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ABSTRACT
Oral, gut, and tumor microbiota have been implicated as important regulators in the carcinogenesis 
and progression of gastrointestinal malignancies. However, few studies focused on the existence and 
association of resident microbes within different body regions. Herein, we aim to reveal the durability 
of the oral-gut-tumor microbiome and its diagnostic performance in hepatocellular carcinoma (HCC). 
Our study included two cohorts: a retrospective discovery cohort of 364 HBV-HCC patients and 160 
controls with oral or fecal samples, a prospective validation cohort of 91 cases, and 124 controls for 
matching samples, as well as 48 HBV, and 39 HBV-cirrhosis patients for gut microbial patterns 
examined by 16S rRNA gene sequencing. With the random forest analysis, 10 oral and 9 gut genera 
that could distinguish HCC from controls in the retrospective cohort were validated among the 
prospective matching participants, with area under the curve (AUC) values of 0.7971 and 0.8084, 
respectively. When influential taxa were merged, the AUC of the consistent classifier increased to 
0.9405. The performance continued to improve to 0.9811 when combined with serum levels of alpha- 
fetoprotein (AFP). Specifically, microbial biomarkers represented by Streptococcus displayed 
a constantly increasing trend during the disease transition. Furthermore, the presence of several 
dominant microbiota species was confirmed in hepatic tumor and non-tumor tissues with fluores-
cence in situ hybridization (FISH) and 5 R 16S rRNA gene sequencing. Overall, our findings based on 
the oral-gut-tumor microbiota provide a reliable approach for the early detection of HCC.
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Introduction

Hepatocellular carcinoma (HCC) remains one of 
the most fatal malignancies with a global increase 
in incidence and mortality, resulting in over 
700,000 deaths annually1. Due to the lack of pre-
cisely predictive biomarkers and the asymptomatic 
nature of the disease, a considerable proportion of 
patients are detected at an advanced stage to miss 
the optimal timing for surgical eradication. To 
date, HCC has been diagnosed with serum AFP 
levels and imaging examination2. However, as the 
sole standard predictor for HCC, AFP levels can be 
elevated in other conditions, such as active 

hepatitis, gonad embryoma, secondary liver cancer, 
and pregnancy, restricting the disease specificity to 
some degree. Therefore, it is urgent to develop 
a brand-new indication with reasonably high accu-
racy to boost life expectancy.

Recently, there has been a surge of interest in the 
etiological role of gut microbiota in a variety of 
cancers. Referring to HCC, it has a complex etiol-
ogy that comprises alcohol, hepatitis virus, and 
aflatoxin3, which are frequently accompanied by 
visible alterations in the microbiome. For instance, 
convergent evidence has confirmed that hepatitis 
virus infection can elicit structural changes in the 
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intestinal barrier and increase microbial transloca-
tion via the gut-liver axis, resulting in impaired 
mucosal immunological function, and an excessive 
long-term immune response that contributes to the 
development of liver diseases, including fibrosis, 
cirrhosis, and even HCC4,5. Simultaneously, the 
oral microbiota has been widely linked to digestive 
system diseases, such as oral squamous cell carci-
noma (OSCC)6, inflammatory bowel disease 
(IBD),7 and liver cirrhosis8, indicating microbial 
migration of the intestine from the oral cavity. In 
particular, significant changes occur in the oral 
microbiome of patients with liver carcinoma and 
cirrhosis, which are expected to distinguish HCC 
from healthy conditions as noninvasive 
biomarkers9. Moreover, altered gut microbiome 
profiles have been implicated in the diagnosis of 
HCC, and Ren et al. established a diagnostic model 
with successful cross-region validation10. However, 
previous studies merely focused on the link 
between the oral or fecal microbiome and HCC, 
which remains as yet unexplored in the translation 
of combined improvements into a novel micro-
biome signature for early detection as a signal of 
imminent HCC development.

Nowadays, distinct intratumor microbiota com-
positions have been verified in several cancers with 
low biomasses that are mostly localized to cancer 
and immune cells, and are probably generated 
from circulating bacteria11. In addition, it was 
identified that the dominant microbiome 
Proteobacteria in pancreatic cancer was similar to 
that in duodenal microbiome makeup, which 
reflected retrograde bacterial invasion from the 
gut to the pancreatic duct12. Similarly, the presence 
of tumor-associated microbiota has been charac-
terized in HCC patients with hepatitis virus13, 
which may assist in illustrating the potential patho-
logical contribution of intratumoral microbiota 
from either the portal vein or bile duct to HCC. 
For this reason, the so-called oral-gut-liver axis has 
been proposed, in which dysregulated oral bacteria 
infiltrate the gut, disseminate negative events to the 
resident intestinal microbiome, and result in liver 
diseases8. Here, we prospectively evaluated 
a cohort of 91 newly diagnosed patients with 
HCC and 124 controls. Both oral and fecal samples, 
along with suitable hepatic tumor and normal tis-
sues, were collected for microbial composition 

examination with 16S rRNA gene amplicon 
sequencing, IHC and FISH assays. Based on a set 
of 19 integrated genera, we identified a distinct 
microbial signature with high prediction accuracy. 
More importantly, HCC-enriched species were 
investigated in tumorous tissues, with a possible 
relationship with oral and gut residents, disclosing 
a potential involvement in HCC pathogenesis.

Methods

Patient enrollment and sample collection

Briefly, our study comprised two independent 
cohorts: a retrospective cohort of 364 patients with 
newly diagnosed HBV-HCC and 160 control indivi-
duals (healthy volunteers and in patients with hepatic 
hemangioma) without HCC-related risk factors were 
recruited from the First Affiliated Hospital of 
Wenzhou Medical University from May 2019 to 
September 2020. The 16S rRNA gene amplicons of 
oral or gut microbiome and clinical features were 
obtained. In the prospective population 
(ClinicalTrials.gov identifiers NCT04637048), we 
collected oral (tongue surface) and matching fecal 
samples from 124 patients with HCC and 91 controls 
between March and October 2021. Meanwhile, 16S 
rRNA gene amplicons of the fecal microbiome for the 
patients with HBV-Cirrhosis (n = 39) and HBV- 
Noncirrhosis (n = 48) were obtained. Moreover, 46 
HCC tissues, 42 paracancerous tissues, and 11 healthy 
tissues from the control group (hepatic hemangioma) 
were analyzed by 5 R 16S rRNA gene sequencing, 
following a strictly sterile procedure with a blank con-
trol to avoid cross-contamination11. Clinical data per-
taining to age, gender, BMI, and follow-up 
information were acquired from the same hospital 
structured questionnaires. Serum AFP levels were 
examined with an electrochemiluminescence immu-
noassay according to the manufacturer’s instructions 
from the Medical Laboratory Center. Written 
informed consent and ethics approval were obtained 
from the study participants and the Ethics Committee 
in Clinical Research (ECCR) of the First Affiliated 
Hospital of Wenzhou Medical University. Prior to 
the tongue surface samples collection with the sterile 
cotton swab, the oral health condition was evaluated 
among the participants, excluding potential tongue- 
related diseases that might alter the innate oral 
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microbiota, such as Sjogren’s syndrome, Meige’s syn-
drome, atrophic glossitis, oral leukoplakia, and tongue 
fungal infection, etc. In addition, participants were 
instructed to gargle before sampling during non- 
eating times. Following that, oral and fecal samples 
were collected in sterile tubes and temporarily moved 
to the −20°C freezer in each ward, and were perma-
nently stored at −80°C for DNA extraction and taxo-
nomic analysis. For a subset of individuals, tumor and 
paracancerous tissues were obtained during surgery, 
immediately flash-frozen in liquid nitrogen, and 
stored at −80°C. All samples were shipped with 
dry ice.

Inclusion criteria

Patients with HBV-related HCC (clinically and 
histologically diagnosed) and healthy participants 
aged over 18 were enrolled.

Exclusion criteria

(1) Alcoholic liver cancer, nonalcoholic fatty 
liver cancer, HCV-related liver cancer, etc. (2) 
intrahepatic cholangiocarcinoma and mixed 
liver cancer (3) history of other malignancies 
(4) antibiotics or probiotics usage within 1  
month of sample collection (5) presence of 
hypertension, diabetes, and other metabolic 
diseases (6) Crohn’s disease, ulcerative colitis, 
and inflammatory bowel disease.

The inclusion and exclusion criteria were 
applied identically to each cohort.

Collection of sterile tissues

Tumor and normal hepatic tissues were dis-
sected in the operating room using sterile scal-
pels that were changed before dissecting 
different samples to avoid cross- 
contamination. The cutting tissue was placed 
in a sterile and nucleus-free cryopreservation 
tube with a corresponding blank collection 
tube as a negative control for 5 R 16S rRNA 
gene sequencing, which was left in the collec-
tion area with the lid open for 30 s and imme-
diately stored with the sample tubes.

DNA/RNA extraction, amplification, sequencing, 
and analysis

Genomic DNA of oral and fecal samples was 
extracted with the EZNA® Soil DNA kit in accor-
dance with the manufacturer’s guidelines 
(D4015, Omega, Inc., USA). Genomic DNA 
from hepatic tumor and non-tumor samples 
was extracted with an EZNA® Tissue DNA kit 
(D3396, Omega, Inc., USA) in a standard proto-
col. The isolated DNA was immediately stored at 
−80°C for amplification. For oral and gut DNA, 
the 16S rRNA gene V3-V4 region was amplified 
with slightly modified microbiome primers 
(515F-805 R) in a two-step PCR protocol14. To 
characterize the intratumor microbiota, 
a modified 5 R 16S rRNA gene amplification 
was done after amplifying five regions on the 
multiplexed 16S rRNA genes11. The amplifica-
tion products were purified with AMPure XT 
beads (Beckman Coulter, USA) and quantified 
with Qubit (Invitrogen, USA). Subsequently, the 
amplicon pools were applied for sequencing, and 
the quantity and size of the amplified libraries 
were evaluated on Agilent 2100 Bioanalyzer 
(Agilent, USA). Samples were sequenced on the 
Illumina NovaSeq platform from the manufac-
turer’s recommendations, which were supported 
by Lc-Bio Technologies Co., Ltd (Hangzhou, 
China). Afterward, raw reads were analyzed 
with QIIME2 software, and quality filtration 
was performed in fqtrim software (V.0.9.4) to 
acquire high-quality clean tags. DABA2 software 
was employed to construct the sequence and fea-
ture tables containing the amplicon sequence 
variants (ASVs). A taxonomic analysis for spe-
cies annotation was conducted using BLAST with 
the database of SILVA and NT-16S. MAFFT soft-
ware was used to explore the predominant spe-
cies in different groups and diverse sequence 
alignments. The alpha diversity of specimens 
was characterized by the Chao1 and Shannon 
indices, which were determined with QIIME2. 
Beta diversity was described by principal compo-
nent analysis (PCA) and principal coordinates 
analysis (PCoA) with R ade4 and vegan packages, 
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and the P value was analyzed by the Wilcoxon 
test.

Shotgun metagenomic sequencing

A number of backup gut samples from the HCC (n  
= 42) and control (n = 34) groups in the prospec-
tive cohort were further analyzed by the shotgun 
metagenomic sequencing. Total genomic DNA was 
obtained from backup gut samples with the EZNA® 
Stool DNA kit. After evaluation of the purity and 
concentration, genomic DNA was pooled for 
sequencing on an Illumina Hiseq 2500 platform 
with NovaSeq Reagent Kits. Raw data were sorted 
with assigned barcodes and filtered out before ana-
lysis. The Partek Flow and MetAMOS pipeline 
software15 were applied for the annotation and 
assembly of sequences. Afterward, the non- 
redundant Unigenes sets were obtained through 
sequencing clustering for relevant functional pro-
files. The Diamond program was used to annotate 
the functional profiling of KEGG pathway infor-
mation by comparing it with the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
database16. A one-way ANOVA analysis was con-
ducted to assess the statistical difference in func-
tional items with Statistical Analysis of 
Metagenomic Profiles (STAMP)17.

Microbial data statistical analyses

All steps of data analyses were performed in the 
R Statistical Computing platform. The continuous 
variables were represented as mean ± standard error 
of mean (SEM) or median with interquartile range, 
and categorical data were described with frequency. 
Differences in alpha diversity were verified with an 
analysis of Wilcoxon. The beta diversity between 
differences in sample community composition was 
presented as PCA and PCoA with a weighted 
Unifrac index. The relationship between community 
composition and microbiome extrinsic element was 
analyzed using the PERMANOVA and VEGAN 
R packages. The FDR method of Bonferroni correc-
tion was applied to avoid a type I error (false posi-
tives) for multiple testing of multivariate microbiota 
data. The Bonferroni-adjusted P values were consid-
ered to compensate for the significant level [α = 0.05, 

(n = 812 for retrospective oral test, P = 6.2 × 10−5; n  
= 989 for the retrospective fecal test, P = 5.1 × 10−5; 
n = 766 for prospective oral test, P = 6.5 × 10−5; n =  
782 for the prospective fecal test, P = 6.4 × 10−5)]. 
Wilcoxon-rank-sum analysis was utilized to evaluate 
the significant difference in microbial abundance 
with the STAMP software, and the statistically 
enriched microorganisms were determined using 
a linear discriminant analysis effect size (LEfSe) 
algorithm with an LDA score of more than three 
(Bonferroni-adjusted P < 0.05). The predominant 
data flow that occurred during the disease progres-
sion at phylum and genus levels was visualized with 
a bubble plot, heatmap and Sankey plot using the 
R pheatmap, stats, ggplot2, and ggalluvia packages, 
respectively. The SparCC algorithm18 was per-
formed to identify the microbial correlation of bio-
markers between HCC and control groups 
(correlation p < 0.05 and |rho| > 0.1). Redundancy 
Analysis (RDA) was conducted to select several rele-
vant clinical variables from the fecal microbiota with 
the R vegan package.

Establishment of multivariable statistical models 
and evaluation

Classification models were established with the ran-
dom forest algorithm in the RandomForest R package. 
Following that, taxa with poor richness and preva-
lence were excluded from the multivariable statistical 
training models for HCC prediction. Certain taxa 
identified between HCC and the control group were 
integrated separately for the model construction of the 
oral and fecal microbiome. The area under the recei-
ver operating curve (ROC) with validation scores was 
used to evaluate the performance in the prediction 
models. Alternatively, features with a ROC<0.5 were 
eliminated after the cross-validation, therefore sorting 
out features enriched in HCC. The selected influential 
taxa in oral and fecal microbiota were merged to 
culminate in a new classifier. Likewise, the ROC 
value of the combined classifier was calculated by 
the pROC R package as well. The oral and fecal sam-
ples were collected for taxonomic analysis immedi-
ately after the participants were enrolled in the 
validation cohort, and genera-based signatures were 
applied for the identification of HCC patients based 
on the imaging examination plus AFP or pathological 
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test. All data processing, model training, predictions, 
and evaluation were conducted by the SIAMCAT 
R package.

Evaluation of intestinal permeability

Intestinal permeability was evaluated by quantifica-
tion of serum lipopolysaccharide (LPS), zonulin-1 
(ZO-1) and fecal calprotectin. Accordingly, 
a competitive enzyme-link immunosorbent assay 
(ELISA) was conducted for the quantitative determi-
nant of ZO-1 (ZO-1, Immundiagnostik AG, 
Bensheim, Germany), and calprotectin (Elabscience, 
Houston, USA). The corresponding antibody was 
pre-coated in the microplate with 100 μl standards, 
serum, and fecal suspensions (feces were dissolved in 
PBS and vortexed for 30 min) were incubated at 37°C 
for 90 min. The biotinylated detection antibodies for 
ZO-1, calprotectin, and avidin-HRP conjugate were 
converted to each microplate. The concentration of 
ZO-1 and calprotectin was determined in 
a microplate reader with an absorbance of 450 nm, 
and bicinchoninic acid (BCA, Thermo Fisher 
Scientific, USA) was used for the quantification of 
fecal protein concentrations. The bacterial LPS was 
detected and measured by the chromogenic LAL 
endotoxin assay (Piscataway, NJ, USA), which was 
based on a colorimetric reaction in which the endo-
toxin could activate a proenzyme in the Limulus 
Amebocyte Lysate (LAL). 100 μl standard, serum 
sample, and LAL reagent were dispensed into endo-
toxin-free vials, then the mixture was incubated with 
100 μl reconstituted chromogenic substrate solution 
for 6 min at 37°C. The reaction was stopped with the 
500 μl reconstituted stop solution (hydrochloric acid 
with LAL reagent water), and the absorbance at 545  
nm was measured in a microplate reader. The endo-
toxin concentration was calculated from a standard 
curve.

Immunohistochemistry (IHC) assays

IHC staining was conducted in a standard proce-
dure, which included deparaffinization and rehy-
dration stages. The antigens were retrieved by 
slightly boiling the citrate buffer in a microwave 
for 15 min at low-to-medium power. Endogenous 
catalase activity was quenched with 3% hydrogen 
peroxide for 10 min. After blockage with 5% 

bovine serum albumin for 1 hour, the samples 
were incubated with primary LPS 
(Lipopolysaccharide Core, HM6011) and LTA 
(Lipoteichoic acid, HM2048-200UG) antibodies 
(1:50) at 4°C overnight, followed by incubation 
with secondary antibody for an hour at room 
temperature in a humid chamber. The slices 
were stained with DAB (1:1000 dissolved in 30% 
hydrogen peroxide) and terminated with washing 
water. The sections were then incubated with 
hematoxylin for 3 min and sealed with neutral 
resin. The images were captured and analyzed 
using a Leica DM6000 microscope with 
CytoVision software.

Fluorescence in situ hybridization (FISH)

The FISH test was carried out using a probe that 
targeted the 16S rRNA gene sequence of a specific 
bacterial taxon. The probes were displayed in 
Supplemental Table S2. HCC tumor specimens 
were obtained during the surgical resection and 
immediately stored in liquid nitrogen under ster-
ile circumstances. After that, the samples were 
preserved in a −80°C freezer for long-term sto-
rage. The samples were transferred to an appro-
priate cutting temperature mold and cut on 
a cryotome into several sections of 4 μm. All 
materials were sanitized using ethanol after sam-
ple processing. Sample slices of 4 μm thickness 
were mounted on the slides. Tissues were fixed 
in fresh 4% paraformaldehyde, and bacterial wall 
permeabilization was enhanced by 1 mg/ml lyso-
zyme at room temperature (RT) for 10 min, fol-
lowed by treatment with 20 μg/ml proteinase 
K for 10 min at RT. The probes were diluted to 
1 μM in hybridization buffer with 10% dextran 
sulfate, 25% formamide, 1 mg/mL E. coli tRNA, 
0.02% BSA, and 2× SSC buffer. Tissue sections 
were hybridized with specific probes overnight at 
42°C after pre-hybridization in the hybridization 
buffer at 37°C for an hour. The unbounded 
probes were washed with wash buffer for 30 min 
at RT. The sections were stained with 1 ng/ml 
DAPI for 5 min at RT in the dark. The germ- 
free (GF) section denoted a clinical HCC tumor 
sample that was determined to be sterile and 
devoid of colonized bacteria using 5 R 16S rRNA 
gene sequencing, and it was selected as a control 
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for the hybridization protocol. The FISH images 
were captured with a Nikon Eclipse Ci-L micro-
scope. The images were analyzed and scored on 
the basis of the fluorescence signal.

Results

Clinicopathological features of participants in the 
study

All the participants were recruited from our 
hospital with the same criteria. The 

characteristics of the two cohorts were depicted 
in Figure 1a. Clinicopathological variables 
including age, gender, BMI, alcohol consump-
tion, smoking history, Child-Pugh classification, 
serum AFP level, and liver function indexes 
et al. were presented in Figure 1b (for the pro-
spective cohort) and Supplemental Table S1 
(for the retrospective cohort). Several basic vari-
ables, such as age, gender, and the Child-Pugh 
score showed no significant difference among 
the groups, whether in the retrospective or pro-
spective study. In addition, microbial-related 

a

b

Figure 1. Community analysis of clinicopathological features in the longitudinal study. (a) Overview of the study population. Grey 
bands between bar plots represent samples of matching body regions within individuals. (b) Clinicopathological information and 
normalized abundance (log10 transformation and centralization) of influential genera (10 oral genera and 9 gut genera) shown as 
heatmap between HCC (n = 91) and the control groups (n = 124) in the prospective study with the statistical p values. The blank cell in 
the “oral” and “fecal” panels represented the unmatching data of corresponding individuals. Abbreviations: BMI, body mass index; CCI, 
Charlson comorbidity index; MELD, model for end-stage liver disease; HBV, hepatitis B virus; INR, international normalized ratio; PT, 
prothrombin time; HDL, high-density lipoprotein; LDL, low-density lipoprotein; ALT, alanine transaminase; AST, aspartate transami-
nase; PLT, platelet; Tchol, total cholesterol; TG, Triglyceride; Tbil, Total bilirubin; Cre, creatinine; Alb, albumin; GGT, γ-Glutamyl 
transpeptidase; AFP, alpha-fetoprotein.
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factors like obesity, cigarette smoking, alcohol 
consumption, and non-antibiotic drugs usage, 
such as chemotherapy agents, proton-pump 
inhibitors (PPIs), nonsteroidal anti- 
inflammatory drugs (NSAIDs), atypical antipsy-
chotics (AAPs), osmotic laxative and Chinese 
medicine, were generally matched. Patients 
with diabetes or hypertensive who had pre-
viously taken metformin, angiotensin II receptor 
blocker (ARB), angiotensin-converting enzyme 
inhibitors (ACEI), thiazide, or similar medica-
tion were also excluded, removing potential con-
founders to affect microbiome profiles and 
group discrimination.

The microbial alterations discriminate HCC patients 
from controls with oral and fecal samples analyzed 
by the 16S rRNA gene sequencing

In the prospective study, we collected both oral and 
gut samples from a cohort between March and 
October 2021 for the 16S rRNA gene sequencing. 
As illustrated in Figure 2a–d, the HCC group 
showed separated clusters from the control group 
with statistical β-diversity (PCA and PCoA ana-
lyses, p < 0.05), whether in oral or gut samples. 
Besides, the statistical taxonomic analysis was con-
ducted at the levels of phylum and genus to deter-
mine the prevalent microbiota composition. At the 
phylum level, Firmicutes, Proteobacteria, 
Bacteroidetes, Actinobacteria, and Fusobacteria 
dominated the two groups in terms of relative 
abundance taxa. In oral samples, Firmicutes and 
Actinobacteria showed a significant increase in 
the HCC group compared with the control group 
(Firmicutes: 26.81% versus 32.91%; Actinobacteria: 
9.74% versus 13.38%), whereas the relative abun-
dance of Proteobacteria, and Fusobacteria were sig-
nificantly enriched in the subjects of the control 
group (Proteobacteria: 28.45% versus 21.35%; 
Fusobacteria: 11.11% versus 9.09%) (Figure 2e). In 
gut samples, from the stacked bar plot of four 
predominant phyla, it was identified that the 
HCC group had a considerably greater average 
Proteobacteria composition (20.22%) than the con-
trol group (16.15%) (Figure 2g). The top 30 genera 
were plotted at the genus level, while the rest were 
merged as Others (Figure 2f–h). The box plots 
generated certain statistical general that comprised 

10 and 21 abundant taxa (abundance>1%, 
Bonferroni-adjusted p < 0.05) in the oral and fecal 
samples correspondingly (Figure 2i,j). 
Furthermore, LEfSe analysis was used to identify 
the bacterial differences in the cladogram 
(Figure 2k,l) with the criteria of LDA score>3 
(Bonferroni-adjusted p < 0.05). Particularly, 
Streptococcus was more abundant in HCC than 
that in the control group in both samples. 
Similarly, the microbiota diversity and taxonomic 
profiling of the retrospective cohort were analyzed 
and manifested in Supplemental Figure S1. In 
short, the microbiota profiles alter in HCC and 
differ from those in healthy conditions, proposing 
a microbial transformation of the disease.

Gut microbial alterations during the transition from 
healthy status to cirrhosis and HCC

Well-known factors for HCC, HBV and cirrhosis 
play critical roles in the disruption of microbial 
composition. Therefore, HBV individuals with and 
without cirrhosis were enrolled in our prospective 
study to investigate the changes of intestinal micro-
biota in the progression from healthy condition to 
HCC with the taxonomic resolution of 16S rRNA 
gene amplicons. Among the control, non-cirrhosis, 
cirrhosis, and HCC groups, the bubble plot and 
heatmap revealed that the top 5 phyla and top 30 
genera were shared across the four groups 
(Figure 3a,b). The Sankey plot, in particular, was 
constructed to exhibit the branch association 
between phylum and genus degree of taxa with 
different colors (Figure 3c). And the size of the 
bubble and the breadth of the branch represented 
the relative richness of each genus among the 
groups. The average composition of Streptococcus, 
Subdoligranulum, Prevotella_9, Agathobacter, 
Faecalibacterium, Bifidobacterium, Ruminococcus] 
_gnavus_group, Klebsiella, Escherichia-Shigella, and 
Bacteroides showed the predominant abundance at 
the genus level, with Firmicutes accounted for the 
majority at the phylum level. Statistically, the control 
individuals had the highest abundance of 
Faecalibacterium (9.12%), Bacteroides (5.65%), 
Prevotella_9 (3.16%), and Agathobacter (2.94%), 
and the lowest abundance of Streptococcus (5.67%) 
and Escherichia-Shigella (9.55%) among the groups. 
And the HCC group had the highest proportion of 
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Figure 2. The microbial composition and difference between HCC and the control groups in the prospective study. (a-d) The 
distributional difference of oral (a-b) and gut (c-d) microbiota was assessed using principal component analysis (PCA) and principal 
coordinates analysis (PCoA) with the weighted Unifrac index. P value was calculated by the analysis of similarities (ANOSIM). Red and 
blue plots represented the control and HCC samples. (e-h) Stacked bar plot of mean proportions of oral (e-f) and gut (g-h) derived 
taxonomic composition between HCC and the control groups at phylum and genus levels. (i-j) Statistically differential genera of oral 
and gut microbiota were evaluated with box plots (Bonferroni-adjusted P < 0.05, mean abundance>1%). The “*” before the taxa 
represented the unclassified genus. (k-l) Predominant taxa distribution between groups in a phylogenetic tree with cladogram 
computed by linear discriminant analysis effect size (LEfSe) algorithm (LDA [log10 transformation] > 3, Bonferroni-adjusted P < 0.05). 
The circles radiating from inside to outside represented the classification level from Kingdom to Species. Each node on different levels 
represented the specific taxon, with the diameter corresponding to the relative abundance. Taxa with significant differences (LDA>3, 
Bonferroni-adjusted P < 0.05) were highlighted and labeled between HCC and the control groups with red and green nodes. 
Significant taxa were comprehensively described in another panel.
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Ruminococcus]_gnavus_group (4.08%) and the low-
est proportion of Subdoligranulum (1.73%). Of note, 
Streptococcus (14.14% in HCC, 14.95% in cirrhosis) 
and Escherichia-Shigella (11.5% in HCC, 13.21% in 
cirrhosis) were considerably more abundant in HCC 
and cirrhosis groups than those in the control group 
(Streptococcus 5.67%, Escherichia-Shigella 9.55%), 
accompanied by an ascending trend during disease 
progression. The average abundance of 
Agathobacter (1.58%) in HCC and Prevotella_9 
(0.27%) in the cirrhosis group, on the other hand, 
was significantly decreased. Additionally, we 
attempted to characterize the microbiome pheno-
types at the organism level with the BugBase tool 
that incorporated three potential characteristics, 
including anaerobic, contains mobile elements and 
facultatively anaerobic. Consequently, the scatter 
plot depicted an apparent decrease in anaerobic 
(healthy individuals: 87.23%, HBV-Noncirrhosis: 
81.11%, HBV-cirrhosis: 71.51%, HBV-HCC: 
73.65%; p = 0.0047), and an increase in mobile ele-
ments (healthy individuals: 2.36%, HBV- 
Noncirrhosis: 6.23%, HBV-cirrhosis: 16.40%, HBV- 
HCC: 16.28%; p = 0.0001), and facultatively anaero-
bic (healthy individuals: 5.74%, HBV-Noncirrhosis: 
9.33%, HBV-cirrhosis: 18.44%, HBV-HCC: 20.54%; 
p = 1.425594e-05) throughout the disease evolution 
(Figure 3d–f), which might indirectly reflect the 
changes in the intestinal epithelial hypoxia as the 
disease progressed. Moreover, the altered intestinal 
permeability caused by epithelial hypoxia was eval-
uated between the control and HCC groups. As 
illuminated in Figure 3g–i, the HCC group showed 
enhanced intestinal permeability than the control 
group indicated with significantly elevated levels of 
serum LPS [(6.678 ± 0.78) EU/ml versus (4.025 ±  
0.57) EU/ml, p = 0.0083], ZO-1 [(147.60 ± 26.26) 
pg/ml versus (38.67 ± 8.30) pg/ml, p = 0.0002] and 
fecal calprotectin [(1.84 ± 0.17) pg/mg versus (0.57  
± 0.05) pg/mg, p < 0.0001]. Taken together, these 
data showed the landscape of intestinal hypoxia 
and microbial alterations during hepatic 
carcinogenesis.

Microbial relevance with clinical features and 
functional profiling between the groups

After recognition of the difference between HCC and 
the control group, SparCC network analysis was used 

to clarify the interactive correlation of the prevalent 
genera with each other (Figure 4A–B). Relevantly, 
Streptococcus was identified in both oral and intestinal 
correlation networks, where it exhibited positive and 
negative connections with a total of 11 genera. 
According to the 16s rRNA gene amplicons, the 
underlying relationship between clinical features and 
fecal microbiome was detected with the RDA plot in 
which the distribution of microbiome was positively 
related with MELD, Child-Pugh, Age, CCI, AFP, 
AST, ALT, GGT, Cre, LDL, Tchol, PT and INR, and 
negatively related with ALB, BMI, HDL, TG, and PLT 
in HCC patients. Streptococcus and Veillonella showed 
a consistent tendency whereas Faecalibacterium, 
Akkermansia, Ruminococcaceae_UCG−002, Rumin- 
ococcaceae_UCG−005, Ruminococcus_2, and 
Subdoligranulum showed the contrary (Figure 4c–e). 
More importantly, for direct identification of the 
functional profiles, a number of backup gut samples 
from the HCC (n = 42) and control (n = 34) groups in 
the prospective cohort were further analyzed by the 
shotgun metagenomic sequencing. Methodologically, 
the Diamond algorithm was constructed to annotate 
and calculate the statistical difference in the KEGG 
pathways between the two groups (Figure 5, adjusted 
p < 0.05). In the majority of the top 20 statistical 
KEGG items, the HCC group showed more activities 
than the control group, including Arginine and pro-
line metabolism; Alanine, aspartate, and glutamate 
metabolism; Cysteine and methionine metabolism; 
Arginine biosynthesis; Valine, leucine, and isoleucine 
biosynthesis, which underscored the significance of 
secondary metabolites, namely the amino acid synth-
esis and metabolism in the HCC microbiome.

The performance of a combined oral and fecal 
microbiota-based model in the diagnosis of HCC

Having recognized the existence of a microbial signal 
for HCC at the coarse level of general community 
composition based on the 16S rRNA gene sequencing, 
the random forest method was employed to visualize 
specific taxa that contributed to the diagnostic potential 
between HCC and the control group. In the retrospec-
tive study, the top 20 influential taxa were identified in 
oral or fecal microbiota, as represented by the mean 
decrease accuracy of each taxon in Figure 6a–b. After 
qualification, 10 (Anderoglobus, Corynebacterium, 
Prevotellaceae_UCG-001, Pseudoramibacter, Atopobi- 
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Figure 3. Dynamic microbial alteration in the HCC transition from healthy condition (fecal samples obtained from control group, 
non_cirrhosis group, cirrhosis group and HCC group) of the prospective cohort. (a) Bubble plot of the gut genus affiliation to phylum 
with different colors and the abundance of genera with bubble size. (b) Heatmap of different gut genera among the control, non- 
cirrhosis, cirrhosis, and HCC group. Color in the heatmap was utilized to describe specific general abundance within the four groups, 
with blue indicating lower abundance and red indicating higher abundance. (c) Sankey plot of the taxonomic data changes with the 
breadth of the branch at genus (right side) and phylum (middle) levels during the disease progression (left side). The color and width 
of the branches represented the flow of specific genera within different phyla. (d-f) Characteristic analysis of fecal microbiota 
phenotype among the four groups with Anaerobic (d), Contains mobile elements (e) and Facultatively anaerobic (f). (g) Metagenomic 
sequencing validation of the mobile genetic element database between HCC (n = 42) and Control (n = 24) groups (h-j) The levels of 
serum Zonulin-1 (g), LPS (h), and fecal calprotectin (i) between the control and HCC groups, with the data representing mean ± SEM, 
*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001; ns, no significance.
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um, Lutispora, Cryptobacterium, Dialister, 
Lachnospiraceae_NK4A136_group, Sphaerochaeta) 
and 9 (Elizabethkingia, Burkholderia_Caballeron- 
ia_Paraburkholderia, Klebsiella, Delftia, Faecalib- 
aculum, Acetatifactor, Lactobacillus, Rumino- 
coccaceae_UCG-010, Stenotrophomonas) genera with 
disease-specific univariate (Figure 1b) were applied to 
establish oral and fecal models with favorable ROC 
values of 0.7971 and 0.8084 in the prospective cohort 
for validation, which was comparable to the accuracy of 
AFP signature (AUC = 0.8505, Figure 6c). Taken 
together, the oral and fecal influential taxa were merged 
to develop a combined prediction model. Afterward, 
the classification accuracy of such a prediction model 
between HCC and the controls was verified with an 
AUC of 0.9405, indicating its potent differential 

diagnosis capability in the prospective population. 
Combined with AFP, the performance of the diagnos-
tic model further improved to 0.9811. Generally, our 
results explained the diagnostic potential of the micro-
biota and established related classifiers with favorable 
accuracy.

Associations between the oral, intestinal, and 
hepatic microbiomes

The biliary duct anatomically interacts with the 
duodenum, which proposed an evident link for 
the microbiota to colonize the hepatic tissues and 
facilitate HCC development. To corroborate the 
presence of several influential taxa described in 
the prospective study, we taxonomically profiled 

a b

c d e

Figure 4. Microbial biomarkers (LDA>3, Bonferroni-adjusted P value<0.05) intercorrelation and relevance with clinical characteristics 
between HCC and the control groups in the prospective cohort. (a-b) SparCC network of the abundance of genera with node size and 
the link between nodes with a correlation coefficient |rho| more than 0.1 by default in oral (a) and fecal (b) samples, with positive and 
negative correlations represented by solid and dashed lines, respectively (correlation p < 0.05). (c-e) RDA analysis of clinical feature 
and fecal genus in HCC and control groups, with the acute and obtuse angle indicating the positive and negative association between 
specific genus and clinical indicator.
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the biopsies of HCC tumors (n = 46), normal hepa-
tic tissues from paracancerous regions (n = 42), and 
hepatic hemangioma (n = 11) with 5 R 16S rRNA 
gene sequencing, following a strict procedure to 
eliminate putative bacterial contaminants. 
A relatively rich and diverse hepatic microbiome 
with the top 30 genera and corresponding 16 phyla 

were observed in over 50% of the samples 
(Figure 7a–b). Among these, a series of genera 
including Enterococcus, Escherichia-Shigella, 
Faecalibacterium, Streptococcus, Delftia, 
Bifidobacterium, Prevotella, Parabacteroides, and 
Stenotrophomonas were abundant in tumors 
(abundance>1%), along with their presence in the 

Figure 5. The major KEGG pathways between HCC and the control groups of the prospective cohort with the metagenomic 
sequencing data of fecal samples. Differential shotgun metagenomic sequence-based KEGG pathways in gut microbiota between 
the two groups detected by Diamond software. The top 20 items are listed along with the appropriate 95% confidence intervals and 
adjusted-p values.

a b c

Figure 6. Establishment of classification models from the retrospective data and validation for distinguishing HCC from the control in 
the prospective cohort. (a-b) The top 20 influential oral (a) and gut (b) genera for distinguishing HCC from the control were identified 
by random forest analysis from the retrospective data. Each genus is ranked with the mean decrease in accuracy. The mean relative 
abundance (%) of the predictive genus derived from the oral (n = 10) and fecal (n = 9) models was described as Control vs HCC 
between the two groups of the prospective data. Abbreviations: B_C_P (Burkholderia_Caballeronia_Paraburkholderia), R_UCG_010 
(Ruminococcaceae_UCG_010), L_N_group (Lachnospiraceae_NK4A136_group), P_UCG_001 (Prevotellaceae_UCG_001). (c) External 
longitudinal-validation results of the AFP model, oral model, fecal model, oral-fecal model, and the combination model of AFP with 
microbial features in the prospective cohort were shown as ROC curves with corresponding colors.
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oral or gut samples of HCC patients. In particular, 
among the differential taxa in oral and fecal sam-
ples, the species Streptococcus parasanguinis was 
identified in tumors with a relatively low abun-
dance. We then characterized the microbes using 
IHC assays with LPS (for gram-negative bacteria) 
and LTA (for gram-positive bacteria) staining, 
which showed the presence of microbiota as punc-
tate dots (Figure 7c). FISH assays with specific 
primers were utilized to further verify the preva-
lence of Streptococcus parasanguinis, Streptococcus 
mitis, Streptococcus salivarius, Delftia acidovorans, 
Parabacteroides distasonis, and Stenotrophomonas 
maltophilia in tumor tissues. Owing to the 

decreased sensitivity of FISH, Stenotrophomonas 
maltophilia, Parabacteroides distasonis, Streptoco- 
ccus salivarius, and Streptococcus mitis were detect-
able in the tested samples (Figure 7d). In summary, 
the concordant amplicon, IHC, and FISH data 
suggested that distinct hepatic microbial residents 
may be derived from the oral and the gut.

Discussion

As an insidious malignancy, HCC remains 
a formidable challenge that requires extensive 
efforts for early detection to mitigate its adverse 
burden. Herein, this was the first time we 

a

b

d

c

Figure 7. Presence of microbiota in hepatic tissues with different conditions of the prospective cohort. (a-b) Microbial composition in 
hepatic tumor and healthy tissue samples at phylum (a) and genus (b) levels, with top 16 phyla and 30 genera as determined by 5 R 
16S amplicon data, with different colors representing the corresponding taxa. The matched samples were put next to each other 
(cancerous and paracancerous tissues) within the gray bar, along with benign liver tissues from the hepatic hemangioma inpatients. 
Two random regions of each large tissue were selected for microbial analysis, e.g. CA_6-1, CA_6-2. The blank bars of Germ-free 
samples were marked as GF. (c) IHC of LPS and LTA staining in hepatic cancer, paracancerous tissues, and control samples as indicated 
by punctate dots (magnification x400). The expression of LPS and LTA between tumor and the paracancerous group showed no 
significant difference, *P < 0.05, **P < 0.01, **P < 0.01, ***P < 0.001, ****P < 0.0001; ns, no significance. (d) Representative microscope 
images for Parabacteroides distasonis, Streptococcus mitis, Streptococcus salivarius, and Stenotrophomonas maltophilia with Fam and 
Cy3 fluorescent dyes, and DAPI was used for nucleus staining in tumor and control samples (GF tissues) (magnification x400). The 
expression of fluorescence density between tumor and control samples showed significant difference, *P < 0.05, **P < 0.01, ***P <  
0.001, ****P < 0.0001; ns, no significance.
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determined that the oral microbiota of HBV-HCC 
patients differed significantly from that of healthy 
individuals, as well as a similar gut microbial trend 
that was confirmed in the literature. These altera-
tions thus prompted several distinct microbiota- 
based classifiers to predict HCC incidence. 
Importantly, microbial data of oral and fecal coun-
terparts in the matching prospective cohort con-
firmed the diagnostic superiority of a combined 
classifier with an impressive AUC value. 
Furthermore, we identified the presence of hepatic 
microbiota and disclosed a potential relationship 
across microbes in the cancer ecosystem, mouth, 
and intestine.

Previous studies have explored associations 
between digestive tract diseases and oral19 or gut20,21 

microbiome with the taxonomic resolution of 16S 
rRNA gene amplicons, including early liver carci-
noma with cirrhosis9. In particular, the gut micro-
biome has also been identified to effectively predict 
HCC incidence10, demonstrating its diagnostic 
potential for classification. In our retrospective 
study, we delineated the microbial composition of 
oral and fecal samples with 16S rRNA gene sequen-
cing in HCC and healthy individuals. The taxa het-
erogeneity and distribution described with β diversity 
and the LEfSe algorithm (Supplemental Figure S1) 
significantly distinguished HCC from the control 
group. Subsequently, with the random forest algo-
rithm, several influential oral (n = 10) and gut (n =  
9) genera were recognized to improve the diagnostic 
efficiency of HCC patients from healthy individuals. 
For validation, both tongue and matching fecal sam-
ples were prospectively collected from 124 HCC 
patients and 91 control individuals, with taxonomic 
profiles showing consistent results. Respectively, we 
developed amplicon-derived classifiers that could 
accurately predict HCC based on characteristic oral 
and fecal microbial genera with AUC values of 0.7971 
and 0.8084 (Figure 6c), which showed comparable 
performance to AFP (AUC = 0.8505), as the sole 
FDA-approved marker for HCC22. Moreover, the 
oral-gut-liver axis has been introduced to play 
a pivotal role in the maintenance of metabolism and 
the pathophysiology of hepatic diseases through 
blood circulation and enteral routine23,24, which was 
confirmed with the intrinsic connection among the 
microbes and their correlation to the clinical markers 
in SparCC and RDA analyses (Figure 4). Reportedly, 

a combination of oral and fecal microbiota has been 
proposed to enhance the sensitivity of predictive 
models for pancreatic ductal adenocarcinoma and 
colorectal cancer25,26. Therefore, the optimal 19 
microbial biomarkers were merged to establish 
a distinct microbiota classification that considerably 
increased the accuracy to 0.9405 (Figure 6c). 
Importantly, when paired with the AFP level, the 
combined prediction model’s accuracy further 
improved to 0.9811 (Figure 6c), suggesting its com-
plementary effect to the serum testable markers. 
These results indicated that oral and gut microbiota- 
targeted markers may become promising noninvasive 
tools for early diagnosis, demonstrating for the first 
time that an integrated analysis of the microbiome 
from subjects with HCC was conducted using oral 
and fecal samples.

To further explore when the alterations of micro-
biota occur in the participants, HBV and HBV- 
cirrhosis patients were enrolled and the relative abun-
dance of potentially pathogenic bacteria was also eval-
uated to indirectly reflect the difference in microbial 
composition across HCC disease stages. 
Consequently, a couple of genera were identified to 
be crucial elements, some of which had been con-
firmed in the occurrence and progression of HCC, 
including Streptococcus 27, Prevotella_9 28, 
Faecalibacterium 29, and Bacteroides 30. Interestingly, 
these potential pathogens represented by 
Streptococcus showed a continuous accumulation 
from the healthy condition to HCC, which was specu-
lated to be related to the successive decline in the 
gastrointestinal mucosal barrier. Further microbial 
phenotype analyses showed a decreasing trend in 
anaerobic bacteria, and an increasing trend in mobile 
elements and facultatively anaerobic bacteria 
(Figure 3d–f), indicating that disruption of epithelial 
hypoxia and accumulation of harmful bacteria were 
linked to gut dysbiosis and inflammatory reactions 
that increased intestinal permeability31 for intestinal 
bacterial translocation during carcinogenesis. In addi-
tion, improved intestinal permeability was also con-
firmed with elevated levels of serum LPS, ZO-1 and 
fecal calprotectin in HCC patients compared with the 
control individuals (Figure 3g–i). Consistently, as 
a typical facultative anaerobic genus, Streptococcus 
displayed a continuous accumulation from healthy 
conditions to HCC in the Sankey plot (abundance: 
5.67% to 14.14%, Figure 3c), signifying its potential 
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relationship with HCC. Notably, emerging lines of 
evidence have linked microbiota metabolites and dys-
functional gut barriers to the occurrence of HCC. 
A variety of metabolites, including choline, bile acids 
(BAs), short-chain fatty acids (SCFAs) and amino 
acids have been reported to serve as critical signaling 
factors and metabolic substrates that affect liver 
function32. Accordingly, genera Streptococcus and 
Lactobacillus were enriched in HCC, whereas the 
Akkermansia, Prevotella_2, Subdoligranulum and 
Faecalibacterium decreased, all of which were asso-
ciated with BAs synthesis, especially with lithocholic 
acid (LCA) and deoxycholic acid (DCA)33–35. 
Intriguingly, Faecalibacterium was involved in the 
production of butyrate36 and acted as a SCFAs- 
related bacterium that modulated inflammatory reac-
tions. Meanwhile, KEGG pathway analyses discov-
ered several biological metabolic pathways in HCC 
with the metagenomic sequencing (Figure 5), parti-
cularly the biosynthesis and metabolism of 
Arginine37, proline38, alanine, aspartate39, 
glutamate40, cysteine and methionine41, which may 
provide a promising prospect for the regulatory role of 
gut microbes in the biosynthesis and metabolism of 
amino acids during HCC development with metage-
nomic sequencing. With regard to the function of the 
gut barrier, of those exactly defined genera that were 
differentially distributed in control and HCC partici-
pants, alterations in the relative abundance of 
Akkermansia, Bacteroides and Lactobacillus were 
related to intestinal permeability42,43 that contributed 
to the gut microbiota shifting for gut-liver reactions. 
Besides, dysbiosis of Bacteroides and Bifidobacterium 
in the tumor lesion microbiota was correlated with 
cirrhosis and HBV-related HCC11,44. It is known that 
the leaky gut and bacterial translocation could facil-
itate microbial metabolites to the liver, followed by the 
impairment of BAs metabolism and inflammation via 
Toll-like receptors (TLRs) signaling, eventually lead-
ing to the progression of tumorigenesis45. 
Additionally, the present study has also shown 
a positive relationship between the gut microbiome 
and clinical outcomes in patients with HBV-related 
HCC46. Therefore, all this evidence underscored the 
importance of certain signature-derived microbiota in 
the development of liver disease and early detection of 
HCC, which reminded us that the intervention of gut 

microbiota in the precancerous stage may slowdown 
the deterioration among the patients.

Clinically, cohort studies have revealed that 
features of tissue-derived bacteria are correlated 
with cancer risks47, treatment response,11 and 
cancer prognosis48 through various mechanisms, 
including increased mutation rate, modulation of 
oncogenic genes and pathways, and regulation of 
tumor immune microenvironment49–51. In parti-
cular, a landmark work reported by Cai and his 
colleagues52 innovatively identified the intracel-
lular microbiota that could protect circulating 
tumor cells from mechanical stress by reorganiz-
ing the actin cytoskeleton in breast cancer. 
Alternatively, bacteria had also been postulated 
to contribute to tumorigenesis through indirect 
mechanisms such as metabolites, biofilms, 
inflammation, and immunosuppression53. In our 
study, after strictly aseptic collection and careful 
filtration of the 16S rRNA gene amplicon datasets 
with different controls to account for contamina-
tion during the procedures, several taxa could be 
traced from the gut and hepatic tissues with uni-
variate enrichment in lesions, suggesting possible 
associations between HCC and intestinal micro-
biota. Based on specific antibodies and primers, 
IHC and FISH assays were used to describe the 
landscape of microbiome and certain abundant 
species in hepatic samples. Similarly, 
a significantly elevated level of oral-intestinal 
strain transmission was observed in patients 
with HCC, particularly of signature taxa, indicat-
ing that they originated intraindividually from 
the oral cavity. These findings illustrated that 
the oral, gut, and hepatic microbiomes may be 
intricately linked, which will be essential to dis-
close their respective roles in HCC etiology.

To our knowledge, it was the first longitudinal 
cohort study focusing on the diagnostic potential of 
the combined oral-gut microbiome in HBV-HCC 
patients, and the microbial relationship between 
liver tumors and the oral-gut axis had been system-
atically introduced through the prospectively 
matched population. A majority of HCC in our 
country was caused by HBV and developed into 
cirrhosis, which would influence the dynamic 
microbiome along with the predominant 
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geographical variances54–56. Hence, with the rela-
tively large size of HBV-HCC patients, our co- 
territorial study achieved a few convincing results 
with internal validation and less geographical bias. 
However, there were certain limitations to our 
research. On the basis of differential abundance 
analysis, more robust methods including ANCOM- 
BC57, LinDA,58 and LOCOM59 were required with 
a unique focus on the compositional nature of the 
original data and powerful performance in the FDR 
control. Sequential samples were obtained from 
a specific disease status without dynamic samples 
of the same patient over time, and the data were 
derived from the same race in a single center 
(Asia), therefore future study was required to verify 
the general application for the predictive signature 
in different races from other regions (e.g. North 
America, Africa). And it was innovative to demon-
strate the visible presence and exact location of 
viable bacteria within tumor tissues under the cor-
responding medium, which may assist in clarifying 
its potential carcinogenic role in additional works. 
Nevertheless, the present study described a distinct 
microbiome signature that enabled robust perfor-
mance for HCC detection with unique specificity, 
complementary to current biomarkers, and the 
possibility of effective HCC screening and moni-
toring. Beyond the use for early diagnosis, we 
believe that the panel of microbial species may be 
relevant to hepatic carcinogenesis, providing pro-
mising insights into proper HCC prevention and 
intervention.
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AUC area under the curve
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IBD inflammatory bowel disease
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STAMP statistical analysis of metagenomic profiles
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RT room temperature
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PPIs proton-pump inhibitors
NSAIDs nonsteroidal anti-inflammatory drugs
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Tbil total bilirubin
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