]). The prototype for this group, namely, B. subtilis
PerR, senses H2O2 when the oxidation of bound Fe21 generates a hydroxyl radical that
covalently modifies a proximal histidine side chain, thereby leading to protein inactiva-
tion (31, 32) and, ultimately, degradation (33). Bound ferrous ions can also be nitrosy-
lated, leading to the derepression of Fur and PerR-regulated genes in response to nitric
oxide (34, 35). Orthologs of PerR are widespread in bacteria, including many pathogens,
although there are variations in the precise signals that are sensed, the biochemical
mechanisms of sensing, and the suite of genes under PerR regulation (11).

Although many FUR regulators are specific for a single cognate metal ion in vivo,
biochemical studies reveal that DNA binding can also be activated by noncognate
metal ions. Indeed, the ability of Mn21 to mismetalate Fur proteins and thereby inap-
propriately repress iron acquisition likely accounts for the ability of mutations in fur to
suppress Mn21 intoxication in several systems (36–38). This type of regulatory crosstalk
can be aggravated by mutations that perturb metal ion homeostasis, often with dele-
terious consequences, as noted for B. subtilis (39–41). For PerR subfamily proteins, the
abilities of both Fe21 and Mn21 to activate DNA binding allows these proteins to tune
their H2O2 sensitivity in response to the Fe/Mn ratio in the cell (41).

Although FUR proteins typically act as classic transcriptional repressors, other regu-
latory modes are possible, including transcriptional activation by the metalated regula-
tor and regulation by the DNA-bound apo-protein (42). Direct transcriptional activation
by DNA-bound FUR proteins was first documented for Neisseria meningitidis Fur (43)
and Helicobacter pylori Fur (44–46). A direct activation mechanism has also been docu-
mented for E. coli Fur (25), B. subtilis Fur (47), Vibrio cholerae Fur (48), Campylobacter
jejuni Fur (49), Streptomyces coelicolor Zur (50), and Xanthomonas campestris Zur (51).
Many organisms contain multiple FUR proteins, and the DNA-binding sites are often
similar in sequence (9, 52). Despite this, regulatory crosstalk in which one binding site
is recognized by more than one FUR protein is rare, although some examples have
been noted (47, 53). FUR binding may, at some sites, also be regulated by epigenetic
DNA modifications, such as adenine methylation (54).

Fur proteins may also indirectly activate gene expression via the repression of nega-
tively acting small RNAs (sRNA). In turn, these sRNAs reduce the translation of abundant
iron-containing proteins and iron-storage proteins, thereby allowing Fur to indirectly
activate their expression when iron is abundant. This type of regulation is generically
referred to as an iron-sparing response (reviewed in references [55, 56]). Though rarer,
apo-Fur can also act as a direct activator, as documented in E. coli (25), C. jejuni (22), and
Staphylococcus aureus (57). Borrelia burgdorferi BosR may also be an example of a Fur
homolog that functions as an activator in the absence of a regulator metal (although it
requires a structural Zn ion for protein folding) (58).
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Homotypic interactions: oligomerization and polymerization of FUR proteins.
Functioning as a traditional repressor, iron-bound Fur (holo-Fur) binds to DNA to pre-
vent the transcription of genes involved in iron acquisition and in the iron-sparing
response (17–25, 59). As originally defined, the Fur consensus (Fur box) is a 19 bp
inverted nucleotide repeat in DNA (60). This sequence is best viewed as two overlap-
ping 15 bp (7-1-7) inverted repeats (61). At such sites, two Fur dimers interact with
overlapping repeat sequences on opposing faces of the DNA (Fig. 1), as visualized in
structures of the Magnetospirillum gryphiswaldense Fur protein bound to DNA (62) and
in the structure of E. coli Zur, which is a zinc-sensing Fur paralog (63). This general
architecture is conserved across bacteria, and searches using a modified information
theory model of overlapping Fur-binding sites was successful at the identification of
Fur-regulated genes (64). A similar dimer-of-dimers model likely applies to other mem-
bers of the extended FUR superfamily (65). FUR proteins can also regulate genes when
bound as a single dimer, as when B. subtilis Fur represses the expression of the feuA
promoter controlling ferri-siderophore uptake functions (66).

Although FUR proteins are commonly observed as stable dimers in solution, other oli-
gomeric states may also be relevant. For example, purified Fur proteins from Pseudomonas
aeruginosa, Francisella tularensis, and Legionella pneumophila form stable tetramers, and
tetramer dissociation is required to generate dimers that are competent to bind DNA (67,
68). Similarly, Anabaena FurC (a PerR ortholog) forms both noncovalent and disulfide-
linked tetramers in solution (69).

At some regulatory regions, FUR dimers may oligomerize to form extended arrays or
interact to form compacted nucleoprotein structures (70, 71). The extended complexes
formed by Fur may result from contiguous DNA-binding sites or result from favorable
protein-protein interactions that are nucleated by an initially bound Fur dimer. Other
FUR family members can also form extended arrays on DNA. The precise arrangement of
the oligomerized FUR proteins along or around the DNA helix has not been resolved.
Streptomyces coelicolor Zur has been studied in detail, and repression was associated
with Zur binding to target sites as dimers or tetramers, whereas activation of the zitB
efflux gene was associated with the formation of an extended Zur protein array (50). FUR
proteins may also bind cooperatively to spatially separated sites. For example, H. pylori
Fur forms a repression complex at the arsRS acid acclimation operon with as many as
three separated binding sites condensed together to form a compacted nucleoprotein
complex. In sum, FUR proteins may bind as dimers, as a dimer-of-dimers (Fig. 1), or in
more extensive complexes, including extended protein arrays or compact complexes
that are mediated by DNA looping or wrapping.

In addition to increasing DNA occupancy, dimers from solution may kinetically facil-
itate protein dissociation from DNA (Fig. 2) (72). This type of protein-assisted DNA dis-
sociation can be observed via the single-molecule tracking of fluorescently labeled

FIG 1 Space-filling representation of Fur protein (from Magnetospirillum gryphiswaldense MSR-1) (62)
that was activated by Mn21 and bound to operator DNA. (A) A dimer of Fur protein (with one
protomer in purple and another in pink) bound to the P. aeruginosa feoAB1 operator site (PDB: 4RB3).
Bases that match the 7-1-7 consensus (TGATAATnATTATCA) for Fur binding are in bold. (B) Two Fur
dimers in complex with a consensus 19 bp Fur box (PDB: 4RB1), which can be represented as two
overlapping 7-1-7 consensus sites (61).
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proteins in vivo by monitoring the on and off rates of DNA-bound complexes as a func-
tion of protein concentration. In the first noted example, it was found that the increas-
ing concentrations of the E. coli CueR metalloregulator (a member of the MerR family)
led to an increase in the DNA dissociation rate (73). Similarly, E. coli Zur dissociates
from its operator site in a concentration-dependent manner that is indicative of pro-
tein-assisted dissociation (74). The ability of metalloregulators to kinetically facilitate
protein dissociation may be particularly important for those regulators that bind metal
ions, such as Cu1 and Zn21, which bind with high affinity to proteins. These ions can
have low rates of dissociation from their cognate metalloregulators, and, when the dis-
sociation of bound protein is also slow, this can create a kinetic barrier to gene induc-
tion in response to the falling levels of metals in the cell.

Heterotypic interactions: competition and cooperation in metalloregulation.
FUR proteins, like most transcription factors, can also be affected by interactions with
other regulators that bind in the vicinity of their cognate operator sites or even com-
pete for the same sites. The binding of multiple regulatory proteins may be independ-
ent, cooperative, or competitive. Transcription regulation is thereby dependent on the
precise set of bound proteins, which allows the integration of multiple signals to con-
trol gene expression.

Competition often results when regulatory binding sites are positioned to allow
one protein to sterically exclude another. This type of interaction is seen in the com-
petitive binding of a Mn21-responsive Fur homolog (Mur) and an iron-responsive regu-
lator Irr in the regulatory region of the irr gene in Bradyrhizobium japonicum (75, 76). At
this promoter, Mur represses transcription, and Irr acts as an antirepressor under iron li-
mitation by binding to an overlapping operator site and occluding Mur binding. A sim-
ilar type of antagonism has been suggested to affect DNA occupancy by B. subtilis Fur,
depending on the activity of two other DNA-binding regulators that signal redox
changes in the cell: ResD and NsrR (77). ResD activity is correlated with anaerobiosis,
whereas NsrR signals the presence of nitric oxide, a reactive gas that antagonizes Fur
function via the nitrosylation of bound iron (34, 35). Similarly, the DNA binding of the
H. pylori Fur protein can be antagonized by NikR, a Ni-responsive repressor (78, 79).
While direct competition for a single binding site is rare, in the regulatory region con-
trolling the expression of the B. subtilis pfeT gene (encoding an iron efflux ATPase), Fur

FIG 2 Schematic illustration of a representative Fur family protein binding to DNA as a dimer and
the regulatory impact of allosteric regulators and protein-facilitated operator dissociation. Most
antagonists likely act from solution to impede the binding of the metalloregulator to DNA (gray line).
Once bound, protein still in solution is postulated to interact transiently with DNA-bound protein to
form an unstable ternary complex that can then resolve to yield either a direct substitution (with no
change in regulation) or the dissociation of both dimers (leading to either derepression or a loss of
activation), as described in (72–74).
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and PerR compete for binding at one of three DNA-binding sites (47). This type of over-
lapping DNA recognition reflects the fact that the B. subtilis Fur, PerR, and Zur consen-
sus sites differ by only one or two bases per half-site. At the pfeT regulatory region,
PerR binds cooperatively to two upstream sites with the promoter proximal site over-
lapping the promoter. The competitive binding of Fur to the promoter distal site allows
for the replacement of the PerR repression complex with the Fur protein, which, at this
promoter, functions as a transcription activator (47).

Cooperative binding between FUR proteins and other DNA-binding regulators has
also been observed. The B. subtilis catDE operon, encoding a catechol dioxygenase, is
repressed by Fur, and this repression is cooperative with CatR, which is a sensor of cate-
chols (19). Similarly, NsrR and ResD bind cooperatively with Fur at some coregulated sites
under anaerobic conditions (77). In S. aureus, the synthesis and uptake of the nicotian-
amine-like metallophore staphylopine is regulated by both Fur and Zur (53). In this case,
the biosynthesis gene cluster (cntK operon) is regulated independently by Fur and Zur
from separate binding sites. However, the uptake genes (cntA operon) are apparently
regulated by the cooperative binding of both Fur and Zur. This uptake operon is most
sensitively repressed by low levels of Zn, but this repression requires both the Fur and
Zur proteins (53). Thus, FUR proteins can bind competitively or cooperatively with other
regulators, a property shared with many other DNA-binding transcription factors.

PROTEIN-PROTEIN INTERACTIONS THAT ANTAGONIZE DNA BINDING

In addition to cooperative and competitive interactions between FUR proteins and
other DNA-binding regulators, numerous examples have emerged of allosteric regula-
tory proteins that bind FUR proteins to prevent DNA binding. In the simplest case, a
regulator binds a FUR protein to form an inactive complex, but more complex types of
interactions are also likely involved.

Uropathogenic E. coli: modulation of Fur activity by YdiV and SlyD. Uropathogenic
E. coli (UPEC) infections require the successful navigation of environments with highly
variable iron availability. During the early stages of infection, the bacteria require flag-
ellar motility to colonize the host, whereas at later stages, flagellar motility is turned off
to evade the host’s innate immune system, and high-affinity iron uptake is induced
(80). Recently, the EAL (Glu-Ala-Leu) domain protein YdiV and SlyD, which is a peptidyl-
prolyl cis-trans isomerase, were found to function together to reduce DNA binding by
Fur in UPEC (81). The ydiV gene is itself induced in response to the low iron conditions,
but this induction is independent of Fur. In a strain overexpressing YdiV, the DNA-bind-
ing activity of Fur decreases 300-fold, and this decrease depends on the presence of
the SlyD prolyl isomerase. Fur protein purified from cells with YdiV and SlyD is in an
altered conformation, and this conformational change depends on a Pro residue at
position 18. A bacterial two-hybrid study revealed formation between both Fur-SlyD
and Fur-YdiV, but not between SlyD-YdiV. Thus, a model emerges in which YdiV binds
to Fur, and this may enhance the ability of the SlyD prolyl isomerase to convert Fur
into an inactive conformer (Fig. 3). It is not yet clear whether this isomerization occurs
only during the folding of nascent Fur protein or whether it might act on extant Fur
molecules. The two conformers, presumably differing in the presence of a cis- versus
trans-Pro bond, still bind iron with similar affinities, but they differ greatly in their abil-
ity to bind DNA. The two Fur conformers also differ in their propensity to form disulfide
bonds, but it was not established whether a disulfide bond occurs in vivo; disulfide
bonds in cytoplasmic proteins are generally rare and transient. Together, YidV and SlyD
are important for the efficient expression of iron uptake functions, and, therefore, for
establishing an infection within host bladder epithelial cells (81). In addition to its role in
helping counter the Fur repression of iron uptake functions, YdiV also functions as a pro-
tein antagonist of the major activator of flagellar motility, namely, the FlhD4C2 protein
complex. This regulator may thereby help coordinate the induction of iron uptake func-
tions with the shutoff of flagellar motility during the invasion into epithelial cells.
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The details of how the YdiV-SlyD system is itself regulated remains to be clarified.
Although ydiV is induced by low iron conditions, the nature of this regulation is unclear.
Further, whereas many EAL domain proteins bind and hydrolyze cyclic-di-GMP, the YdiV
family of standalone EAL domain proteins are catalytically inactive and do not bind c-di-
GMP (82). The activity of SlyD is also puzzling, as it is not yet clear whether it only acts
during protein folding to affect the activity of newly synthesized Fur protein, nor is it
established whether the reported effects of protein conformation on disulfide bond for-
mation are relevant in vivo.

Salmonella enterica: EIIANtr antagonizes Fur DNA binding. Salmonella enterica,
like many bacteria, employs phosphotransferase (PTS)-dependent sugar import sys-
tems that couple the phosphorylation of sugars to their import. This system is initiated
via the phosphoenolpyruvate (PEP)-dependent phosphorylation of enzyme I (EI) fol-
lowed by phosphotransfer to histidine protein (HPr), membrane tethered EIIA and EIIB
proteins, and, ultimately, to sugars being imported into the cell (83). In addition, sev-
eral proteobacteria encode a parallel nitrogen phosphotransferase system (PTSNtr) that
comprises a homologous set of proteins: EINtr, Npr, and EIIANtr (84). The EINtr protein
binds L-glutamine and 2-oxoglutarate (2-OG) to integrate information about cellular
nitrogen and carbon fluxes. The output of the PTSNtr system is phosphorylated EIIANtr,
which interacts with a variety of proteins to allosterically regulate their activity (85).

Iron homeostasis is of paramount importance during infection of the mammalian
host, which is often an iron-restricted environment. Choi and Ryu have shown that
EIIANtr regulates iron uptake genes through a protein-protein interaction with Fur (86).
S. enterica encounters iron limitation within the macrophage phagosome. In response,
S. enterica derepresses Fur-regulated iron uptake systems. However, the derepression
of the Fur regulon is compromised in ptsN mutant strains that lack the EIIANtr protein
(87). Interestingly, this regulatory effect of EIIANtr is dependent on the presence of Fur,
suggesting that EIIANtr may physically interact with Fur to decrease iron uptake repres-
sion. Indeed, a bacterial two hybrid assay revealed a physical interaction between
EIIANtr and Fur, and, in vitro, EIIANtr antagonizes Fur binding to DNA.

There are over 600 species of bacteria that contain both Fur and EIIANtr proteins, and,
thus, EIIANtr may affect iron homeostasis in other related organisms (86). Because EIIANtr

is involved in regulating other cellular processes, it is possible that EIIANtr regulation may
allow Fur to integrate signals besides iron starvation. Intriguingly, phosphorylation was

FIG 3 Summary of protein and small molecule antagonists that affect the function of FUR regulators.
FUR regulators most commonly require a divalent metal ion (M21) to activate DNA-binding. However,
numerous other factors have now been revealed that can also modulate FUR function, often by
acting as antagonists of DNA-binding. The signals that control the expression and activity of each of
these effectors are only partially understood (see the text for details).
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not necessary for the interaction of EIIANtr and Fur (86). Thus, it is unlikely that nitrogen
or glutamine concentrations are the key signals for this EIIANtr-dependent regulation.
Instead, EIIANtr may function by helping titrate free Fur protein to assist in the derepres-
sion of the Fur regulon under low iron conditions. A mechanism for the titration of free
metalloregulator, and possibly for protein-assisted dissociation, may be particularly im-
portant for Fur, as this protein can be abundant, with up to 10,000 proteins per cell in E.
coli (7).

Vibrio parahaemolyticus: FcrX antagonizes Fur DNA binding. Iron can be a limit-
ing nutrient for many marine species, including the marine pathogen Vibrio parahaemo-
lyticus, which exists as both swimming cells in marine environments as well as swarming
cells during the colonization of surfaces, such as the chitinous shells of crustaceans (88).
V. parahaemolyticus differentiates from unipolarly to laterally flagellated cells on surfaces,
thereby allowing for swarming motility and colonization. Differentiation into swarmer
cells requires a temporal gene expression cascade that is mediated by the LafK activation
of s 54-depedent promoters. This differentiation is inhibited by polar flagella and is
induced by iron limitation.

Morabe and McCarter discovered that the fcrX gene is repressed by Fur in iron-
replete conditions (89). In a fur mutant, or upon overexpression of fcrX, cells exhibit
increased swarming motility and derepress iron uptake. Together, this suggests that
FcrX plays an antagonistic role toward Fur. Indeed, FcrX binds directly to Fur, as judged
by coimmunoprecipitation evidence. The authors propose a model in which Fur binds
iron under iron-sufficient conditions and represses the transcription of genes contain-
ing an upstream Fur box (90). As iron concentrations fall, the expression of Fur-regu-
lated genes, including fcrX, is increased. FcrX then binds to Fur to block iron loading or
to inhibit repression by holoFur. Alternatively, FcrX might work to kinetically facilitate
the dissociation of holoFur from DNA. Further studies are needed to discern how Fur
regulation is integrated with the LafK-dependent activation of swarming-related genes
(91–94). Since swarmer cell differentiation genes lack Fur boxes, iron regulation may
be indirect (90). One possibility is that Fur regulates the expression of another regula-
tor that is required for the expression of these swarmer cell genes.

Acinetobacter baumannii: photoreceptor BlsA allows for the light-sensitive mod-
ulation of the Fur regulon. In the multidrug resistant human pathogen Acinetobacter
baumannii, light intensity influences biofilm formation, metabolism, antibiotic resist-
ance, virulence, and iron limitation responses (95). Blue light using flavin (BLUF) pro-
teins sense blue light and transmit this signal to downstream effector proteins through
protein-protein interactions. The A. baumannii BLUF photoreceptor BlsA antagonizes
the Fur-dependent repression of gene expression in the dark and at 23°C but not at 30°C
(96). Consistently, even under iron-limited conditions, the expression of the Fur-regulated
acinetobactin siderophore was only induced in the dark and in a blsA-dependent manner.
The BLUF protein BlsA allows both light and temperature signals to regulate A. baumannii
Fur when the organism is outside the host. How these light and temperature signals may
affect the sensing of iron status during infection is not yet clear.

B. subtilis: YlaN modulates Fur DNA binding. B. subtilis Fur represses a large regu-
lon of genes involved in siderophore biosynthesis and iron import pathways, and it indi-
rectly activates numerous Fe-containing enzymes through the small RNA FsrA (97). The
transcription of fur is repressed by another FUR protein, namely, the peroxide-sensor
PerR. In a perR null mutant, Fur protein levels are elevated by approximately 2.2-fold,
and this increase results in the repression of iron uptake functions due to the binding of
intracellular Mn21 to the Fe21-sensing sites in Fur (40). This inappropriate repression of
iron uptake contributes to a severe growth defect in perR mutant strains. Indeed, perR is
essential in B. licheniformis, unless fur is also inactivated (98). These findings highlight the
importance of tightly regulating Fur protein levels. This also illustrates the deleterious
consequences of the mismetalation of metalloregulatory proteins. For example, Mn21

can act as a toxic agonist of Fur proteins in many Gram-negative organisms.
Genome-wide efforts in B. subtilis led to the identification of approximately 260

essential genes (99). Among these, several have no functionally characterized homologs,
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and these were therefore considered to be attractive candidates for the development of
new antimicrobials. One such gene, namely, ylaN, encodes a small, dimeric protein that
is comprised of 3 alpha-helices (100). Using a CRISPRi inhibition approach to characterize
the consequences of depletion, Peters et al. discovered that the severe growth defects
due to ylaN depletion (and even deletion) could be rescued by iron supplementation
(101). In a genome-wide screen of protein-protein interactions that were detected using
a bifunctional cross-linker, YlaN was found to bind to Fur protein, with the cross-linked
lysine residue in Fur (K74) being near the regulatory metal-binding site (102). Thus, YlaN
is postulated to bind to and inhibit Fur, and, in the absence of YlaN, an unregulated
increase in Fur-mediated repression and subsequent iron starvation may account for the
apparently essential role of ylaN. YlaN proteins are largely restricted to Bacilli and rela-
tives (COG4838), and the gene seems to be constitutively expressed. It is not yet clear
which signals may regulate the amount or activity of YlaN in the cell to modulate iron
homeostasis.

Mycobacterium bovis CmtR antagonizes Zur DNA binding. Mycobacterial species
encode up to five paralogous type VII secretion systems (T7SS), and they are known as
ESX-1 through ESX-5 (103, 104). The ESX-3 system is intimately linked to metal homeo-
stasis, as judged by the inability of the Mycobacterium tuberculosis mutants in this locus
to grow in culture, unless supplemented with iron or, even better, iron and zinc (105).
The ESX-3 system secretes effector proteins that are important for siderophore-mediated
iron acquisition (106), and they may additionally be involved in other metal homeostasis
pathways. Indeed, the expression of the ESX-3 locus is repressed by three different met-
alloregulators: the iron sensor IdeR (107), the zinc sensor Zur (108), and the manganese
sensor MntR (109).

The M. bovis ESX-3 system is additionally regulated by CmtR, which is a metalloregu-
latory protein of the SmtB/ArsR family (110). CmtR likely functions physiologically as a
thiol-dependent sensor of redox stress (111). In response to peroxide stress, CmtR disso-
ciates from an autoregulatory binding site in its own promoter region, thereby leading
to an increase in CmtR protein. Unexpectedly, CmtR enhanced the expression of the
ESX-3 T7SS, despite having no binding activity to the promoter region of this operon.
This effect results from binding between CmtR and Zur, which reduces Zur DNA binding.
These results support a model in which oxidative stress derepresses cmtR expression and
elevated CmtR antagonizes the Zur repression of the esx3 operon (111).

Products of the esx3 operon, including EsxG and EsxH, help combat oxidative stress,
although the mechanism is still unclear. EsxGH may act as external zinc scavengers
that chaperone zinc to importers. Such external zinc chaperones have been identified
in B. subtilis (ZinT) and in P. dentrificans (AtzD). It has been suggested that Zn import
may help alleviate oxidative stress, but the molecular basis for this effect is not clear. In
fact, H2O2 can lead to the demetallation of Fe-dependent enzymes that can then be
inactivated via metalation by Zn (112). Under these conditions Zn import might be dis-
advantageous. Further efforts are needed to clarify how these multiple regulators bind
to the esx3 promoter region (Zur, IdeR, MntR) and, acting from solution (CmtR), work
together to sense diverse signals to control ESX3 expression.

Pseudomonas aeruginosa PacT inhibits Fur DNA binding. Toxin-antitoxin (TA)
systems in bacteria consist of a stable toxin protein and a cognate unstable antitoxin.
The bacterial pathogen Pseudomonas aeruginosa encodes multiple type II TA systems,
which are those with a toxin that is regulated by a protein antitoxin (113). One recently
characterized type II TA system, namely, PacTA, contains a toxin (PacT) that has a
GCN5-related N-acetyltransferase (GNAT) domain and is thought to arrest translation
via the acetylation of charged tRNAs. The cognate anti-toxin, namely, PacA, is a mem-
ber of the AraC family of DNA-binding proteins (113). In addition to its effects on trans-
lation arrest, the PacTA system also affects iron homeostasis. A proteomics analysis of
pacTA deletion mutants revealed that several Fur-regulated iron-uptake proteins had
reduced expression, suggesting that PacTA modulates iron homeostasis in P. aerugi-
nosa (114). PacT specifically bound to P. aeruginosa Fur in vitro to inhibit DNA binding.
The inhibition of Fur DNA-binding activity by PacT derepresses genes for iron uptake

Minireview Journal of Bacteriology

April 2023 Volume 205 Issue 4 10.1128/jb.00022-23 8

https://journals.asm.org/journal/jb
https://doi.org/10.1128/jb.00022-23


and biofilm formation, two traits that are important for P. aeruginosa virulence.
Interestingly, the coexpression of Fur and PacT reduced the toxic effect of PacT, sug-
gesting that Fur binding to PacT also provides some antitoxin activity. In addition, pacT
and pacA expression is enhanced upon the addition of the iron chelator dipyridine,
indicating that iron starvation acts as a signal for the induction of the PacTA system via
a mechanism that is still unknown. Together, these results support a model in which
PacT inhibits bacterial translation, unless it is bound to Fur or attenuated by the anti-
toxin PacA.

SMALL MOLECULES THAT AFFECT FUR FAMILY PROTEIN FUNCTION
Bradyrhizobium japonicum Irr: regulation by the binding of heme. In alphapro-

teobacteria, the Irr subfamily of FUR proteins sense iron in the form of the biologically im-
portant chelate heme. The best studied representative of this subfamily is Bradyrhizobium
japonicum Irr (9, 115). B. japonicum, like many other alphaproteobacteria, also encodes
Mur, which is a FUR protein that senses Mn21. In turn, Mur regulates the expression of Irr,
which responds physiologically to changes in iron status (76). Despite its role in regulating
iron homeostasis, Irr (like Mur) binds DNA in complex with Mn21 (115). Indeed, Irr binds
Mn21 with high affinity, suggesting that Mn21 is the relevant metal cofactor for DNA
binding under all but the most Mn21-limited conditions. Mn21 binds to Irr in a site resem-
bling the metal activation site in B. subtilis PerR, which also binds to Mn21 with a higher
affinity (Kd of approximately 2.8 mM) (15) than does the dedicated Mn21 sensor MntR (Kd
of approximately 13mM) (116). Under iron replete conditions, heme synthesized by ferro-
chelatase is delivered to Irr, where it competitively displaces Mn21, thereby antagonizing
DNA binding (117). An additional layer of regulatory control results from the proteolytic
instability of the heme-bound Irr protein. The displaced Irr-heme complex can be oxidized
and degraded, which further reinforces the derepression of Irr-regulated genes. The
heme-dependent release of Irr from DNA leads to the expression of heme synthesis
enzymes, iron-containing proteins, and proteins involved in iron storage and efflux. Irr is
also an activator of transcription, and, when heme levels are low, Irr binds DNA to activate
the expression of iron uptake genes (76). At sites where Irr functions as an activator,
heme may antagonize activation, independent of DNA dissociation or degradation (118).
The picture that emerges is that Irr senses heme rather than free Fe21 to monitor iron sta-
tus, and it does so by competition with Mn21. Together, Mur and Irr coordinate gene
expression and allow cells to integrate signals that are related to Mn21, Fe21, redox status,
and heme availability.

Anabaena sp. PCC 7120: 2-oxoglutarate enhances DNA binding by Fur at some
sites. The extent to which FUR proteins regulate gene expression through interactions
with other small molecules is not yet clear. In one example, Anabaena sp. PCC 7120
FurA senses both Fe21 and 2-oxoglutarate (2-OG) (119), which is a central metabolite
at the intersection of the Krebs cycle (carbon metabolism) and nitrogen metabolism.
The accumulation of 2-OG serves as a signal of nitrogen limitation. FurA binds to 2-OG
with a high affinity (Kd of approximately 2.8 mM) (119), and this allows FurA to repress
ntcA. NtcA is a CRP (cAMP receptor protein) family protein that regulates nitrogen scav-
enging and assimilation genes, and it is important for the differentiation of nitrogen-
fixing heterocysts.

The FurA regulation of ntcA appears to be part of a complex feedback loop. The bind-
ing of 2-OG to NtcA activates nitrogen assimilation genes and also upregulates the
expression of FurA. FurA also senses 2-OG and represses ntcA, thereby completing a
feedback loop to shut off further NtcA synthesis. The repression of ntcA by FurA requires
a bound metal cofactor (Mn21 is used for in vitro studies), and it is enhanced when 2-OG
is present. In contrast, 2-OG did not affect FurA binding to a different target site, namely,
isiB (119). Thus, nitrogen assimilation genes can be regulated by NtcA and FurA, and
they are affected by iron and redox homeostasis as well as nitrogen limitation (120).

FurA may also sense other signals, in addition to Fe21 and 2-OG. Some FUR regula-
tors have a Cys-rich metal-binding site that coordinates a Zn21 ion that is necessary for
proper protein folding. Although FurA has two CxxC motifs, the protein does not
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copurify with Zn21. The FurA Cys residues are redox active and can be found in either
reduced or disulfide bond form in the cytosol (121). The C-terminal CxxC motif is main-
tained in a reduced state by thioredoxin A (TrxA) (122), and one of these Cys residues
(C141) contributes to the ability of FurA to bind heme, which prevents DNA binding
(123–125). How redox status may regulate FurA activity in vivo is not fully resolved, but
only the fully reduced form of FurA is competent to sense 2-OG and to respond to heme.

E. coli Fur: iron-sulfur cluster assembly. E. coli Fur is one of the best characterized
metalloregulators, and it has both a structural Zn21 site and an Fe21-sensing regulator
site. In addition, there is a third potential metal-binding site that is rich in Cys residues.
Recently, it has been noted that E. coli Fur also has the potential to bind an iron-sulfur
cluster [2Fe-2S] at this auxiliary sensing site (126, 127). The in vivo relevance of the
[2Fe-2S] cluster assembly on Fur function is not yet clear. Only a small fraction (approx-
imately 4%) of Fur protein purified from wild-type E. coli was found to contain a [2Fe-
2S] cluster. However, upon the deletion of two iron-sulfur cluster assembly proteins,
namely, IcsA and paralogous SufA, intracellular iron concentrations were significantly
increased, and Fur was purified in a red form with approximately 31% of the protein
containing a bound [2Fe-2S] cluster at site 3 (126). Site 3 is an auxiliary site of variable
(and often uncertain) relevance that is found in a subset of Fur family members (10,
16). The third site contains three cysteine residues that, upon mutation, abolish the
[2Fe-2S] cluster binding to Fur. Additionally, Fur homologs from H. influenzae and
Vibrio cholerae can also bind substoichiometric levels of an [2Fe-2S] cluster when
expressed in E. coli mutants with elevated intracellular iron levels (126, 128). To date,
no evidence has been presented to demonstrate that the [2Fe-2S] cluster assembly
impacts DNA binding or the expression of genes in the Fur regulon, nor is it clear
whether the [2Fe-2S] cluster assembly is relevant in wild-type cells.

Conclusions. FUR proteins are ubiquitous in bacteria and most commonly function
to sense divalent metal ions (including zinc, manganese, iron, and nickel) to regulate
metal ion homeostasis. Here, we have focused on emerging insights into the ability of
FUR proteins to integrate signals via protein-protein or small molecule-protein interac-
tions (Fig. 3). While the demonstration that a diverse set of proteins can function as
antagonists of metalloregulator activity is an important first step, additional efforts are
required to better define how these allosteric regulators are themselves controlled and
to discern the molecular messages that are represented by their binding. Small mole-
cules also have regulatory potential, as is most carefully defined for heme and the 2-
OG regulation of FurA in Anabaena, but here, too, there are many complexities that still
remain to be explored. Metal ions are central to cell physiology, and metalloregulatory
proteins and riboswitches provide the most direct measurement of intracellular metal
status. Therefore, it is fitting that metalloregulators serve as such central regulatory
hubs, controlling not only metal homeostasis but also diverse metabolic pathways, de-
velopmental programs, and virulence gene expression.
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