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Abstract

BACKGROUND & AIMS: Anti-granulocyte macrophage-colony stimulating factor 

autoantibodies (aGMAbs) are detected in patients with ileal Crohn’s disease (CD). Their induction 

and mode of action during or before disease are not well understood. We aimed to investigate 

the underlying mechanisms associated with aGMAb induction, from functional orientation to 

recognized epitopes, for their impact on intestinal immune homeostasis and use as a predictive 

biomarker for complicated CD.

METHODS: We characterized using enzyme-linked immunosorbent assay naturally occurring 

aGMAbs in longitudinal serum samples from patients archived before the diagnosis of CD (n = 

220) as well as from 400 healthy individuals (matched controls) as part of the US Defense Medical 

Surveillance System. We used biochemical, cellular, and transcriptional analysis to uncover a 

mechanism that governs the impaired immune balance in CD mucosa after diagnosis.

RESULTS: Neutralizing aGMAbs were found to be specific for post-translational glycosylation 

on granulocyte macrophage-colony stimulating factor (GM-CSF), detectable years before 

diagnosis, and associated with complicated CD at presentation. Glycosylation of GM-CSF was 

altered in patients with CD, and aGMAb affected myeloid homeostasis and promoted group 1 

innate lymphoid cells. Perturbations in immune homeostasis preceded the diagnosis in the serum 

of patients with CD presenting with aGMAb and were detectable in the noninflamed CD mucosa.

CONCLUSIONS: Anti-GMAbs predict the diagnosis of complicated CD long before the 

diagnosis of disease, recognize uniquely glycosylated epitopes, and impair myeloid cell and innate 

lymphoid cell balance associated with altered intestinal immune homeostasis.

Graphical Abstract
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Crohn’s Disease; Innate Lymphoid Cells; Macrophages; GM-CSF; Autoantibodies

Inflammatory bowel disease (IBD), subclassified into Crohn’s disease (CD) and ulcerative 

colitis (UC), is an increasingly diagnosed chronic inflammatory pathology of the 
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gastrointestinal tract, affecting 0.3% of the world’s population.1 Although both CD and UC 

affect the gastrointestinal tract, their causes remain puzzling and are likely multifactorial.2 

Genome-wide association studies provide strong support that IBD is a pathology driven 

by monogenetic and multigenetic variations, but nongenetic and environmental factors are 

also considered as contributors to the heterogeneity of this disease.3,4 Identifying factors 

contributing to IBD development that may predict disease onset is, therefore, of high clinical 

relevance.

A key immunologic characteristic of IBD is the break in intestinal homeostasis, commonly 

manifested through insufficient barrier integrity, decreased immunologic tolerance, or 

excessive inflammation. The cytokine granulocyte macrophage-colony stimulating factor 

(GM-CSF) reportedly plays a dual role in intestinal inflammation and was shown to have 

both protective and inflammatory properties in CD.5–9 Group 3 innate lymphoid cells (ILC3) 

produce GM-CSF in the gut, which acts on myeloid immune cells to sustain immune 

homeostasis.10 Derived from ILC3, GM-CSF promotes antibacterial and immunomodulatory 

functions in myeloid cells to sustain the transcriptional stability of ILC3 via the metabolite 

retinoic acid (RA) and the cytokine interleukin (IL) 23.10,11 However, in patients with 

CD, myeloid cells induce differentiation of ILC3 into inflammatory group 1 ILC (ILC1) 

via IL12.12–14 ILC3, or GM-CSF deficiency, impairs antimicrobial immunity and mucosal 

homeostasis aligning with the identification of mutations in GM-CSF signaling in patients 

with CD.6,10,15 Administration of yeast-produced GM-CSF (sargramostim) improved CD 

and ameliorated symptoms.5,16 However, larger trials with sargramostim in CD failed to 

reach statistical significance, possibly due to high placebo group responses and suboptimal 

study design.17–19

Besides genetic defects in GM-CSF signaling, anti-granulocyte macrophage-colony 

stimulating factor autoantibodies (aGMAbs) may also contribute to CD in a subset of 

patients, and they are associated with ileal involvement, disease severity, higher relapse 

rates, and complications.20–24 Induction of aGMAb is also known to cause another disease, 

namely pulmonary alveolar proteinosis (PAP), resulting in alveolar macrophage-deficiency 

and lung pathologies.25 Why patients with PAP do not display intestinal pathologies and 

wy patients with CD with aGMAb do not show PAP-associated pulmonary symptoms 

remains unknown. Moreover, both the overproduction and the absence of GM-CSF 

significantly increase the susceptibility to develop IBD, emphasizing the heterogeneity in 

CD pathogenesis, prompting us to investigate the biology of aGMAb before diagnosis in 

CD.5–9,26

Here, we analyzed >1800 sera, collected longitudinally from active component US military 

personnel over 10 years including subjects who eventually developed CD (n = 220), UC 

(n = 200), and personnel without CD or UC (healthy donors [HD], n = 200),27 along with 

controls with established CD or PAP. We analyzed titers, isotype and subclass profiles, 

epitopes, and functional consequences of aGMAb using enzyme-linked immunosorbent 

assay, neutralization, and reporter assays, and their effect on immune subsets in noninflamed 

ileal CD biopsy specimens using RNA sequencing to establish mechanisms of pathology 

before disease and at its onset that could be exploited for personalized CD therapies.
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Methods

Human Specimen

Noninvolved (NI) intestinal resection and involved intestinal resection samples were 

obtained from patients with CD undergoing ileal resection surgery at the Mount Sinai 

Medical Center after obtaining informed consent. All protocols were reviewed and approved 

by the Institutional Review Board (IRB) under IRB 08-1236, IRB HSM 13-00998, 

NMRC.2012.0007, and NMRC.2014.0019.

Native Polyacrylamide Gel Electrophoresis, Sodium Dodecyl-Sulfate Polyacrylamide Gel 
Electrophoresis/Western Blot, and Lectin Blot

Recombinant and stripped GM-CSF (sargramostim) (8 μg/well) were separated on 15% 

resolving native polyacrylamide gels. Gels were stained with Coomassie G Brilliant Blue 

to confirm stripping. Proteins were then transferred to nitrocellulose membranes and 

membranes were blocked with 5% nonfat dry milk in Tris-Buffer Saline 0.1% Tween-20 at 

4°C. Membranes were then incubated with serum samples (diluted 1:100 in blocking buffer). 

Bound anti-GM-CSF antibodies were detected using anti-human immunoglobulin (Ig) G 

alkaline phosphatase at 1:1000 in Tris-Buffer Saline 0.1% Tween-20. The glycoprofile of 

recombinant forms of GM-CSF was evaluated using lectin blot. Also, 2 μg of purified 

GM-CSF were separated as previously described and membranes blocked with bovine serum 

albumine 4%. Phaseolus Vulgaris Leucoagglutinin (L-PHA), Maackia Amurensis Lectin II 

(MALII), Galanthus Nivalis Lectin (GNA), and Aleuria Aurantia Lectin (AAL) (each 2 

μg/mL) were used and bands visualized using the Vectorstain Elite avidin-biotin complex kit 

and enhanced chemiluminescence reagent. For Western blot analysis, 5 μg of purified GM-

CSF separated as described previously and detected using biotinylated GM-CSF antibodies 

(0.1 μg/mL R&D Systems, Minneapolis, MN). Target bands were visualized as described 

previously.

Results

CD-Associated aGMAbs are Distinct From Those in PAP and UC

To assess the prevalence and characteristics of aGMAb in IBD, serum IgG titers against 

sargramostim, a yeast-produced recombinant GM-CSF, were measured in a cohort of 

patients with active CD (n = 81) or UC (n = 37), HD (n = 43), and patients with PAP 

(n = 12). Among patients with IBD, 40% of patients with CD and 14% of patients with 

UC displayed detectable levels of IgG aGMAb (titers >1/100) (Figure 1A). Titers detected 

in patients with CD but not in patients with UC were significantly higher compared with 

HD, but lower when compared with patients with PAP (Figure 1A). Only 3 of 53 sera from 

patients with IBD with aGMAb reacted with other known autoantigens, emphasizing that 

the vast majority of aGMAb responses were antigen-specific (Supplementary Figure 1A). 

Sera showing broad nonspecific antigen reactivity were excluded. Even though aGMAb 

titers differed between patients with PAP and patients with IBD, adjusted titers demonstrated 

comparable, relative avidity to GM-CSF (Supplementary Figure 1B).
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We examined the isotypes and IgG subclasses of aGMAb in patients with IBD vs patients 

with PAP. PAP-associated aGMAbs were enriched in IgG1 and IgG4, isotypes virtually 

absent in IBD-associated aGMAbs, and were enriched in IgG2 and IgA. IgM and IgG3, 

but not IgE, were detectable in both PAP and IBD, with higher average IgM aGMAb in 

patients with CD (Figure 1B). IBD-associated aGMAbs were a specific marker for CD 

with ileal involvement and complicated disease, confirming previous studies (Supplementary 

Figure 1C and D and Supplementary Table 1).21–24 Measuring aGMAb thus allows the 

discrimination of a subgroup of patients with CD among all patients with IBD.

In contrast to previously reported peptide epitopes in PAP, synthetic overlapping 20-mer 

linear peptides covering GM-CSF failed to react with CD-associated aGMAb (data not 

shown).25 Suspecting conformational epitopes, binding of aGMAb to denaturated GM-CSF 

was virtually absent using CD sera (Supplementary Figure 1E). Unlike PAP sera, CD 

sera did not react with GM-CSF in the absence of post-translational modifications; only 

PAP sera bound bacterially produced recombinant GM-CSF, whereas CD sera required 

a eukaryotic GM-CSF product to react (data not shown). Analysis of yeast-produced GM-

CSF using gel electrophoresis revealed 3 bands at ~19.5 kDa, ~16.5 kDa, and ~14.5 kDa 

(Figure 1C). The highest band carried post-translational modifications by glycosylation, 

lost when enzymatically stripped (Figure 1E). GM-CSF expressed in HEK293 cells lost 

this band pattern when all glycosylation sites were mutated to alanine (Supplementary 

Figure 1F). Post-translational modifications of GM-CSF have previously been suggested 

as ideal antibody-recognition sites.28 We assessed whether sera from patients with CD 

would react with the different forms of yeast-derived GM-CSF. Whereas PAP sera bound 

all bands of GM-CSF, CD-associated aGMAb bound larger glycosylated GM-CSF (Figure 

1C, Supplementary Figure 1E and F). When sargramostim was enzymatically stripped of 

glycans, seroreactivity of CD to the 19.5 kDa band was lost but remained to the 16.5 kDa 

(Figure 1C), whereas PAP sera also recognized the fully deglycosylated 14.5 kDa band of 

GM-CSF (Figure 1E).25 Similarly to IgG, IgA aGMAb from patients with CD showed high 

specificity to glycosylation (Figure 1C). We confirmed specificity of CD-associated aGMAb 

using recombinant human GM-CSF produced in human cells, indicating that reactivity was 

not exclusive to yeast-specific modifications (data not shown).

To evaluate commonalities in the glycan composition, yeast- and mammalian cell-derived 

GM-CSF were resolved via sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

and the glycoprofile of GM-CSF assessed via lectin blot (Supplementary Figure 1G). 

Membranes were probed with the lectins L-PHA, GNA, and AAL, which specifically 

recognize B1,6GlcNAc branched N-glycans, high-mannose N-glycans, and a1,6/a1,3 fucose, 

respectively (Supplementary Figure 1I). Mammalian cell-derived GM-CSF displayed a 

large glycoform reacting positively with L-PHA and AAL implicating the expression of 

complex branched and fucosylated N-glycans (Supplementary Figure 1I). The 16–17 kDa 

band of mammalian cell-derived GM-CSF reacted with MALII and GNA, revealing high-

mannose N-glycans, and hybrid N-glycans with terminal sialylation (Supplementary Figure 

1I). Yeast-derived GM-CSF reacted only with GNA, suggesting high-mannose N-glycans 

as shared glycol-modification (Supplementary Figure 1I). These results demonstrate that 

mammalian-derived GM-CSF shares high-mannose N-glycans with yeast-derived GM-CSF 

and suggest that CD-associated aGMAbs selectively recognize these structures on correctly 
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folded, native GM-CSF. To determine if glycosylations on GM-CSF differed between CD 

and HD, serum GM-CSF was captured and incubated with lectins. GNA binding was 

significantly higher on GM-CSF from patients with CD, suggesting an increase in high 

mannose N-glycans on GM-CSF in CD (Figure 1D). Decreased AAL binding indicated 

a decrease in the core fucose residues in CD (Figure 1D and Supplementary Figure 2A). 

The increase in mannose and decrease in the core-fucose structures suggest a CD-specific 

glycosignature on GM-CSF. The analyzed samples showed comparable levels of serum GM-

CSF but no detectable aGMAbs, suggesting that changes in the glycosylation of GM-CSF 

are no prerequisite for aGMAb formation (Supplementary Figure 2A and B).

Neutralizing Capacity of CD-Associated aGMAb

The enriched abundance of binding of aGMAb to GM-CSF in patients with CD 

(Supplementary Table 1, Figure 1A and B) supports the hypothesis that aGMAbs have 

neutralizing capacities20. We next determined whether aGMAbs abrogate granulocyte 

macrophage-colony stimulating factor receptor (GM-CSFR) signaling in monocytes, 

dendritic cells (DC), and plasmacytoid DC of healthy controls. Blood leukocytes were 

stimulated with recombinant human GM-CSF in the presence of PAP-sera (n = 9), CD-sera 

negative for aGMAb (n = 20), or CD-sera positive for aGMAb (n = 20). Post-stimulation, 

phosphorylated (p)-STAT5 levels were measured (Supplementary Table 2). Reduced 

pSTAT5 was observed in the presence of PAP-sera and CD-sera positive for aGMAb (Figure 

1F and G, Supplementary Figure 2C). GM-CSF stimulation did not increase pSTAT5 in 

T/B/natural killer (NK) cells across all groups (Figure 1F). IL3 stimulation of basophils was 

not affected by aGMAb, suggesting unaltered common beta chain signaling (Supplementary 

Figure 2D). Decreased pSTAT5 correlated with aGMAb titers, demonstrating neutralizing 

activity on circulating precursors of intestinal antigen-presenting cells (APCs) (Figure 1F).

Unmodified GM-CSF as a Potential Way to Restore Homeostatic Functions of GM-CSF

Enzymatically stripped and genetically engineered GM-CSF, lacking glycans structures 

remained biologically active and stimulated pSTAT5 (Supplementary Figure 2E–G). We 

hypothesize that GM-CSF devoid of glycosylation would render the cytokine capable 

of escaping neutralization by CD-associated aGMAb. Freshly isolated peripheral blood 

mononuclear cells stimulated with glycosylated and deglycosylated GM-CSF in the presence 

or absence of aGMAb were analyzed for pSTAT5. Glycosylated GM-CSF was neutralized 

by CD-associated aGMAb whereas enzymatically stripped GM-CSF escaped aGMAb 

recognition (Supplementary Figure 2F and I).

CD-Associated aGMAbs Precede the Onset of Complicated Disease

The presence of neutralizing aGMAbs in patients with CD further suggests that isotypes 

may contribute to disease pathophysiology and possibly etiology. To address this hypothesis, 

we tested sera obtained from the Department of Defense Serum Repository, prospectively 

collected from military service members during their annual routine medical examinations.29 

Some of these service members were eventually diagnosed with either UC or CD during 

the course of their service. Three to four longitudinal serum samples spanning up to 10 

years, obtained before diagnosis, at diagnosis, and after diagnosis from 220 CD, 200 UC, 

and 200 matched individuals remaining healthy (HD), were analyzed in 2 independent runs 
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(Supplementary Table 3). Total IgG and IgA anti-GM-CSF enzyme-linked immunosorbent 

assays were performed for each time point of collection. Healthy military service members 

and service members diagnosed with UC had a similar 5%–10% detection rate of anti-GM-

CSF IgG, with low mean titers less than the limit of significance (between 1 of 25 and 1 of 

50), and nearly no anti-GM-CSF IgA detection (0–1%), without significant change by time 

point (Figure 2A and B, Supplementary Figure 3A–D). In contrast, IgG and IgA aGMAb 

were already found 6 years before CD diagnosis in 21% and 7% of samples, with additional 

patients seroconverting and mean titer increasing from 1 of 190 to 1 of 320 toward the 

time of diagnosis (Figure 2A–C, Supplementary Figure 3). At the time of diagnosis, IgA 

aGMAb were exclusively elevated in 12% of CD, whereas IgGs were significantly more 

frequent (25%) compared with HD and UC (Figure 2A and B, Supplementary Figure 3C). 

Nearly all patients with CD with detectable aGMAb 6 years before diagnosis maintained 

or increased their titers until the time of diagnosis (Figure 2C, Supplementary Figure 3E 

and F). Most (75%) anti-GM-CSF IgA co-occurred with IgG, whereas IgG to GM-CSF was 

more frequent and was detected in 63% of cases in the absence of IgA.

Anti-GMAb in CD associated with ileal/ileocolonic involvement and complications within 

100 days of diagnosis, with a 2.8 risk hazard ratio of having penetrating and/or stricturing 

disease or surgery at or soon after clinical diagnosis (Figure 2D, Supplementary Figure 

4A–D). Presence of IgA up to 6 years before diagnosis provided a predictor for CD 

development with >97% specificity and with sensitivity increasing from 15%–21% as 

time to diagnosis decreased (area under the curve 0.6). The detection of aGMAb did 

not correlate with date of birth, sex, race, or year of sample acquisition, rendering 

this biomarker universal across patients (data not shown). Anti-Saccharomyces cerevisiae 
antibodies, a common serologic marker for IBD, were shown to present before diagnosis 

using similar cohorts.3,30,31 Anti-GMAb preceded the occurrence of anti-Saccharomyces 
cerevisiae antibodies IgA and showed no significant correlations 2000 days before diagnosis 

(Figure 2E, Supplementary Table 4). We next analyzed serologic data from the Somalogics 

platform to determine if aGMAb correlated with immune-related blood serum markers 

before diagnosis. Unsupervised clustering by similarity matrix of 1129 circulating analytes 

in sera collected from 100 patients with CD ~6 years before or around diagnosis revealed 

20 distinct clusters with coexpression patterns. Three clusters showed significant mean 

expression differences depending on the aGMAb status (Figure 2F, Supplementary Figure 

4G, Benjamini-adjusted P-value <10%). Markers in cluster 1 were up-regulated in aGMAb+ 

patients as early as 6 years before diagnosis and remained elevated thereafter. These 

markers were enriched in inflammation (D-dimer, C-reactive protein), lipid binding protein, 

opsonization (MBL2, SAA1), plasma cell, the complement cascade (CFB, CFI, CFH, C4B, 

C9, FGG), and Th1 chemokines (CXCL3 and CXCL11) (Figure 2F). Clusters 5 and 7 

contained markers that decreased with aGMAb across both time points. These markers were 

enriched in cytokines (IL10, IL12AB, IL17B, IL23A), chemokines (CCL2, CCL8, CCL20, 

CCL24), and fibroblast growth factor signaling implicating an impairment in immune 

homeostasis. Of note, IL25 and IL17A were exceptions in cluster 7, and were higher with 

aGMAb. Collectively these findings suggest an altered immune balance in the presence of 

aGMAb years before the diagnosis of CD, consistent with a shift toward type 1 immunity 

and the possibility for undetected subclinical inflammation. These results prompted us to 
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next investigate the phenotype and function of GM-CSF–responsive cells in the mucosa of 

patients with CD.

CD Mucosa Shows Impaired Homeostatic Functions in GM-CSF–Responsive Myeloid Cells

GM-CSF engages the heterodimeric GM-CSFR, composed of the GM-CSF binding alpha 

chain CD116 (CSF2RA) and the signal transducing common beta chain CD131 (CSF2RB) 

activating the transcription factor STAT5. To understand impairments in GM-CSFR 

signaling, we determined CD116 and CD131 expression across most hematopoietic cells in 

the inflamed (INF) and noninflamed (NI) CD mucosa (Supplementary Table 2B). Although 

CD16+ or CD14+ monocytes, CD141+ DC, CD1c+ DC, plasmacytoid DC, and neutrophils 

differed in their abundance, CD116 and CD131 expression and STAT5 phosphorylation 

remained unchanged between INF and NI CD tissues (Figure 3A–D, Supplementary Figure 

5A and B). These findings suggest unperturbed GM-CSFR expression and responsiveness in 

the INF and NI CD mucosa.

GM-CSF stimulation controls essential myeloid functions including RA production. We next 

assessed the production of RA by APCs using ALDEFLUOR staining on HLA-DR+CD11c+ 

APCs from the INF and NI CD mucosa. APCs including CD14+ macrophages CD141+ 

DC, and CD1c+ DC showed decreased ALDEFLUOR staining specifically in the INF 

mucosa (Figure 3E and F, Supplementary Figure 5C and D). Monocytes and precursor 

DCs continuously infiltrate the intestinal mucosa to differentiate into DCs and macrophages 

and require GM-CSF for RA production.10,15,32,33 GM-CSF stimulation of blood-derived 

CD14+ monocytes confirmed a GM-CSF–dependent increase in ALDEFLUOR staining 

comparable with staining in APCs from the NI CD mucosa (Supplementary Figure 5C–E). 

APCs isolated from a patient carrying a CSF2RBMUT allele revealed the requirement for 

GM-CSF in maintaining APC function even in NI tissues (Figure 3G and H). To determine 

if aGMAb could alter RA-related metabolism in the NI CD mucosa, gene expression of 

retinol metabolism-associated genes was performed. The expression of DGAT2, BCO2, 
CYP3A7, CYP2S1, DGAT1, CYP3A4, LRAT, CYP2C18, CYP2C8, and UGT1A5, genes 

controlling RA metabolism at multiple distinct steps, were decreased in the NI CD mucosa 

of aGMAb+ patients, but not CD controls (Figure 3I). These findings suggest that GM-CSF 

contributes to homeostatic RA metabolism in the NI CD mucosa, promoting us to investigate 

the phenotype and function of GM-CSF–producing cells.

T Cells and ILC3 Contribute to the Pool of GM-CSF in the NI and INF CD Mucosa

Assessment of spontaneously released GM-CSF by CD45+ cells was comparable between 

INF and NI CD tissues (Figure 4A), confirming unchanged serum GM-CSF levels in CD 

and HC (Supplementary Figure 2A). A characterization of GM-CSF–producing cells in the 

NI CD ileal mucosa revealed that 80% were NKp44+CD3− ILC, whereas the remaining 20% 

were composed of CD3+ T cells or cells lacking both markers (Figure 4B). Interestingly, 

the number of GM-CSF–producing T cells increased in the INF CD mucosa, whereas 

the number of GM-CSF+NKp44+ cells decreased (Figure 4B and C). GM-CSF–secreting 

NKp44+ cells coexpressed CD117, CD127, CD161, CD69, and the transcription factor ROR 

gamma(γ) t (Figure 4D and E), identifying them as natural cytotoxicity receptor (NCR)+ 

group 3 ILC (NCR+ILC3).34 Analyzing NCR+ILC3 numbers and cytokine release revealed 
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lower levels of GM-CSF production and GM-CSF producers in the INF mucosa (Figure 

4F and G, Supplementary Figure 5F). Despite increased GM-CSF+ T-cell frequencies, a 

lower per cell output was observed in these cells (Figure 4C, Supplementary Figure 5F). 

We next determined if NCR+ILC3 increasingly differentiated into ILC1 as reported in 

CD.12,14 ILC1s were increased in the INF mucosa, releasing higher levels of interferon-γ 
(Figure 4H).35,36 These findings demonstrate changes in the source and levels of GM-CSF 

in the INF CD mucosa, accompanied by decreased NCR+ILC3 and increased ILC1 counts 

(Figure 4F–H). The aberrantly glycosylated GM-CSF observed in CD sera (Figure 1D) 

inspired the analysis of glycogene-expression in GM-CSF+ leukocytes of the INF and NI 

CD mucosa. Published single cell RNA-Seq data from patients with CD was analyzed 

for the expression of glycosyltransferases in T cells, NCR+ILC3s, and ILC1.37 Glycogene 

signatures differed in T cells and NCR+ILC3s between INF and NI mucosa, implicating 

the production of differential glycovariants of secreted proteins including GM-CSF. T 

cells and NCR+ILC3 in the INF mucosa displayed an upregulation of mannose-related 

(ALG6, ALG8, ALG9), fucosylation-related (FUT2, FUT7), and α2,3-sialylation-related 

glycogenes, when compared with the NI mucosa, in line with previous reports (Figure 

4I and J).38–42 Noteworthy, substrate availability or modulation of glycosyltransferases 

expression may result in aberrantly glycosylated proteins including GM-CSF. The decreased 

availability of NCR+ILC3-derived GM-CSF was reported to reduce myeloid RA production 

in mice, aligning with our findings in patients with CD (Figure 3E–G, Supplementary Figure 

5C–F).10,43 Importantly, myeloid-derived RA and IL23 both prevent the accumulation of 

inflammatory ILC1, suggesting that aGMAbs perturb the equilibrium of tissue-resident ILCs 

in prediagnostic patients with CD through the modulation of GM-CSF–dependent myeloid 

RA production.29,30 To determine if the presence of aGMAb coincided with altered ILC3 

and ILC1 gene signatures before inflammation, bulk messenger RNA-Seq data from NI 

ileal CD biopsy specimens (n = 191) and non-IBD controls (n = 121) were reanalyzed for 

ILC1 and ILC3 signature gene expression. Samples were stratified based on their principal 

component (PC)-ILC3 and PC-ILC1 signature gene expression profiles in the presence or 

absence of aGMAbs. ILC3-PC1 showed marginal changes, whereas significant changes 

in ILC1-PC1 were seen in the presence of aGMAbs (Figure 4K and L). These findings 

implicate a shift in ILC homeostasis in the NI CD mucosa in the presence of aGMAb, an 

event that may happen years before diagnosis.

Discussion

Here, we report the presence of aGMAb in the sera of patients with CD years before 

diagnosis, and propose that these antibodies contribute to the pathophysiology of CD. We 

demonstrated IgG2- and IgA-skewed aGMAb isotypes in patients with CD, suggesting 

an origin within the intestinal mucosa. Anti-GM-CSF autoantibodies were associated 

with ileal disease location, were present up to 6 years before diagnosis in asymptomatic 

subjects developing CD, and predicted complications at disease presentation (hazard ratio 

= 2.9 using log rank; P < .001). IgA aGMAbs were an exclusive hallmark of CD, and 

blocked GM-CSFR signaling by binding to GM-CSF glycovariants. This in turn impaired 

communication of ILC3 and myeloid cells in the NI CD mucosa at steady-state, resulting 

in significant alterations in ILC gene signatures in the presence of aGMAb. In support of 
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these findings, retinol metabolism-associated gene expression in the NI mucosa of patients 

with CD was reduced in the presence of aGMAbs, identifying a subgroup of individuals 

at high risk of developing complicated CD through an altered intestinal immune balance. 

Importantly, GM-CSF in patients with CD was aberrantly glycosylated, in line with altered 

glycosyltransferase expression in GM-CSF–producing ILC3 and T cells, which in turn 

implicates a possible immunogenicity of post-translational epitopes recognized by aGMAbs. 

Together, these results support a novel mechanism of disease pathophysiology that may be 

exploited for developing personalized CD-preventive and therapeutic strategies.

Myeloid cells of the INF CD mucosa displayed markedly reduced GM-CSF–dependent RA 

production associated with reduced NCR+ILC3 numbers, lower GM-CSF output, and altered 

glycogene expression. Abrogating GM-CSF–mediated signaling altered retinol metabolism-

associated gene expression and increased ILC1 signature gene expression even in NI 

tissues, suggesting a role for GM-CSF in sustaining homeostasis.13,14,34,36,44 Enrichment 

in ILC1 signatures in aGMAb+ patients with CD suggests a GM-CSF–dependent myeloid 

regulation of the ILC3/ILC1 balance. Autoreactive aGMAbs thus promote the accumulation 

of inflammatory ILC1 by disrupting the NCR+ILC3-myeloid cell circuit. We speculate 

that CD-associated aGMAbs shift the immune balance during the “prediagnostic” period 

of CD by altering GM-CSF–dependent homeostasis, a hypothesis supported by our data 

demonstrating reduced immune-related gene expression even in the NI CD mucosa of 

aGMAb+ patients. One limitation of our study is that we were unable to determine at what 

“stage” of the preclinical phase of CD aGMAb occur and whether subclinical inflammation 

at the histologic or endoscopic level was already present.45 Such subclinical inflammation 

is indeed commonly observed in patients with CD in clinical remission and has also been 

described in their first-degree relatives using biomarkers such as calprotectin or endoscopic 

exploration with video capsule.46,47

Our work further supports the rising interest in exploring the preclinical phase of CD 

where prevention strategies could be pursued48 and measuring aGMAb adds to the recently 

identified list of predictive biomarkers, such as microbial antibodies49 and intestinal 

permeability.50 One specific interest is the association of aGMAb with complicated CD 

disease at onset, which may one day help to identify relevant candidates for disease 

prevention at its earliest phase.

The differential glycosylation of GM-CSF and altered glycosyltransferase expression 

suggest that new (glyco) epitopes on GM-CSF may promote the development of aGMAb, 

however, such an event will likely be accompanied by genetic predisposition or additional 

triggering stimulus, given that sera of aGMAb− patients with CD shows aberrant 

glycosylation too. Engineering of GM-CSF variants with functional activity but capable 

of circumventing aGMAb may provide a way to re-establish immune homeostasis or 

delay disease progression. Our data calls for revisiting the use of GM-CSF in clinical 

trials with modified versions of active GM-CSF not prone to antibody neutralization, with 

careful preselection of patients based on their aGMAb profiles. Our findings demonstrate an 

intriguing mechanism for the development of complicated CD and allow the identification of 

these patients using a predictive serologic biomarker. Collectively, these findings open new 
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roads for the precise diagnosis, classification, and personalized treatment of patients with 

CD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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IBD inflammatory bowel disease

Ig immunoglobulin

IL interleukin

ILC innate lymphoid cell

INF inflamed

IRB Institutional Review Board

L-PHA Phaseolus Vulgaris Leucoagglutinin

MALII Maackia Amurensis Lectin II

NCR natural cytotoxicity receptor

NI noninflamed

NK natural killer

PAP pulmonary alveolar proteinosis

PC principal component

RA retinoic acid

UC ulcerative colitis
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WHAT YOU NEED TO KNOW

BACKGROUND AND CONTEXT

Anti-granulocyte macrophage-colony stimulating factor autoantibodies (aGMAb) are 

enriched in complicated Crohn’s disease (CD) and their epitopes, isotypes, time of 

appearance, and biological consequence on granulocyte macrophage-colony stimulating 

factor (GM-CSF) producer and responder cells remain poorly understood.

NEW FINDINGS

Anti-GM-CSF autoantibodies precede CD onset by years, recognize glycosylation on 

GM-CSF, and are associated with increased group 1 innate lymphoid cells.

LIMITATIONS

Perturbations of immune homeostasis by aGMAbs before disease onset is not 

demonstrated, but observed in the noninflamed CD mucosa in the presence of aGMAbs.

IMPACT

Anti-GM-CSF autoantibodies predict complicated CD and removal of glycosylation on 

GM-CSF facilitates escape from autoantibody-mediated neutralization.
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Figure 1. 
Characterization of aGMAb in patients with CD. (A) Reciprocal titers for total serum 

IgG aGMAb in sera of HD, patients with PAP, patients with CD, and patients with UC. 

(B) Isotype profiles of aGMAb in patients with PAP and patients with CD. Horizontal 
rows represent patients and vertical rows indicate isotypes. (C) Western blots probed with 

polyclonal sera from patients with CD and PAP show binding of anti-GM-CSF IgG and 

IgA to glycosylated (post-translationally-modified) and stripped GM-CSF. (D) Levels of 

GNA, AAL, and L-PHA binding to GM-CSF from HDs (black) and patients with CD (red), 

normalized for the total levels of GM-CSF in each sample. Schematic representation of 

N-glycan highlighting lectin recognition. (E) Native polyacrylamide gel electrophoresis of 

GM-CSF (sargramostim) and stripped GM-CSF stained with Coomassie Brilliant Blue. (F) 

Heat maps of pSTAT5 signal in peripheral blood mononuclear cells after stimulation with 

glycosylated (top) or deglycosylated GM-CSF in the presence of PAP serum, aGMAb− 

CD serum, or aGMAb+ CD serum. Heat maps show signal intensity of anti-pSTAT5 

staining in yellow code for individual patients (lanes) within the indicated cell populations 

identified using mass cytometry (rows). (G) Plots show quantification of pSTAT5 signal in 

DCs, monocytes, and plasmacytoid DCs either unstimulated or stimulated with GM-CSF 

preincubated with serum from the indicated patient groups. (H) Loss in pSTAT5 correlates 

with aGMAb titers. (I) Quantification of pSTAT signal for monocytes and DC shown in 

(F). One-way analysis of variance (ANOVA) Bonferroni’s multiple comparison test was 

performed. Mann-Whitney test. *P-value <.05.
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Figure 2. 
CD-specific aGMAbs precede the onset of disease by years. (A) and (B) show reciprocal 

titers of aGMAbs (IgG and IgA) in combined serum samples (training and validation cohort) 

at 2 time points before and 1 time point after diagnosis. (C) Trajectory of aGMAb titers 

in patients with CD. Blue lines indicate aGMAb+, black lines aGMAb− patients, and red 
lines indicate sero-converters. (D) Kaplan-Meier analysis with hazard ratio for developing 

complications after diagnosis in aGMAb+ (red) and aGMAb− patients 6 years before 

disease. (E) Correlations of aGMAb with anti-saccharomyces cerevisiae antibodies (ASCA) 

IgG and ASCA IgA antibodies at different time points before diagnosis. (F) Clusters of 

SOMAmers correlating with aGMAbs before (d-2175) and after (d+100) diagnosis of CD.
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Figure 3. 
The inflamed CD mucosa shows impaired homeostatic functions in GM-CSF–responsive 

myeloid cells. Lamina propria leukocytes from NI and INF ileal mucosa were analyzed. 

(A) Visualized stochastic neighbor embedding analysis shows distribution of leukocyte 

populations in NI and INF tissues indicating supervised annotation of populations. (B) 

Stimulation of cells in (A) with GM-CSF, followed by pSTAT5 measurement. Signal 

intensity is visualized in t-distributed stochastic neighbor embedding plots (blue = low, 

red = high pSTAT5). (C) Representative histograms show pSTAT5 levels in the indicated 

myeloid cell populations. (D) Heat map shows pSTAT5 intensity across myeloid populations 

from (A) and (B). (E) DC subset and macrophage identification by flow cytometry. (F) 

Mean fluorescence intensity (MFI) of ALDEFLOUR staining in CD45+CD11c+HLA-DR+ 

cells. ALDEFLUOR staining in CD45+CD11+HLA-DR+ cells in CD control and one 

CSF2RBMUT carrier from (G) NI and (H) INF tissue biopsies. (I) Heat map shows gene 

expression for genes associated with retinol metabolism in NI ileal tissues of aGMAb+ or 

aGMAb− patients with CD.
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Figure 4. 
Innate and adaptive sources of intestinal GM-CSF in patients with CD. (A) This shows GM-

CSF+CD45+ cells. Adjacent dot plot shows frequency in NI and INF CD mucosa. (B) GM-

CSF+CD45+ cells were analyzed for CD3 and NKp44 expression in NI and INF CD mucosa. 

Numbers in gate represents percentages. (C) Plots show percentages of NKp44+GM-CSF+ 

and CD3+GM-CSF+ cells. (D) This shows identification of NKp44+ CD117+ cells and 

(E) expression of CD127, CD161, RORγt, and CD69 on NKp44+ CD117+ cells. (F) GM-

CSF production by NCR+ILC3 (CD45+CD3−CD4−CD127+CD161+NKp44+CD117+), (G) 

NCR+ILC3 frequencies, and (H) interferon-γ-producing ILC1 were quantified. Numbers 

in gates represent percentages. (I) This image and (J) this image show gene expression 

analysis of glycosyltransferase genes in the indicated population from INF and NI patients 

with CD. (K) This image and (L) this image show scatter plots of PC1 values of ILC1-PC 

and ILC3-PC derived from principal component analysis of signature ILC1 and ILC3 genes 

against a sub-dataset (195 NI ileal CD and 121 NI ileal non-IBD samples) of the bulk 

messenger RNAseq samples from the Mount Sinai Crohn’s and Colitis Registry stratified by 

the presence of aGMAb.
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